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1. Measuring Tobin’s q as the market-to-book-assets

ratio

The following table shows that the market-to-book assets ratio produces lower R2 values for

physical, intangible, total, and R&D investment, whether we scale each investment measure

by total capital (Panel A) or book assets (Panel B).

Table A1

Counterpart of paper’s Table 1 using the market-to-book-assets ratio

Details are the same as in Table 2 in the main paper, except Panel A measures Tobin’s q as the

market-to-book-assets ratio, measured as the firm’s market value (Compustat items prcc f ∗csho+

dltt+ dlc− act) divided by total book assets (Compustat item at). Panel B shows regressions that

scale both q and investment by total assets. The purpose of Panel B is to check whether Panel A’s

low R2 values result from scaling investment and q by different values. For comparison, Panels C

and D reproduce the results from the paper’s Table 2, Panels A and B.

Investment scaled by total capital (Ktot)
Physical (ιphy) Intangible (ιint) Total (ιtot) R&D CAPX/PPE (ι∗)

Panel A: Regressions with market-to-book-assets ratio
Market/Book assets 0.037 0.024 0.060 0.010 0.078

(0.001) (0.001) (0.001) (0.000) (0.002)
R2 0.158 0.198 0.240 0.106 0.176

Panel B: Same as Panel A, but scale all investment measures by book assets, not total capital
Market/Book assets 0.025 0.014 0.039 0.006 0.025

(0.001) (0.000) (0.001) (0.000) (0.001)
R2 0.126 0.083 0.168 0.047 0.126

Panel C: Regressions with Total q (same as Paper Table 2, Panel A)
Total q 0.029 0.020 0.049 0.013 0.062

(0.001) (0.000) (0.001) (0.000) (0.001)
R2 0.209 0.279 0.327 0.270 0.244

Panel D: Regressions with standard q (same as Paper Table 2, Panel B)
Standard q 0.006 0.005 0.011 0.003 0.017

(0.000) (0.000) (0.000) (0.000) (0.000)
R2 0.139 0.266 0.250 0.250 0.233
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2. Results using the fourth-order cumulant estimator

Table A2

Counterpart of paper’s Table 3 using the fourth-order cumulant estimator

Details are the same as in Table 3 in the main paper, except here we use the fourth-order rather

than the third-order cumulant estimator.

Investment scaled by total capital (Ktot)
Physical (ιphy) Intangible (ιint) Total (ιtot) R&D CAPX/PPE (ι∗)

Panel A: Regressions without cash flow
Total q (qtot) 0.056 0.039 0.069 0.026

(0.001) (0.000) (0.001) (0.000)
Standard q (q∗) 0.029

(0.000)
OLS R2 0.209 0.279 0.327 0.270 0.244

(0.004) (0.006) (0.005) (0.009) (0.005)
ρ2 0.288 0.409 0.337 0.436 0.299

(0.007) (0.007) (0.006) (0.013) (0.005)
τ2 0.544 0.536 0.749 0.528 0.611

(0.010) (0.007) (0.009) (0.015) (0.009)

Panel B: Regressions with cash flow
Total q (qtot) 0.065 0.040 0.080 0.026

(0.001) (0.000) (0.002) (0.000)
Total cash flow (ctot) 0.035 0.043 0.158 -0.009

(0.008) (0.004) (0.011) (0.004)
Standard q (q∗) 0.030

(0.000)
Standard cash flow (c∗) 0.022

(0.004)
OLS R2 0.235 0.326 0.374 0.281 0.238

(0.004) (0.005) (0.005) (0.009) (0.005)
ρ2 0.349 0.464 0.460 0.435 0.312

(0.006) (0.005) (0.006) (0.011) (0.005)
τ2 0.452 0.480 0.575 0.529 0.590

(0.008) (0.008) (0.009) (0.014) (0.008)

Observations 141,800 141,800 141,800 74,326 141,800
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3. Horse race between total q and standard q

Table A3

Horse race between total q and standard q

We use the cumulant estimator to regress total investment on either total or standard q.

Details are the same as in Table 3 in the main paper.

(ιtot) (ιtot)
Total q (qtot) 0.086

(0.001)
Standard q (q∗) 0.023

(0.000)

OLS R2 0.327 0.250
ρ2 0.423 0.314
τ 2 0.597 0.497

Observations 141,800 141,800

As we explain in Section 4.2 in the paper, this horse race illustrates why we need a new

q proxy that account for intangibles, i.e., why the cumulant estimator alone cannot solve

the problem of omitted intangibles. This table also provides the following useful consistency

check: Total q produces a higher τ 2, which is consistent with its having less measurement

error than standard q.
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4. Bias in the investment-cash flow sensitivity?

Section 4.2 in the main paper explains that the slope of SG&A investment on total cash

flow ctot may be biased upwards. The reason is that measurement error in SG&A investment

appears mechanically in the ctot measure, because we add back intangible investment to

compute ctot. Put differently, ctot equals profits gross of SG&A and R&D investment. Mak-

ing this measure gross of SG&A investment can introduce measurement error from SG&A

investment into ctot. If the same measurement error is on both sides of the regression, the

slope is biased upwards.

We now construct an alternate cash-flow measure that is immune to this concern about

bias. The new measure is cash flows net of SG&A investment but gross of R&D investment.

Since SG&A investment is not added back this cash-flow measure, the measure contains no

measurement error in SG&A. Results are in the table below.

6



Table A4

Bias in the investment-cash flow sensitivity?

Details are the same as in Table 3 in the main paper. Results in Panel A match those in Table

3 Panel B, except we add the last column, which uses SG&A investment as the dependent

variable. SG&A investment equals 0.3 times SG&A, scaled by lagged total capital. Panel

B matches Panel A, except it uses an alternate cash-flow measure equal to (IBit + DPit +

RDit(1− κ))/Ktot
i,t−1, which equals cash flow gross of R&D but net of SG&A investment.

Investment scaled by total capital (Ktot)

Physical (ιphy) Intangible (ιint) Total (ιtot) R&D 0.3× SG&A

Panel A: Results using cash flows gross of R&D and SG&A investment (ctot)
Total q (qtot) 0.069 0.038 0.086 0.024 0.085

(0.001) (0.001) (0.002) (0.001) (0.002)
Total cash flow (ctot) 0.024 0.050 0.140 0.000 0.115

(0.008) (0.004) (0.009) (0.004) (0.011)

OLS R2 0.235 0.326 0.374 0.281 0.278
ρ2 0.361 0.447 0.481 0.405 0.380
τ 2 0.435 0.502 0.544 0.568 0.385

Panel B: Results using cash flows gross of R&D, net of SG&A investment
Total q (qtot) 0.069 0.038 0.086 0.024 0.084

(0.001) (0.001) (0.001) (0.001) (0.002)
Alternate cash flow 0.023 0.012 0.094 -0.003 0.008

(0.007) (0.004) (0.008) (0.004) (0.010)

OLS R2 0.228 0.29 0.349 0.276 0.225
ρ2 0.359 0.407 0.452 0.401 0.329
τ 2 0.438 0.539 0.567 0.574 0.432

Observations 141,800 141,800 141,800 75,426 141,800

As expected, when we compare Panels A and B, we see that making cash flows gross

rather than net of SG&A invesment increases SG&A investment’s cash-flow slope, from

0.008 to 0.115. In panel B, SG&A investment’s cash-flow slope is not statistically different

from zero.

This exercise places a useful upper and lower bound on SG&A investment’s cash-flow

slope. Due to the measurement-error bias discussed above, the 0.115 slope in Panel A is

too large, providing an upper bound. The statistically insignificant 0.008 slope in Panel B

is arguably too low, providing a lower bound. It is too low because netting SG&A from

cash flow depresses the cash-flow slope, and an economically meaningful cash-flow measure

should be gross of all investment, including SG&A investment.
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5. A More General Theory of Intangible Capital, In-

vestment, and q

This appendix presents a more general version of the model in Section 2 of the main paper.

The goal is to understand whether and how departures from Section 2’s assumptions could

explain our empirical results. We relax four main assumptions: perfect competition, constant

returns to scale, equal depreciation rates for the two capital types, and quadratic adjustment

costs.

5.1. Setup

The model in Section 2 assumes the profit function Π is linearly homogenous in Ktot, meaning

the profit function can be written Π (Ktot, ε) = εKtot = ε
(
Kphy +Kint

)
. We now use a more

flexible profit function equal to

Π
(
Kphy, Kint, ε

)
= ε

((
Kphy

)φphy
+
(
Kint

)φint
)θ
, (1)

where parameters φphy, φint, and θ are all strictly positive and less than or equal to one.

This specification collapses to our main specification in Section 2 when θ = φphy = φint = 1.

Equation (1) can be interpretted as the maximized profit function from a more general model

that features endogenously chosen labor, either constant or decreasing returns to scale, and

an exogenously given demand function for the firm’s output. Abel and Eberly (2011) solve

exactly such a model, albeit with one type of capital, and they show that the maximized

profit function has the same form as equation (1).1 According to Abel and Eberly’s (2011)

result, our parmeter θ summarizes all relevant information about returns to scale (in total

capital) and the degree of competition. If the firm faces constant returns to scale and

perfect competition, then θ = 1. If the firm instead either has some monopoly power or faces

decreasing returns to scale, then θ < 1. In other words, relaxing our assumption that θ = 1

can be interpretted as letting the firm face either decreasing returns to scale or imperfect

competition. Instead of reproducing Abel and Eberly’s (2011) more general model, we make

the reduced-form assumption in equation (1) to keep our analysis as simple and transparent

as possible. We allow φint 6= φphy to investigate the situation in which physical and intangible

capital face different returns to scale.

The model in Section 2 assumes both capital types depreciate a the same rate δ. We now

allow them to depreciate at different rates, denoted δphy and δint.

The model in Section 2 assumes quadratic adjustment costs. We now use the more

1The maximized profit function is equation (3) in Abel and Eberly (2011). Parameter α in their model
corresponds to θ in ours. K in their model corresponds to Ktot in ours. R in their model corresponds to Π
in ours.
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general cost function

cmi = pmIm +Ktot

(
ζmi

Im

Ktot
+
γmi
2

∣∣∣∣ ImKtot

∣∣∣∣νm
)
, m = phy, int, νm > 1 (2)

This cost function collapses to one in our main model when νphy = νint = 2. We need the

absolute value above to allow negative investment while avoiding imaginary numbers.

We cannot solve the generalized model in closed form. We switch from continuous to dis-

crete time so we can solve the model numerically using value-function iteration on discretized

state-variable grids. We choose parameter values to match those in Strebulaev and Whited

(2012) where possible, except we choose γ to more closely match our estimated q-slopes.

We compare the baseline model from Section 2 with several variations. The baseline

model and variations all share the same following inputs. One period corresponds to a year.

The discount rate is 0.04. Physical and intangible capital share the same adjustment-cost

parameters, γphy = γint = 100. The log of ε and pphy follow

log εit = 0.7 log εi,t−1 + uε,i,t, uε is i.i.d. N (0, 0.15)

log pphyt = 0.7 log pphyt−1 + upt, up is i.i.d. N(0, 0.2).

The baseline model has the following additional inputs. We normalize intangible capital’s

price pint to one, so that pint equals the unconditional median of pphy. Depreciation rates

equal δphy = δint = 0.15. There are constant returns to scale (θ = φphy = φint = 1), and there

are quadratic adjustment costs (νphy = νint = 2).

5.2. Predictions

We obtain predictions about investment regressions by solving the model, simulating a large

panel of data, and running regressions of investment (either ιphy, ιint, or ιtot) on qtot, cash

flow (ctot), and time fixed effects. In our theory, cash flows correspond to profits (gross of

investment costs) scaled by total capital, i.e., Π/Ktot.

5.2.1. Effects of alternate assumptions on the investment-q relation

First, we use the general model to explore how violations of Section 2’s assumptions affect

the predicted investment-q relation. Simulation results are in Table A5.
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The first column shows results from the baseline model. Because these results are from a

discrete-time model, three of the baseline model’s predictions deviate from those in Section

2’s continuous-time model. First, whereas Section 2 predicts q−slopes of 1/γphy = 1/γint =

0.01, we find q−slopes here of 0.0067. The reason for this discrepancy is that the investment-q

relation is contemporaneous in the continuous-time model, but in discrete time, investment

depends on 1/γ times the expectation of next period’s q. In our simulated and empirical

regressions, we use lagged q, not expected future q. The slope of expected q on lagged q is

roughly 0.67, which explains the gap between 1/γ=0.0100 and our estimated q−slope, 0.0067.

Second, we find an R2 of 99.9% rather than 100% in our main investment regressions. This

deviation may simply reflect numerical error or the gap between lagged and expected future

q. Third, Section 2 predicts no slopes on cash flow, but we find sizeable negative slopes on

cash flow in Panel C. These slopes may result from numerical error or from the gap between

expected and lagged q. It is comforting that adding cash flow to the regression increases its

R2 by only 0.001 (Panel D).

The second and third columns show how results change if there are decreasing returns to

scale. These models are the same as the baseline model, except we reduce θ from 1 to either

0.75 or 0.5. The two capital types are still perfect substitutes in all ways, but there are now

decreasing returns to scale in total capital (Ktot) . We find that the more strongly returns

decrease with scale, the lower are the predicted q−slopes (panel A), the lower are the R2

values in the main investment-q regressions (Panel B), and the more explanatory power cash

flows have for investment (Panel D). Decreasing returns to scale also flip cash flow’s slope

coefficient from negative to positive (Panel C), although the strength of this relation is not

monotonic in θ. Abel and Eberly (2011) also show that cash flow is positively related to

investment when there are decreasing returns to scale. When θ = 0.5, q−slopes are roughly

1/3 their values in the baseline model, R2 values are down to 84%, and cash flows explain

10% of the variation in investment.

The last two columns show how results change if there are non-quadratic capital adjust-

ment costs. We reduce the adjustment cost function’s curvature ν from 2 to either 1.75 or

1.5.2 The lower the curvature in the adjustment-cost function (i.e., lower ν), the smaller are

the predicted q−slopes (Panel A). We still find R2 values near 100% in the investment-q re-

gressions, even though these models do not predict a linear relation between investment and

q when ν 6= 2.3 The regression’s linear specification is apparently a very good approximation

for the theory’s nonlinear relation. As a result, cash flows provide virtually no additional

explanatory power for investment (Panel D).

2The model does not converge for exponents above 2.
3For example, when ιphy is positive, ιphy depends nonlinearly on expected q as follows:

ιphyt =

(
2

vphy
βEt [q (εt+1, pt+1)]− pphyt

γphy

) 1

vphy−1

.
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5.2.2. Differences between physical and intangible capital

Next, we examine potential sources of biases in our test of the theory’s last prediction. This

last prediction states that the intangible intensity (the ratio of intangible to total capital)

equals the ratio of adjustment-cost parameters γphy/
(
γphy + γint

)
, which can be measured

using the ratio of estimated q-slopes βint/
(
βint + βphy

)
. This prediction relies on the strong

assumptions in our baseline model, along with the additional assumptions that the capital

types have the same price (pint = pphy) and the same linear adjustment cost
(
ζ int = ζphy

)
.

Section 5.2 from the main paper reports empirical evidence consistent with this prediction:

Firms with higher intangible intensities have a higher ratio βint/
(
βint + βphy

)
.

A concern here is that alternate models could produce this same empirical pattern. Specif-

ically, the capital prices, linear adjustment costs, depreciation rates, and economies of scale

could be quite different for physical and intangible capital. These differences could determine

firms’ optimal mix of capitals, and they could also influence their investment-q slopes in a

way that produces a pattern like the one we report in Section 5.

To explore this concern, we now consider models in which physical and intangible capital

differ in these ways, and we judge whether these differences can explain our empirical result.

In all the results below, the two capital types have the same adjustment cost parameters

γphy = γint, so we shut down the channel highlighted in the last prediction. Simulation

results are in Table A6.
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The first column of Table A6 shows results from our baseline model. Since the two capital

types are alike in all ways, we find equal slopes in regressions of physical and intangible

investment on qtot, and we find an average intangible intensity of 50%.

Column two shows results from a model that is identical to the baseline model, except

pint, the price of intangible capital, is normalized to four instead of one. This variation on

the baseline model conforms to all the assumptions in the paper’s simple model, except for

the additional assumption that is imposed to obtain the theory’s last prediction. This vari-

ation also sheds light on differences in linear adjustment costs: Prediction 2 in the paper’s

model shows that the linear adjustment costs ζ play the same role as prices p in explaining

investment. We can therefore interpret the model with unequal purchase prices as a model

with unequal linear adjustment costs. As expected, increasing the relative purchase price of

intangible capital makes firms buy relatively less intangible capital, and the average intan-

gible intensity decreases from 50% to 30%. The estimated q−slopes are the same as in the

baseline model, which is also expected given Prediction 3 in the paper. To summarize, dif-

ferences in purchase prices or linear adjustment costs help explain differences in the optimal

capital mix, but they do not explain differences in q− slopes.

Column three shows results from a model in which intangible capital’s depreciation rate

is increased from 15% to 20%, so that the two capital types now have unequal depreciation

rates. Firms now use relatively less intangible capital (32% compared to 50%), since its user

cost is relatively higher. The ratio of q−slopes, βint/
(
βint + βphy

)
, decreases slightly from

50% to 48%. Differences in depreciation rates are therefore an alternate explanation for our

empirical result that firms using less intangible capital have a lower ratio βint/
(
βint + βphy

)
.

Column four shows results from a model in which both capital types face diseconomies

of scale, yet physical capital faces more severe diseconomies. Firms still use 50% intangible

capital, and the ratio of q-slopes is still 50%. In other words, we find that differences in

diseconomies do not necessarily produce unequal capital mixes or different q-slopes.

Column five shows results from a model in which physical capital still faces quadratic

adjustment costs (νphy = 2), but intangible capital faces adjustment costs to the power 1.75

(νint = 1.75). The intangible intensity drops from 50% to 32%. The reason firms invest

less in the capital type with a lower ν is that both the level and slope of adjustment costs

with respect to investment are higher when ν is lower and investment rates are in their

simulated rate. We also see that intangible investment’s q−slope is now lower than that of

physical investment, making the ratio βint/
(
βint + βphy

)
drop from 50% to 38%. In other

words, we find that differences in curvature for the adjustment cost function are an alternate

explanation for our empirical result that using less intangible capital have a lower ratio

βint/
(
βint + βphy

)
.
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6. Intangibles, economies of scale, and competition

Section 5.1 in the main paper shows that the classic q theory fits the data better in firms

with more intangibles. One potential explanation is that firms with more intangibles face

fewer diseconomies of scale or more competition. In this section, we empirically compare the

characteristics of firms with different amounts of intangible capital. Specifically, Table A7

below shows the economies of scale and competition faced by firms in the four intangible-

intensity subsamples that we examine in the paper’s Table 4.

We use two methods from the literature to estimate the economies of scale in each

subsample. Both methods estimate the curvature of firms’ production functions, with a

curvature of one implying constant returns to scale, and a value less than one implying

diseconomies of scale.

The first method is from Cooper and Haltiwanger (2006), which we review here. This

method estimates the parameter θ in the profit function Π = ε(Ktot)θ, using lagged instru-

ments to account for the endogeneity of Ktot. Results are qualitatively similar if we use Kphy

in place of Ktot. We assume ε depends on a common shock ϕt and a firm-specific shock εit:

log εit = ϕt + εit. (3)

The dynamics of εit are given by

εit = ρεεit−1 + ωit, (4)

where ωit is an i.i.d. shock. Using the notation π = log (Π) and k = log (Ktot) , quasi-

differencing yields

πit = β1πit−1 + β2kit + β3kit−1 + ϕ∗
t + ωit. (5)

β1 = ρε, β2 = θ, β3 = −ρεθ, ϕ∗
t = ϕt − ρεϕt−1. (6)

We follow Cooper and Haltiwanger (2006) in using log revenues in place of log profits. We

estimate (5) in each subsample by GMM with time dummies, and we instrument for kit
using ki,t−2 and πi,t−2. Variables πi,t−1 and ki,t−1 do not require instruments, because they

do not depend on ωit. We use β̂2 as our estimate of θ, and we confirm that the restriction

β1β2 = −β3 is not rejected.

The second method for estimating returns to scale is from Olley and Pakes (1996), which

we review next. This method assumes a production function implying log revenues that

follow

yit = β0 + βllit + βkkit + uit, (7)

uit = Ωit + ηit, (8)
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where lit is the log value of variable inputs, kit is the log of capital, Ωit is a productivity

shock that is observed by the decision-maker in the firm but not by the econometrician,

and ηit is an unexpected productivity shock observed by neither the econometrician or the

decision-maker. Our goal is to measure βk, which measures the revenue function’s curvature

with respect to capital. This method uses the observed level of investment to infer the value

of Ωit, thereby allowing us to control for the correlation between the error term and inputs

in the equation above. We implement this method using log total capital for k, log COGS

for l, and total investment to infer Ω. Results are qualitatively similar if we use physical

capital in place of total capital.

Next, we define three proxies for the degree of product-market competition a firm faces.

The first proxy is the Herfindahl index in the given firm’s industry and year. We compute

this index using revenues, and we use four alternate industry classifications: the Fama-French

5 and 49 industries, and also Hoberg and Phillips’ (2010, 2015) 25 and 100 text-based Fixed

Industry Classifications (FIC).

The second proxy is profitability, which we measure two ways. The logic is that high

competition is associated with low profitability. The first profitability measure is EBITDA

scaled by lagged revenues. Note that EBITDA is net of intangible investment. The second

measure is ctot, which equals firm profits gross of intangible investment, scaled by lagged

total capital (details in section 3.4 in our paper).

The third proxy is firm size. The logic is that a small firm, and especially a firm that is

small relative to its competitors, is more of a price-taker. We measure firm size four ways:

the log of revenues, log of market cap, revenues scaled by median revenues within the same

FIC-100 industry, and market cap scaled by median market cap within the same FIC-100

industry.
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Table A7

Characteristics of firms with different amounts of intangible capital

We compute characteristics in the four subsamples formed using each year’s quartile break-

points for intangible intensity. These subsamples match those in our paper’s Table 4. We

define the characteristics in detail in the text immediately above.

Quartile 1 Quartile 2 Quartile 3 Quartile 4 Quartile 4–1
(8% intan.) (33% intan.) (56% intan.) (76% intan.) Diff. (StdErr.)

Panel A: Production-function curvature estimates
Cooper-Haltiwanger method 0.413 0.427 0.480 0.401 -0.012 0.038
Olley-Pakes method 0.250 0.466 0.581 0.386 0.136 0.091

Panel B: Mean Herfindahl index
Fama-French 5 industries 0.0215 0.0230 0.0236 0.0244 0.0029 (0.0049)
Fama-French 49 industries 0.0966 0.0879 0.0816 0.0775 -0.0190 (0.0095)
FIC 25 industries 0.0765 0.0728 0.0758 0.0768 0.0002 (0.0041)
FIC 100 industries 0.1435 0.1585 0.1688 0.1742 0.0307 (0.0082)

Panel C: Mean profitability
EBITDA/Sales 0.112 0.088 0.054 -0.213 -0.325 (0.028)
Total cash flow (ctot) 0.116 0.158 0.180 0.155 0.039 (0.004)

Panel D: Mean firm size
Log(Revenues) 5.55 5.69 5.56 4.88 -0.68 (0.07)
Log(Market Cap) 5.45 5.43 5.55 5.43 -0.02 (0.06)
Sales / industry median 0.948 0.994 1.072 0.697 -0.251 (0.070)
Market cap / industry median 0.896 0.958 1.043 0.748 -0.148 (0.051)
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7. Results from IV estimators

Table A8

Counterpart of paper’s Table 3 using Arellano and Bond’s (1991) IV estimator

Details are the same as in Table 3 in the main paper, except here we use Arellano and

Bond’s (1991) IV estimator. This estimator takes first differences of the investment-q model,

uses twice-lagged q and investment as instruments, and weights these instruments optimally

using GMM. We do not present R2 values, which are poorly defined for the IV estimator.
Investment scaled by total capital (Ktot)

Physical (ιphy) Intangible (ιint) Total (ιtot) R&D CAPX/PPE (ι∗)

Panel A: Regressions without cash flow
Total q (qtot) 0.010 0.005 0.014 0.004

(0.001) (0.001) (0.002) (0.001)
Standard q (q∗) 0.010

(0.001)

Panel B: Regressions with cash flow
Total q (qtot) 0.016 0.009 0.023 0.005

(0.001) (0.001) (0.002) (0.001)
Total cash flow (ctot) 0.090 0.049 0.142 0.020

(0.005) (0.003) (0.007) (0.003)
Standard q (q∗) 0.013

(0.001)
Standard cash flow (c∗) 0.010

(0.001)
Observations 99,553 99,553 99,553 53,841 99,553
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Table A9

Counterpart of paper’s Table 3 using Biorn’s (2000) IV estimator

Details are the same as in Table 3 in the main paper, except here we use Biorn’s (2000) IV

estimator. This estimator takes first differences of the investment-q model and uses three

lags of cash flow and Tobin’s q as instruments for the first difference of Tobin’s q. We do

not present R2 values, which are poorly defined for the IV estimator.

Investment scaled by total capital (Ktot)
Physical (ιphy) Intangible (ιint) Total (ιtot) R&D CAPX/PPE (ι∗)

Panel A: Regressions without cash flow
Total q (qtot) 0.024 0.004 0.028 -0.002

(0.003) (0.002) (0.004) (0.002)
Standard q (q∗) 0.012

(0.002)

Panel B: Regressions with cash flow
Total q (qtot) 0.021 0.002 0.023 -0.003

(0.003) (0.002) (0.004) (0.002)
Total cash flow (ctot) 0.088 0.066 0.155 0.036

(0.005) (0.004) (0.007) (0.004)
Standard q (q∗) 0.011

(0.002)
Standard cash flow (c∗) 0.026

(0.003)
Observations 88,700 88,700 88,700 47,482 88,700
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8. Placebo Analysis

We perform a placebo analysis to show that our main results would not obtain if our intan-

gible measures were pure noise. Note that we can write our variables as

qtoti,t−1 = q∗i,t−1Ai,t−1 (9)

ιphyi,t = ι∗i,tAi,t−1 (10)

ιtoti,t = ι∗i,tAi,t−1Bi,t (11)

ιinti,t = ιtoti,t − ι
phy
i,t (12)

Ai,t−1 ≡
Kphy
i,t−1

Kphy
i,t−1 +Kint

i,t−1

(13)

Bi,t ≡
Iphyi,t + I inti,t

Iphyi,t

. (14)

We simulate intangible investment Ĩ int that has same mean, persistence, and volatility as

actual intangible investment, but is otherwise pure noise. Next, we compute simulated

intangible capital stocks K̃int by applying the perpetual-inventory method to Ĩ int, just as

we do in the actual data. We use these simulated values of Ĩ int and K̃int, along with actual

values of Iphy, Kphy, q∗, and ιphy, to compute the placebo variables ι̃phy, ι̃int, ι̃tot, and q̃tot

using formulas (9)-(14) above. We use ι̃tot and q̃tot in OLS and cumulants regressions similar

to those in Tables 2 and 3.

The specific steps of the placebo analysis are as follows:

1. Define xit = I intit /K
phy
i,t−1. Using actual data, estimate the panel regression

xit = ai + at + θxi,t−1 + εit. (15)

Collect the estimates âi, ât, θ̂, and var (ε̂it).

2. For each firm i in our sample, randomly select some other firm j. Collect âj and the

initial values xj1 and Aj0.

3. Create simulated values x̃it assuming x̃i1 = xj1 and

x̃it = âj + ât + θ̂x̃i,t−1 + ε̃it, t > 1, (16)

where ε̃it is drawn independently from N (0, var (ε̂it)) . We set any negative values of

x̃it to zero, since xit is never negative in our data.

4. Compute simulated values of intangible investment according to Ĩ inti,t = x̃i,tK
phy
i,t−1.
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5. Compute the simulated intangible capital stock assuming firm i’s initial intensity isAj,0.

Firm i’s simulated starting intangible stock therefore equals K̃int
i,0 = Kphy

i,0 /Aj,0−K
phy
i,0 .

Compute future periods’ K̃int applying the perpetual-inventory method to Ĩ inti,t with a

20% depreciation rate.

Regression results using simulated data are in the following table:

Table A10

Counterpart of Paper’s Table 3 using simulated data

Details are the same as in Table 3 in the main paper, except Panel A uses simulated data on

intangible investment to construct placebo values of ιphy, ιint, ιtot, and qtot. Results in Panel B

match the results in the paper’s Table 3, Panel A.

Investment scaled by total capital (Ktot)
Physical (ιphy) Intangible (ιint) Total (ιtot) CAPX/PPE (ι∗)

Panel A: Placebo regressions using simulated data
Placebo total q (qtot) 0.050 -0.089 0.046
Standard q (q∗) 0.036
OLS R2 0.267 0.033 0.247 0.244
ρ2 0.280 -0.094 0.331 0.372
τ2 0.458 -0.022 0.553 0.492

Panel B: Results using actual data (from Paper Table 3, Panel A)
Total q (qtot) 0.070 0.037 0.086

(0.001) (0.001) (0.001)
Standard q (q∗) 0.036

(0.001)
OLS R2 0.209 0.279 0.327 0.244

(0.004) (0.006) (0.005) (0.005)
ρ2 0.358 0.392 0.423 0.372

(0.007) (0.007) (0.008) (0.007)
τ2 0.437 0.559 0.597 0.492

(0.008) (0.009) (0.008) (0.010)

Since simulated intangible investment is pure noise, it is not explained well by q: The OLS

R2 for ι̃int in panel A is just 0.033. Values of ρ2 and τ 2 are negative for placebo regressions

using ι̃int, indicating a misspecified model. The model is misspecified because the q-slope is

effectively zero, which violates one of the cumulant estimator’s assumptions.

Next, we compare the literature’s standard regression (last column) to the placebo re-

gression of ι̃tot on q̃tot. The placebo regression produces an R2 of 0.247, which is slightly

higher than the 0.244 R2 from literature’s standard regression, but is well below the 0.327

R2 from using actual data on total capital (Panel B). The placebo regression’s ρ2 is 0.331,

lower than the total-capital ρ2 (0.423) and even the physical-capital ρ2 (0.372). The placebo
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regression’s τ 2 is 0.553, roughly halfway between the standard regression’s τ 2 (0.492) and

the total-capital τ 2 (0.597). The placebo regression produces a bias-corrected q-slope of

0.046, higher than the physical-capital slope (0.036), but much lower than the total-capital

slope (0.086). To summarize, our total-investment results would not obtain if our intangible-

capital measures were pure noise. Such noise could explain only half of the observed increase

in τ 2. It explains very little of the observed increases in R2 and q-slopes. Noise could explain

none of the observed increase in ρ2.
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