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1. Measuring Tobin’s ¢ as the market-to-book-assets
ratio

The following table shows that the market-to-book assets ratio produces lower R? values for
physical, intangible, total, and R&D investment, whether we scale each investment measure
by total capital (Panel A) or book assets (Panel B).

Table A1l
Counterpart of paper’s Table 1 using the market-to-book-assets ratio

Details are the same as in Table 2 in the main paper, except Panel A measures Tobin’s ¢ as the
market-to-book-assets ratio, measured as the firm’s market value (Compustat items prec_f xcsho+
dltt + dlc — act) divided by total book assets (Compustat item at). Panel B shows regressions that
scale both ¢ and investment by total assets. The purpose of Panel B is to check whether Panel A’s
low R? values result from scaling investment and ¢ by different values. For comparison, Panels C

and D reproduce the results from the paper’s Table 2, Panels A and B.

Investment scaled by total capital (K)
Physical (/™) Intangible (") Total (:'") R&D CAPX/PPE (/%)

Panel A: Regressions with market-to-book-assets ratio

Market/Book assets 0.037 0.024 0.060 0.010 0.078
(0.001) (0.001) (0.001) (0.000) (0.002)
R? 0.158 0.198 0.240 0.106 0.176

Panel B: Same as Panel A, but scale all investment measures by book assets, not total capital

Market/Book assets 0.025 0.014 0.039 0.006 0.025
(0.001) (0.000) (0.001) (0.000) (0.001)
R? 0.126 0.083 0.168 0.047 0.126

Panel C: Regressions with Total ¢ (same as Paper Table 2, Panel A)

Total ¢ 0.029 0.020 0.049 0.013 0.062
(0.001) (0.000) (0.001)  (0.000) (0.001)
R2 0.209 0.279 0.327 0.270 0.244

Panel D: Regressions with standard ¢ (same as Paper Table 2, Panel B)

Standard ¢ 0.006 0.005 0.011 0.003 0.017
(0.000) (0.000) (0.000)  (0.000) (0.000)
R? 0.139 0.266 0.250 0.250 0.233




2. Results using the fourth-order cumulant estimator

Table A2
Counterpart of paper’s Table 3 using the fourth-order cumulant estimator

Details are the same as in Table 3 in the main paper, except here we use the fourth-order rather

than the third-order cumulant estimator.

Investment scaled by total capital (K%)
Physical (/#P™) Intangible (") Total (:'') R&D CAPX/PPE (/%)

Panel A: Regressions without cash flow

Total g (¢'°!) 0.056 0.039 0.069 0.026
(0.001) (0.000) (0.001) (0.000)
Standard ¢ (¢*) 0.029
(0.000)
OLS R? 0.209 0.279 0.327 0.270 0.244
(0.004) (0.006) (0.005) (0.009) (0.005)
0> 0.288 0.409 0.337 0.436 0.299
(0.007) (0.007) (0.006) (0.013) (0.005)
2 0.544 0.536 0.749 0.528 0.611
(0.010) (0.007) (0.009) (0.015) (0.009)
Panel B: Regressions with cash flow
Total ¢ (¢*) 0.065 0.040 0.080 0.026
(0.001) (0.000) (0.002) (0.000)
Total cash flow (') 0.035 0.043 0.158 -0.009
(0.008) (0.004) (0.011) (0.004)
Standard ¢ (¢*) 0.030
(0.000)
Standard cash flow (c¢*) 0.022
(0.004)
OLS R? 0.235 0.326 0.374 0.281 0.238
(0.004) (0.005) (0.005) (0.009) (0.005)
0> 0.349 0.464 0.460 0.435 0.312
(0.006) (0.005) (0.006) (0.011) (0.005)
72 0.452 0.480 0.575 0.529 0.590
(0.008) (0.008) (0.009) (0.014) (0.008)
Observations 141,800 141,800 141,800 74,326 141,800




3. Horse race between total ¢ and standard ¢

Table A3
Horse race between total ¢ and standard ¢

We use the cumulant estimator to regress total investment on either total or standard q.
Details are the same as in Table 3 in the main paper.

(Ltot) (Ltot)

Total g (¢*") 0.086
(0.001)
Standard ¢ (¢*) 0.023
(0.000)
OLS R? 0.327 0.250
P2 0.423  0.314
72 0.597 0.497

Observations 141,800 141,800

As we explain in Section 4.2 in the paper, this horse race illustrates why we need a new
q proxy that account for intangibles, i.e., why the cumulant estimator alone cannot solve
the problem of omitted intangibles. This table also provides the following useful consistency
check: Total ¢ produces a higher 72, which is consistent with its having less measurement
error than standard gq.



4. Bias in the investment-cash flow sensitivity?

Section 4.2 in the main paper explains that the slope of SG&A investment on total cash
flow ' may be biased upwards. The reason is that measurement error in SG&A investment

* measure, because we add back intangible investment to

appears mechanically in the ¢
compute cft. Put differently, ¢!t equals profits gross of SG&A and R&D investment. Mak-
ing this measure gross of SG&A investment can introduce measurement error from SG&A

tot

investment into ¢***. If the same measurement error is on both sides of the regression, the

slope is biased upwards.

We now construct an alternate cash-flow measure that is immune to this concern about
bias. The new measure is cash flows net of SG&A investment but gross of R&D investment.
Since SG&A investment is not added back this cash-flow measure, the measure contains no
measurement error in SG&A. Results are in the table below.



Table A4
Bias in the investment-cash flow sensitivity?

Details are the same as in Table 3 in the main paper. Results in Panel A match those in Table
3 Panel B, except we add the last column, which uses SG&A investment as the dependent
variable. SG&A investment equals 0.3 times SG&A, scaled by lagged total capital. Panel
B matches Panel A, except it uses an alternate cash-flow measure equal to (I B;; + DPy +
RDy(1 — k))/K{$" |, which equals cash flow gross of R&D but net of SG&A investment.

Investment scaled by total capital (K'")

Physical (¢#*) Intangible (1) Total (/) R&D  0.3x SG&A

Panel A: Results using cash flows gross of R&D and SG&A investment (")

Total g (¢*") 0.069 0.038 0.086 0.024 0.085

(0.001) (0.001) (0.002)  (0.001)  (0.002)
Total cash flow (™) 0.024 0.050 0.140 0.000 0.115

(0.008) (0.004) (0.009)  (0.004)  (0.011)
OLS R? 0.235 0.326 0.374 0.281 0.278
0 0.361 0.447 0.481 0.405 0.380
T2 0.435 0.502 0.544 0.568 0.385

Panel B: Results using cash flows gross of R&D, net of SG&A investment

Total g (¢*") 0.069 0.038 0.086 0.024 0.084
(0.001) (0.001) (0.001) (0.001) (0.002)
Alternate cash flow 0.023 0.012 0.094 -0.003 0.008
(0.007) (0.004) (0.008) (0.004) (0.010)
OLS R? 0.228 0.29 0.349 0.276 0.225
0 0.359 0.407 0.452 0.401 0.329
T2 0.438 0.539 0.567 0.574 0.432
Observations 141,800 141,800 141,800 75,426 141,800

As expected, when we compare Panels A and B, we see that making cash flows gross
rather than net of SG&A invesment increases SG&A investment’s cash-flow slope, from
0.008 to 0.115. In panel B, SG&A investment’s cash-flow slope is not statistically different
from zero.

This exercise places a useful upper and lower bound on SG&A investment’s cash-flow
slope. Due to the measurement-error bias discussed above, the 0.115 slope in Panel A is
too large, providing an upper bound. The statistically insignificant 0.008 slope in Panel B
is arguably too low, providing a lower bound. It is too low because netting SG&A from
cash flow depresses the cash-flow slope, and an economically meaningful cash-flow measure
should be gross of all investment, including SG&A investment.



5. A More General Theory of Intangible Capital, In-
vestment, and ¢

This appendix presents a more general version of the model in Section 2 of the main paper.
The goal is to understand whether and how departures from Section 2’s assumptions could
explain our empirical results. We relax four main assumptions: perfect competition, constant
returns to scale, equal depreciation rates for the two capital types, and quadratic adjustment
costs.

5.1. Setup

The model in Section 2 assumes the profit function IT is linearly homogenous in K" meaning
the profit function can be written IT (K", e) = e K™ = ¢ (K?" + K™) . We now use a more
flexible profit function equal to

phy . int 0
I (Kphy’Kint7€) _ . <(Kphy)¢’ N (Kmt)¢ ) 7 (1)

where parameters ¢?, ¢™ and 6 are all strictly positive and less than or equal to one.
This specification collapses to our main specification in Section 2 when 6 = ¢PW = ¢ = 1.
Equation (1) can be interpretted as the maximized profit function from a more general model
that features endogenously chosen labor, either constant or decreasing returns to scale, and
an exogenously given demand function for the firm’s output. Abel and Eberly (2011) solve
exactly such a model, albeit with one type of capital, and they show that the maximized
profit function has the same form as equation (1).! According to Abel and Eberly’s (2011)
result, our parmeter # summarizes all relevant information about returns to scale (in total
capital) and the degree of competition. If the firm faces constant returns to scale and
perfect competition, then 6 = 1. If the firm instead either has some monopoly power or faces
decreasing returns to scale, then # < 1. In other words, relaxing our assumption that 6 = 1
can be interpretted as letting the firm face either decreasing returns to scale or imperfect
competition. Instead of reproducing Abel and Eberly’s (2011) more general model, we make
the reduced-form assumption in equation (1) to keep our analysis as simple and transparent
as possible. We allow ¢ # ¢P™ to investigate the situation in which physical and intangible
capital face different returns to scale.

The model in Section 2 assumes both capital types depreciate a the same rate 6. We now
allow them to depreciate at different rates, denoted 6?*¥ and §*.

The model in Section 2 assumes quadratic adjustment costs. We now use the more

!The maximized profit function is equation (3) in Abel and Eberly (2011). Parameter « in their model
corresponds to 6 in ours. K in their model corresponds to K% in ours. R in their model corresponds to II
in ours.



general cost function
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This cost function collapses to one in our main model when v*" = p™ = 2. We need the
absolute value above to allow negative investment while avoiding imaginary numbers.

We cannot solve the generalized model in closed form. We switch from continuous to dis-
crete time so we can solve the model numerically using value-function iteration on discretized
state-variable grids. We choose parameter values to match those in Strebulaev and Whited
(2012) where possible, except we choose 7 to more closely match our estimated g-slopes.

We compare the baseline model from Section 2 with several variations. The baseline
model and variations all share the same following inputs. One period corresponds to a year.
The discount rate is 0.04. Physical and intangible capital share the same adjustment-cost
parameters, 7" = v = 100. The log of € and p*" follow

loge;y = 0.7logeis1 + ucip, ueisiid. N(0,0.15)
log p?™ = 0.7logp"™ + uy, u, is Lid. N(0,0.2).

The baseline model has the following additional inputs. We normalize intangible capital’s
price p™ to one, so that p™ equals the unconditional median of p?™. Depreciation rates
equal 6P = §"* = 0.15. There are constant returns to scale (§ = ¢P"¥ = ¢ = 1), and there

are quadratic adjustment costs (VP = vt = 2).

5.2. Predictions

We obtain predictions about investment regressions by solving the model, simulating a large

tot ) tot

Lt on ¢', cash

panel of data, and running regressions of investment (either (P, or ¢
flow (¢'), and time fixed effects. In our theory, cash flows correspond to profits (gross of

investment costs) scaled by total capital, i.e., IT/ K",

5.2.1. Effects of alternate assumptions on the investment-g relation

First, we use the general model to explore how violations of Section 2’s assumptions affect
the predicted investment-q relation. Simulation results are in Table Ab5.
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The first column shows results from the baseline model. Because these results are from a
discrete-time model, three of the baseline model’s predictions deviate from those in Section
2’s continuous-time model. First, whereas Section 2 predicts g—slopes of 1/4PW = 1/~ =
0.01, we find g—slopes here of 0.0067. The reason for this discrepancy is that the investment-q
relation is contemporaneous in the continuous-time model, but in discrete time, investment
depends on 1/7 times the expectation of next period’s ¢. In our simulated and empirical
regressions, we use lagged ¢, not expected future q. The slope of expected ¢ on lagged ¢ is
roughly 0.67, which explains the gap between 1/v=0.0100 and our estimated g—slope, 0.0067.
Second, we find an R? of 99.9% rather than 100% in our main investment regressions. This
deviation may simply reflect numerical error or the gap between lagged and expected future
g. Third, Section 2 predicts no slopes on cash flow, but we find sizeable negative slopes on
cash flow in Panel C. These slopes may result from numerical error or from the gap between
expected and lagged ¢. It is comforting that adding cash flow to the regression increases its

R? by only 0.001 (Panel D).

The second and third columns show how results change if there are decreasing returns to
scale. These models are the same as the baseline model, except we reduce # from 1 to either
0.75 or 0.5. The two capital types are still perfect substitutes in all ways, but there are now
decreasing returns to scale in total capital (K%"). We find that the more strongly returns
decrease with scale, the lower are the predicted g—slopes (panel A), the lower are the R?
values in the main investment-g regressions (Panel B), and the more explanatory power cash
flows have for investment (Panel D). Decreasing returns to scale also flip cash flow’s slope
coefficient from negative to positive (Panel C), although the strength of this relation is not
monotonic in . Abel and Eberly (2011) also show that cash flow is positively related to
investment when there are decreasing returns to scale. When 6 = 0.5, g—slopes are roughly
1/3 their values in the baseline model, R? values are down to 84%, and cash flows explain
10% of the variation in investment.

The last two columns show how results change if there are non-quadratic capital adjust-
ment costs. We reduce the adjustment cost function’s curvature v from 2 to either 1.75 or
1.5.2 The lower the curvature in the adjustment-cost function (i.e., lower v), the smaller are
the predicted g—slopes (Panel A). We still find R? values near 100% in the investment-q re-
gressions, even though these models do not predict a linear relation between investment and
q when v # 2.3 The regression’s linear specification is apparently a very good approximation
for the theory’s nonlinear relation. As a result, cash flows provide virtually no additional
explanatory power for investment (Panel D).

2The model does not converge for exponents above 2.
3For example, when ("M is positive, (P*¥ depends nonlinearly on expected ¢ as follows:

1
h wPhy —1
P = 2 BEi[q(ers1,pe41)] =\

t Uphy r}/phy .
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5.2.2. Differences between physical and intangible capital

Next, we examine potential sources of biases in our test of the theory’s last prediction. This
last prediction states that the intangible intensity (the ratio of intangible to total capital)
equals the ratio of adjustment-cost parameters v/ (fyphy + ’yi”t) , which can be measured
using the ratio of estimated g-slopes 3™/ (ﬁmt + Bphy) . This prediction relies on the strong
assumptions in our baseline model, along with the additional assumptions that the capital
types have the same price (p™ = pP") and the same linear adjustment cost (¢ = (P").
Section 5.2 from the main paper reports empirical evidence consistent with this prediction:
Firms with higher intangible intensities have a higher ratio g™/ (8™ + grhv).

A concern here is that alternate models could produce this same empirical pattern. Specif-
ically, the capital prices, linear adjustment costs, depreciation rates, and economies of scale
could be quite different for physical and intangible capital. These differences could determine
firms’ optimal mix of capitals, and they could also influence their investment-¢ slopes in a
way that produces a pattern like the one we report in Section 5.

To explore this concern, we now consider models in which physical and intangible capital
differ in these ways, and we judge whether these differences can explain our empirical result.
In all the results below, the two capital types have the same adjustment cost parameters
AP = ~int 5o we shut down the channel highlighted in the last prediction. Simulation
results are in Table AG6.

19
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The first column of Table A6 shows results from our baseline model. Since the two capital
types are alike in all ways, we find equal slopes in regressions of physical and intangible
investment on ¢**, and we find an average intangible intensity of 50%.

Column two shows results from a model that is identical to the baseline model, except
p™ the price of intangible capital, is normalized to four instead of one. This variation on
the baseline model conforms to all the assumptions in the paper’s simple model, except for
the additional assumption that is imposed to obtain the theory’s last prediction. This vari-
ation also sheds light on differences in linear adjustment costs: Prediction 2 in the paper’s
model shows that the linear adjustment costs ( play the same role as prices p in explaining
investment. We can therefore interpret the model with unequal purchase prices as a model
with unequal linear adjustment costs. As expected, increasing the relative purchase price of
intangible capital makes firms buy relatively less intangible capital, and the average intan-
gible intensity decreases from 50% to 30%. The estimated ¢—slopes are the same as in the
baseline model, which is also expected given Prediction 3 in the paper. To summarize, dif-
ferences in purchase prices or linear adjustment costs help explain differences in the optimal
capital mix, but they do not explain differences in ¢— slopes.

Column three shows results from a model in which intangible capital’s depreciation rate
is increased from 15% to 20%, so that the two capital types now have unequal depreciation
rates. Firms now use relatively less intangible capital (32% compared to 50%), since its user
cost is relatively higher. The ratio of g—slopes, g™/ (8™ + gPh) | decreases slightly from
50% to 48%. Differences in depreciation rates are therefore an alternate explanation for our
empirical result that firms using less intangible capital have a lower ratio 5/ (Bmt + ﬂphy) )

Column four shows results from a model in which both capital types face diseconomies
of scale, yet physical capital faces more severe diseconomies. Firms still use 50% intangible
capital, and the ratio of g-slopes is still 50%. In other words, we find that differences in
diseconomies do not necessarily produce unequal capital mixes or different g-slopes.

Column five shows results from a model in which physical capital still faces quadratic
adjustment costs (¥”" = 2), but intangible capital faces adjustment costs to the power 1.75
(v = 1.75). The intangible intensity drops from 50% to 32%. The reason firms invest
less in the capital type with a lower v is that both the level and slope of adjustment costs
with respect to investment are higher when v is lower and investment rates are in their
simulated rate. We also see that intangible investment’s ¢—slope is now lower than that of
physical investment, making the ratio ™/ (8" 4 P") drop from 50% to 38%. In other
words, we find that differences in curvature for the adjustment cost function are an alternate
explanation for our empirical result that using less intangible capital have a lower ratio

Bint/ (6int 4 Bphy) ]

14



6. Intangibles, economies of scale, and competition

Section 5.1 in the main paper shows that the classic ¢ theory fits the data better in firms
with more intangibles. One potential explanation is that firms with more intangibles face
fewer diseconomies of scale or more competition. In this section, we empirically compare the
characteristics of firms with different amounts of intangible capital. Specifically, Table A7
below shows the economies of scale and competition faced by firms in the four intangible-
intensity subsamples that we examine in the paper’s Table 4.

We use two methods from the literature to estimate the economies of scale in each
subsample. Both methods estimate the curvature of firms’ production functions, with a
curvature of one implying constant returns to scale, and a value less than one implying
diseconomies of scale.

The first method is from Cooper and Haltiwanger (2006), which we review here. This
method estimates the parameter @ in the profit function IT = e(K%*)?, using lagged instru-
ments to account for the endogeneity of K. Results are qualitatively similar if we use K?"
in place of K%' We assume ¢ depends on a common shock ¢; and a firm-specific shock €;:

lOg €it = P¢ T €. (3)
The dynamics of €;; are given by
€it = Pe€it—1 T Wit, (4)

where w; is an ii.d. shock. Using the notation 7 = log (II) and k& = log (K'"), quasi-
differencing yields

T = P11 + Bakie + Baki—1 + @f + wir. (5)
Bi = pe Ba=0, B3=—pb, ©f =pr— pepr1. (6)
We follow Cooper and Haltiwanger (2006) in using log revenues in place of log profits. We
estimate (5) in each subsample by GMM with time dummies, and we instrument for k;
using k;;_o and m;;_o. Variables m;;_; and k;;_; do not require instruments, because they

do not depend on w;. We use [y as our estimate of #, and we confirm that the restriction
B12 = — 33 is not rejected.

The second method for estimating returns to scale is from Olley and Pakes (1996), which
we review next. This method assumes a production function implying log revenues that
follow

Yyie = Bo+ Bili + Brki + i, (7)
wie = Qi + Nis (8)
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where [;; is the log value of variable inputs, k;; is the log of capital, €2; is a productivity
shock that is observed by the decision-maker in the firm but not by the econometrician,
and 7;; is an unexpected productivity shock observed by neither the econometrician or the
decision-maker. Our goal is to measure (3, which measures the revenue function’s curvature
with respect to capital. This method uses the observed level of investment to infer the value
of €, thereby allowing us to control for the correlation between the error term and inputs
in the equation above. We implement this method using log total capital for k, log COGS
for [, and total investment to infer ). Results are qualitatively similar if we use physical
capital in place of total capital.

Next, we define three proxies for the degree of product-market competition a firm faces.

The first proxy is the Herfindahl index in the given firm’s industry and year. We compute
this index using revenues, and we use four alternate industry classifications: the Fama-French
5 and 49 industries, and also Hoberg and Phillips’ (2010, 2015) 25 and 100 text-based Fixed
Industry Classifications (FIC).

The second proxy is profitability, which we measure two ways. The logic is that high
competition is associated with low profitability. The first profitability measure is EBITDA
scaled by lagged revenues. Note that EBITDA is net of intangible investment. The second

tot

measure is ¢, which equals firm profits gross of intangible investment, scaled by lagged

total capital (details in section 3.4 in our paper).

The third proxy is firm size. The logic is that a small firm, and especially a firm that is
small relative to its competitors, is more of a price-taker. We measure firm size four ways:
the log of revenues, log of market cap, revenues scaled by median revenues within the same
FIC-100 industry, and market cap scaled by median market cap within the same FIC-100
industry.
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Table A7

Characteristics of firms with different amounts of intangible capital

We compute characteristics in the four subsamples formed using each year’s quartile break-

points for intangible intensity. These subsamples match those in our paper’s Table 4. We

define the characteristics in detail in the text immediately above.

Quartile 1 Quartile 2 Quartile 3 Quartile 4 Quartile 4-1
(8% intan.)  (33% intan.) (56% intan.) (76% intan.)  Diff.  (StdErr.)
Panel A: Production-function curvature estimates
Cooper-Haltiwanger method 0.413 0.427 0.480 0.401 -0.012 0.038
Olley-Pakes method 0.250 0.466 0.581 0.386 0.136 0.091
Panel B: Mean Herfindahl index
Fama-French 5 industries 0.0215 0.0230 0.0236 0.0244 0.0029  (0.0049)
Fama-French 49 industries 0.0966 0.0879 0.0816 0.0775 -0.0190  (0.0095)
FIC 25 industries 0.0765 0.0728 0.0758 0.0768 0.0002  (0.0041)
FIC 100 industries 0.1435 0.1585 0.1688 0.1742 0.0307  (0.0082)
Panel C: Mean profitability
EBITDA /Sales 0.112 0.088 0.054 -0.213 -0.325 (0.028)
Total cash flow (c't) 0.116 0.158 0.180 0.155 0.039 (0.004)
Panel D: Mean firm size
Log(Revenues) 5.55 5.69 5.56 4.88 -0.68 (0.07)
Log(Market Cap) 5.45 5.43 5.55 5.43 -0.02 (0.06)
Sales / industry median 0.948 0.994 1.072 0.697 -0.251 (0.070)
Market cap / industry median 0.896 0.958 1.043 0.748 -0.148 (0.051)
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7. Results from IV estimators

Table A8
Counterpart of paper’s Table 3 using Arellano and Bond’s (1991) IV estimator

Details are the same as in Table 3 in the main paper, except here we use Arellano and
Bond’s (1991) IV estimator. This estimator takes first differences of the investment-g model,
uses twice-lagged ¢ and investment as instruments, and weights these instruments optimally
using GMM. We do not present R? values, which are poorly defined for the IV estimator.

Investment scaled by total capital (K')
Physical (/#™) Intangible (:"*") Total (:!¥) R&D CAPX/PPE (/%)

Panel A: Regressions without cash flow

Total ¢ (¢'°!) 0.010 0.005 0.014 0.004
(0.001) (0.001) (0.002)  (0.001)
Standard ¢ (¢%) 0.010
(0.001)
Panel B: Regressions with cash flow
Total ¢ (¢'°!) 0.016 0.009 0.023 0.005
(0.001) (0.001) (0.002)  (0.001)
Total cash flow (ct) 0.090 0.049 0.142 0.020
(0.005) (0.003) (0.007)  (0.003)
Standard ¢ (¢*) 0.013
(0.001)
Standard cash flow (¢*) 0.010
(0.001)
Observations 99,553 99,553 99,553 53,841 99,553
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Table A9
Counterpart of paper’s Table 3 using Biorn’s (2000) IV estimator

Details are the same as in Table 3 in the main paper, except here we use Biorn’s (2000) IV
estimator. This estimator takes first differences of the investment-¢ model and uses three
lags of cash flow and Tobin’s ¢ as instruments for the first difference of Tobin’s q. We do
not present R? values, which are poorly defined for the IV estimator.

Investment scaled by total capital (K%)
Physical (:P") Intangible (:") Total (:’)) R&D CAPX/PPE (.*)

Panel A: Regressions without cash flow

Total ¢ (¢*!) 0.024 0.004 0.028 -0.002
(0.003) (0.002) (0.004) (0.002)
Standard ¢ (¢*) 0.012
(0.002)
Panel B: Regressions with cash flow
Total ¢ (¢*) 0.021 0.002 0.023 -0.003
(0.003) (0.002) (0.004)  (0.002)
Total cash flow (') 0.088 0.066 0.155 0.036
(0.005) (0.004) (0.007)  (0.004)
Standard ¢ (¢*) 0.011
(0.002)
Standard cash flow (c¢*) 0.026
(0.003)
Observations 88,700 88,700 88,700 47,482 88,700
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8. Placebo Analysis

We perform a placebo analysis to show that our main results would not obtain if our intan-
gible measures were pure noise. Note that we can write our variables as

Qf?et 1 = q:,tflAi,tfl (9)
B = A (10)
L;Ott = LZtAi,tlei,t (11)
o= g = hy (12)

K'Y,
Ai’til = phy int <13)
K -1 + Kz t—1
]phy 4 [int
B;, = it et (14)

) phy
I it

We simulate intangible investment I™ that has same mean, persistence, and volatility as
actual intangible investment, but is otherwise pure noise. Next, we compute simulated
intangible capital stocks Kint by applying the perpetual- 1nventory method to [ mt, just as
we do in the actual data. We use these simulated values of 1" and K" , along with actual

values of TP KPW g¢* and "™, to compute the placebo variables Aphy, ot 7ot and ¢t

using formulas (9)-(14) above. We use 7' and ¢'** in OLS and cumulants regressions similar
to those in Tables 2 and 3.

The specific steps of the placebo analysis are as follows:

1. Define z;y = ]fft/Kffﬁl. Using actual data, estimate the panel regression
Tip = @i + ap + 021 + it (15)
Collect the estimates a;, ay, 9\, and var (E;).

2. For each firm ¢ in our sample, randomly select some other firm j. Collect @; and the
initial values x;; and Ajo.

3. Create simulated values z;; assuming z;; = z;; and
Tip =@ +ap + 07,41+, t>1, (16)

where &;; is drawn independently from N (0,var (£;;)). We set any negative values of
T to zero, since x;; is never negative in our data.

4. Compute simulated values of intangible investment according to Z”;t =T, K7 hy .
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5. Compute the simulated intangible capital stock assuming firm 4’s initial intensity is A; .
Firm i’s simulated starting intangible stock therefore equals K. =K A0 — K7 n.
Compute future periods’ Kint applying the perpetual-inventory method to 1:;”;'5 with a
20% depreciation rate.

Regression results using simulated data are in the following table:

Table A10
Counterpart of Paper’s Table 3 using simulated data

Details are the same as in Table 3 in the main paper, except Panel A uses simulated data on
intangible investment to construct placebo values of (P", /™ ot and ¢'°*. Results in Panel B

match the results in the paper’s Table 3, Panel A.

Investment scaled by total capital (K'°")
Physical (:#P™) Intangible (:"*") Total (:'") CAPX/PPE (.*)
Panel A: Placebo regressions using simulated data

Placebo total ¢ (¢') 0.050 -0.089 0.046

Standard ¢ (¢*) 0.036
OLS R? 0.267 0.033 0.247 0.244
P> 0.280 -0.094 0.331 0.372
72 0.458 -0.022 0.553 0.492

Panel B: Results using actual data (from Paper Table 3, Panel A)

Total ¢ (¢'°?) 0.070 0.037 0.086
(0.001) (0.001) (0.001)
Standard ¢ (¢*) 0.036
(0.001)
OLS R? 0.209 0.279 0.327 0.244
(0.004) (0.006) (0.005) (0.005)
p? 0.358 0.392 0.423 0.372
(0.007) (0.007) (0.008) (0.007)
72 0.437 0.559 0.597 0.492
(0.008) (0.009) (0.008) (0.010)

Since simulated intangible investment is pure noise, it is not explained well by ¢q: The OLS
R? for 7™ in panel A is just 0.033. Values of p? and 72 are negative for placebo regressions
using 7, indicating a misspecified model. The model is misspecified because the g-slope is
effectively zero, which violates one of the cumulant estimator’s assumptions.

Next, we compare the literature’s standard regression (last column) to the placebo re-
gression of 7" on ¢*'. The placebo regression produces an R? of 0.247, which is slightly
higher than the 0.244 R? from literature’s standard regression, but is well below the 0.327
R? from using actual data on total capital (Panel B). The placebo regression’s p? is 0.331,

lower than the total-capital p? (0.423) and even the physical-capital p? (0.372). The placebo
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2 is 0.553, roughly halfway between the standard regression’s 72 (0.492) and

regression’s T
the total-capital 72 (0.597). The placebo regression produces a bias-corrected g-slope of
0.046, higher than the physical-capital slope (0.036), but much lower than the total-capital
slope (0.086). To summarize, our total-investment results would not obtain if our intangible-
capital measures were pure noise. Such noise could explain only half of the observed increase
in 72. It explains very little of the observed increases in R? and g-slopes. Noise could explain

none of the observed increase in p?.
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