Internet Appendix for
"Dynamic Debt Runs and Financial Fragility:
Evidence from the 2007 ABCP Crisis"

This internet appendix contains supplemental material to the paper ‘Dynamic Debt Runs and

Financial Fragility: Evidence from the 2007 ABCP Crisis.’

Internet Appendix A. The Model

As in He and Xiong (2012), we focus on symmetric monotone equilibria, where each creditor is
best-responding to all others’ decision to run if and only if the fundamental asset value drops below a
common threshold, y*. To solve for our model’s threshold, we must show first that the creditor’s value
function depends only on one state variable: the conduit’s (inverse) leverage, x4, i.e., the ratio of asset
value, y; to total debt, D;. We start by charactersing the dynamics of the conduit’s debt, then of x;

and then solve for the threshold x*.

Debt dynamics
Since all debt is equally likely to roll over in the next instant, regardless of when and at what yield
it was originated, then the total face value of paper outstanding at ¢, Dy, equals the average face value

of debt rolling over at time ¢. Moreover, the change in total face value at time t equals
dDy = 6Dy (R — 1) dt, (1)

where a fraction ddt is rolled over at every period, and for every dollar of face value that is rollover

over, the conduit issues new debt at fave value R;.



Value function
There are three possible payouts for a lender who holds debt with face value Rs at some date

T<s:

1. The program matures at time 7 = 74 so that the creditor is either paid in full or gets share of

the assets proportional to his face value, i.e.,

R
* x min (Dy,,y-,) = Rsmin <1,ly)”’ > (2)
Te To

2. The firm defaults at time 7 = 7y after other creditors run and backup credit lines fail. The

creditor recovers a share of the post-liquidation net present value of the asset, i.e.,

l})%; min (D, ly,,) = Rs min <1, l%:i) , (3)
where
¢
Wy = a————yr,. 4
0 p+ ¢ — 1 0 ( )

3. The debt contract matures at time 7 = 75, allowing the lender to choose between rolling over
or running. Because the amount of debt maturing at each instant is infinitesimally, a running
lender can be paid off in full. If the lender rolls over, the old loan is retired and a new loan is
issued with face value R,,;. Let V (y,, D;, Rs;y*) be the value in time 7 of one dollar loaned at

time s < 7. The lenders payoff in 75 is therefore

max {RSV (y‘l‘57 D‘rga R‘I‘g; y*) aRs} = R, max {V () 3 1}

roll over or run roll over or run

Combining these three possible payoffs, the time ¢ value to a creditor who last loaned one dollar

at time s <t equals
ca) — —p(T—t) : Yr
V(ye, Dy, Rs; y*) = Ey {e Rs min (1, Dr) 1{T:T¢}} + (5)

i . Yr
Ey {e PT=t) R min <1,ZDT> 1{779}} +

E, {e_p(T_t)RS max  {V (Yry, Dry, Rrs3y") , 1} l{T:Té}} .

rollover or run



For x¢ = y;/ Dy, equation (5) simplifies to

V(ytaDtaRs;y*) = RsW (.’L‘t,.’l?*) (6)
w (:Ut; :U*) — Et {e—ﬂ(T—t) min (1’ xT) 1{T:T¢}} + (7)
Eg{e*P@=¢)nnn(1J1k)]{T:m}}—+

Ey {ep(Tt) max {R W (z;;2%),1} 1{T:T5}} .

rollover or run

The new function W (x4, 2*) is the value at time ¢ to a creditor with one dollar of face value. This
value does not depend on when the creditor last rolled over, due to the memoryless properties of the

exponential distribution.

Applying Ito’s Lemma and equation (1), it is straightforward to show that inverse leverage follows

t

Since the value function (7) and the dynamics of z; are both functions of x; only, then x; is the only
state variable of the problem.

Loosely speaking, x; measures the inverse of firm leverage. This result implies that rollover yields
depend on leverage but not on the asset value (y;) or the debt level (D;) individually, which is intuitive.
Also, the model exhibits hysteresis: even if two firms started with the same initial asset value yg and
share the same current asset value y;, the firm that experienced lower intermediate realizations of
ys, for some 0 < s < t, will have higher debt and hence higher yields and a higher probability of a
run. Most importantly, investors choose whether to run by comparing the current inverse leverage x;
to a threshold z*.

The numerical procedure below relies on the limit of debt prices W when inverse leverage x becomes

large. In this limit, there is effectively no chance of default or runs, so W simplifies to
: ) — —p(T—t
lim W (z;2*) = E; {e pT=1) [1{T:T¢} + 1{T:T5}}}

__9+d
p+od+48



Equilibrium debt prices and run threshold
Next we characterize the equilibrium properties of the face value, R;. Investors break even if for

every $1 invested in the firm at time ¢, they receive a loan worth $1. Formally, breaking even implies
L= RW (z4;2%), 9)

where W is the present value of $1 of face value. Since face values cannot exceed the cap, R, the

rollover face value is

Ry = min |R, W (zy;2%) "

Following He and Xiong (2012), we focus on symmetric monotone equilibria: if all other investors
use run threshold z*, then an investor’s optimal response is to use that same threshold. The following

Proposition describes how to find this threshold.

Proposition 1 Let R; = min [E, 24 (:ct;x*)fl} . Then

W(azt;x*)_l if xy > x*,
Ri=<% R =W (zp;2%)" if oy = a*
R if xp < x*.

The proof is below. The Proposition states that runs will not occur at face values R; below the cap
R. The reason is that face values can still increase if they are below their cap, potentially inducing
creditors to roll over their debt. Proposition 1 characterizes the equilibrium threshold, z*, as the

point z; = x* where investors break even at the capped face value, i.e., where

R=W (z*;2%) "



Proof of Proposition 1. Note first that any creditor’s continuation payoff must be equal to 1. By

definition, for any x;, the payoffs are

max {1, R;W (x4, z%)} = max {1,min [ﬁ, W (wt,x*)_l} W (xt,x*)}

run or roll over run or roll over
= max 1, min |[RW (2, 2*), 1]} = 1.
run or roll over { ’ r ( b ) ’ ] }
First we show R; = R if z; < o*. If z; < ¥ creditors will refuse to roll over their loan at maturity.

Because running gives them a payoff of 1, rolling over must give them a strictly lower payoff, i.e.,

RW (x4, z*) < 1. By definition of Ry, this inequality becomes
min E,W(mt,m*)_l} X W (x, ") < 1.

Since W (mt,x*)_l X W (x4, z*) = 1, it must be that min [ﬁ, w (xt,x*)_l] = R. Therefore, R; = R.
Suppose that z; > x*. In this case, creditors choose to roll over. If they do so, their payoff must be
at least as high as running, which pays 1. Because their payoffs are bounded above by 1, then rolling

over must always pay 1. Therefore, for z; > z*

min | R, W (zg, 2*) | x W (z4,2%) =1

= min [RW (z¢,2%),1] = 1.

The previous equality holds if either RW (z¢,z*) > 1 for every x > z* or if there exist some 2’ € [z*, o0)
where RW (2/,2*) = 1 and RW (z4,2*) > 1 for all other z; # z'. Because W (z,z*) is strictly
increasing in x, then 2’ is unique. Moreover, because RW (2/,2*) = 1 is a minimum, then 2’ = z*,
i.e., the lowest point in the support. In summary, then either

W (x4, z* 1SR forallz >z,
Ri=<¢ (z,27) b= [case (i)]
R if oy < x*.
or
Wz, 2*) " if my > a*

Ry =

=

if & =a*  [case (ii)].
R if T < x*

Next we show that case (i) cannot be true, arguing by contradiction. In case (i) we have

R =W (z*,2") ' <R



exactly at the run boundary. Hence we have
1= R'W (z*,2%) < RW (z*,2%). (10)

The equality above is from the definition of R*, and the inequality is from W > 0 and R* < R. By
the assumed continuity of W (x, 2*) at x = x*, there exists a £ > 0 such that for all 2’ € (z* — &, 2%),
RW (2',2*) > 1. We therefore have a contradiction: At 2’ < x* the investor runs (since we assume
runs happen below z*), but at 2’ it is not optimal to run (since RW (z*,z*), the payoff from rolling

over at R; = R, is strictly greater than 1, the payoff from running). m

Analytical solution to the ODE for W (z,z*) below the run threshold
Using equations (7) and (8), we can write the general Hamiltonian-Jacobi-Bellman (HJB) equation
as

0.2

PW (z52%) = [ = 0 (Ry = D] W () + 52 W (1) (11)

+ ¢ [min (1, 2¢) — W (+)]
+ 651{It<$*} (min (1, lzy) — W ()]

+9 max  {RW (xy;2%),1} =W (1) .

rollover or run

Since RiW (z4;x4) < 1, the HIB equation simplifies to

o2

pW (zg;2%) = [p— 6 (Re — )] 2 Wy () + ?aﬁWm () (12)

+ ¢min (1, z¢) + 001, <o) min (1, lzy)
— (¢4 06114,z +6) W () + 6.
For a given threshold z*, the HJB equation can be solved analytically for z; < * <= R; = R <

W (z4, ac*)f1 . We rely on this analytical solution in our numerical procedure for finding z*.

When z < x*, the HJB simplifies to



2
0=[n—6(R—1)]aWe+ i W (13)

+ ¢min (1, z¢) + 00 min (1, lay)

—(p+Q+05+8W()+9,

The exact solution is

as as + ai

CL1:(M+5—5E)
2
a2:%>0

az=—(¢+p+05+3) <0
a4 = 95ll{x§1/l} + ¢1{r§1} >0

a5 =0 + 081,51y + Glgzs1y > 0,

where coefficients do and ds are determined by boundary conditions, value matching, and smooth
pasting at * = 1 and * = 1/l. Next we examine the cases where z < z* and either z* < 1,
1<z*<1/l,or z* > 1/

Case 1: 2* <1

The solution is

W($,J:*):Ax”f%f a4 z, for x < z*
a3 a3+ ai
where
as = 00l + ¢
as = 0.



Following He and Xiong (2012), we eliminate the term with 77 so that the solution does not explode

as x approaches zero.

If 2* < 1 then we can already solve for A as a function of z*. Value matching and Proposition 1

imply that
as a4 1
W (z*, 2%) = A(2™)T — =2 — ) ==
( ) = A(z7) o a3+a1( )=%

1 as _ a4 1—
A==+ —| (") "+ )
[R ag](z (")

Case 2: 1 <z* <1/l

The solution is

n as aq
(x x*) { Az — ar " aatar forx <1
’ — b b,
m 5 4 *
Biz" + Bsx e T @ almf0r1<m<x

where

by = 06l

bs =6+ ¢

1
31=A+¢[7_”+]
Y+nlaz az+ax

R

:7+77 as + ap 673
1 b B by .
A= — 4+ =2 * 77_*_7 * n
(R a3)<x> (o)

—Bg(:p*)_"’_”—i y_ oo+l
y+nlas a3+ ay

Runs and solvency

Like He and Xiong (2012), we find that creditors may run on solvent firms, i.e., z* > 1, but not
on “super-solvent” firms. Solvent firms are those where the asset’s market value, F' (y;) , exceeds the
amount owed to creditors, D;. Super-solvent firms are those where the asset’s fire-sale value, oF (y;),
exceeds Dy, i.e., where > 1/I. When the run threshold z* exceeds 1/I, then the analytical solution
for W (the market value of $1 of face value) decreases in x for some values © < x*. Formally, the

analytical solution for W (z,x*) for all x < z* and z* > 1/l is



Az — 95 — g for x < 1,

as az+ay
W(z,2") = q Bz + Bgac*'V—Z—z—asljfaleor1<:c§1/l, )
Clzc"—l—ng*V—%—ﬁx for 1/l < x < z*.
where
s =0+00l+¢
cy =0
l 1 1
Cy =By +1"05—— [— <1+>],
y+nlag a1 +as 0
_ n l 1 1
Co=By+17706—— | — — 1— - ,
v+mn laz a1+as Ui

and the formulas for By and By are above. The expression for A is now

R a3 as + ap
I 1 1
— g5 [ - <1+ )}
’7+T] as CL1+CL3 Y
9 [’Y_’Hl]
y+mnlas az+ar]’

Smooth-pasting at W (1/1,2*) implies that W, < 0 for all 1/l < x < z*. That is, for frantic runs to

occur, it must be that that bond values decrease in asset values.

Restrictions on parameter values
We impose the following necessary restrictions on the parameter values. To prevent the asset’s

present value, F' (y;) = ¢/ (p + ¢ — ), from exploding or becoming negative, we require that

w<p+o.

Second, we limit «, the recovery rate in liquidation, to

a<p+¢—u
¢
so that | = « 3 +f))—u < 1, i.e., the asset liquidation value aF (y;) is not enough to pay off all lenders

when the firm’s maturity value y; drops below the total book value of outstanding debt, Dy.



Internet Appendix B. Partial Asset Sales

Suppose the conduit attempts to sell off portion a of its assets to pay out the running creditors,
instead of borrowing from the sponsor’s credit line. The partial asset sale will decrease the conduits

leverage, and increase x; if and only if

Yo e —axXY
Dy = Dy — 6Dydt

& 0dt > a. (14)

Intuitively, leverage decreases if and only if the proportion of assets needed to be sold is lower than
the proportion of debt needed to be paid out, which equals ddt.

To pay off creditors, the partial asset sale must generate enough cash net of liquidation costs, i.e.,

a X lyt = 6Dtdt

D, 6
1 (15)

Replacing (15) into (14), we obtain that partial sales of assets will only decrease leverage, and increase
xy if and only if

lyy > Dy,

which implies that the firm must be ‘super’ solvent, i.e., have enough assets to pay off all its debt even
after full liquidation. As we show above, a run never occurs at such low levels of leverage. Therefore,
partial liquidations of assets only worsen the leverage of a conduit during a run state.

Clearly, this analysis relies on the assumption that the unit fire-sale recovery rate, [, is independent
of the size of the sale. In a more plausible scenario, the recovery rate on partial sales, Z would be
higher than the recovery rate on full sales. In that case, the conduit could use partial sales at higher
levels of leverage, possibly even during a run. However, for any given partial fire-sale recovery rate,
1> [, there will be a leverage level 1/ such that leverage 1/x; increases as a result of partial sales
if and only if 1/x; > 1/Z. That is, partial sales cannot be effective in deterring runs once the firm is

sufficiently levered.

10



Internet Appendix C. Additional Tables
Table IA. Estimated Jacobian Matrix

This table presents the estimates of the Jacobian matrices for the 13 moment conditions in our
SMM estimation procedure. The first Jacobian corresponds to the subsample of 90 ABCP conduits
in 2007 with SIV or extendible credit guarantees. The second corresponds to the subsample of 191
conduits in 2007 with full credit or full liquidity guarantees. Moment 1 is the probability that a
conduit experiences a recovery within 8 weeks of a run’s start. Moments 2 is the average number of
days between the run’s start and recovery, conditional on a recovery occurring within 8 weeks of the
run’s start. Moments 3 and 4 are the intercept and slope from a regression of absolute changes in
yield spreads on the lagged yield spread. Moments 5-7 are the intercept and slopes from a regression
of yield spreads on the number of weeks relative to a run and the exponent of that same number.
Moments 8-13 come from 3 regressions, each of the indicator 1.y within 7weeks} On the current yield
spread. The three regressions use 7=2, 4, and 8 weeks. Each row of each matrix contains the
elasticities of the given moment with respect to the parameters across its columns. Estimation is
done by SMM, which chooses parameter estimates that minimize the distance between actual and
simulated moments.

SIV/Extendible guarantee Full credit/liquidity guarantee
Elasticity of moments with respect to Elasticity of moments with respect to
0 o T o 0 o 7 o

Moments on time between run and recovery (7):
1 Pr[r < 8 weeks] —-0.209 —-0.106 —0.036 0.075 —0.048 0.100 —0.004 0.270
2  E[r|T <8 weeks] —0.104 —0.295 —0.011 0.106 —0.009 —0.039 0.002 —-0.107

Moments from regression of |11 — 74| on 74
3  Intercept 0.112 0.106 0.724 —0.758 0.003 0.239 1.012 —1.159
4  Slope 0.002 —0.307 0.133 0.472 —0.045 —0.299 —0.070 0.921

Moments describing yield spreads leading up to runs:
Regression of 7;; on 7 = 2 weeks relative to run and exp(r)

5  Intercept 0.102 —0.186 0.990 —0.311 —0.059 0.159 1.012  —0.412
6 Slope on 7 0.133 —0.149 0.977 —0.870 0.006 0.365 1.012 0.100
7  Slope on exp(T) 0.235 —0.548 1.093 —0.118 0.073 —0.250 1.002 0.667
Regressions of 1y within rweeks) On yield spread:
8 Intercept (1 =2) 0.023 —0.424 0.243 —0.446 —-0.137  —-0.927 0.179  —1.952
9 Slope (1 =2) —0.030 0.177  —0.055 —0.296 0.044 0.376  —0.036 0.958
10 Intercept (r =4) —0.414 0.694 —0.498 —2.562 —7.573 —4.870 —14.932 —22.509
11 Slope (1 =4) 0.028 —0.023 0.057 —0.444 0.105 0.138 0.227 0.687
12 Intercept (r =8) —0.158 0.283 —0.571 —0.344 —0.222 0.047 —0.764  —0.228
13 Slope (1t =38) 0.066 —0.067 0.180 —0.097 0.112 0.064 0.387 0.278

11



Table ITA. Robustness of parameter estimates with respect to u

This table shows the robustness of parameter estimates with respect to the assumed value of u, the
asset’s growth rate. Definitions are the same as in Table IIT in the main paper. Base-case results,
which assume p = p=4.9%= risk-free rate, are identical to the parameter estimates for the weak-
guarantee subsample in Table III. The last rows show how parameter estimates change if we instead
assume g = p + 0.01.

Weakness Asset Cap on
of credit volatility yield spreads Asset
guarantee (% per year) (b.p. per year) liquidity
0 o T «
Base case (u = p) 0.449 4.30 59.8 0.920
(0.144) (0.10) (6.7) (0.032)
Robustness (¢ = p+ 1%) 0.433 4.37 58.7 0.929
(0.118) (0.06) (7.9) (0.013)

12
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