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A.1. Discussion of Auction Protocols

We model the M&A process as a modified sealed second-price auction (SP) in which bidders

simultaneously submit their bids in combinations of cash and equity, and the winner pays a

settlement whose value assessed by the target is no smaller than the second-highest bid (again

ranked by the target). Alternatively, the M&A process can be modeled as an ascending English

auction (EA) (Gorbenko and Malenko, 2016), in which the bidders repeatedly make offers in

terms of the value of consideration they promise to deliver to the target if they win the

competition. These offers continue until all but one bidder drops out, and the winner (the

remaining bidder) then chooses a combination of cash and equity whose value assessed by the

target is no smaller than the value offered by the last bidder who drops out. The EA protocol has

many desirable features. It arguably resembles the actual M&A transaction process more closely,

because we do occasionally observe multiple-round bid revisions among several bidders for a

target. This dynamic bidding is missing in the static SP protocol. In addition, mapping the SP

model’s second-price settlement to actual M&A transactions requires more work, compared to

EA.

Despite these differences, choosing between the SP and EA auction protocols is not of great

importance in our setting. The reason is that SP and EA share several essential features that we

need for our theoretical and empirical analysis. Within our model’s private-value paradigm, the

two auction protocols have equilibriums that are strategically equivalent. To see the equivalence,

in the EA auction let the equilibrium valuation (scoring) rule used by the target be z(C,α,M),

and let A(Φ) be the set of (C,α) combinations that are feasible for a bidder given its state. In

equilibrium, a bidder drops out when the price reaches max(C,α)∈A(Φ) z(C,α,M), which occurs on

the boundary of A(Φ) where the offer, (C,α), exhausts the bidder’s true valuation of the target.

Intuitively, in EA a bidder exits if the highest value that it can deliver to the target should it win

the competition reaches its maximum willingness to pay (i.e., its valuation of the target). This

outcome for the EA auction is the same as the SP auction’s outcome that the bidders structure

their bids to offer their true valuation of the target. More important, in EA the winner needs to

deliver a value (assessed by the target) equal to the last competitor who drops out. Given the

above discussion, the expected value paid by the winner is also equal to the bidder who has the

second-highest valuation. As a result, the winning bidder’s ultimate payment (C∗i , α
∗
i ) in this EA

model is equivalent to the settlement described in our model, and in both models, the target expects

to receive a gross revenue equal to the greater of (a) its reservation value (i.e., 1) and (b) the losing

bidder’s valuation assessed rationally by the target.

Despite EA’s more straightforward mapping to reality, we choose the SP format, because the

EA has a disadvantage in the empirical analysis. To carry out the structural estimation, we need

to numerically solve the model (whether based on EA or SP), and EA calls for a solution for

both choice variables, cash and equity, simultaneously, which greatly increases the computational

difficulty. Different from EA, this computational difficulty can be mitigated in SP since the cash

and equity components in the SP equilibrium bids satisfy the relation α∗i (Xi + Vi−C∗i ) +C∗i = Vi,
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which allows us to solve the model over only one choice variable C and then obtain the equity

payment using the settlement rule. The seemingly complicated protocol and settlement in SP

actually decomposes the process to solve for the EA equilibrium into two steps, each of which,

however, is easier to carry out computationally. We essentially get the ultimate payment (C∗i , α̃
∗
i )

that is strategically equivalent to that in EA.

Using the SP auction protocol, we need to specify a settlement rule for the winner to make an

ultimate payment according to a second-price rule. We assume that the winner keeps the cash

component of its bid unchanged and lowers the equity component so that the ultimate settlement

is worth (assessed by the target) at least the higher between the target’s stand-alone value and

the value of the losing bid (again assessed by the target): z(Ci, α̃i,Mi) = max{1, z(Cj , αj ,Mj)}.
Theoretically, there may be multiple feasible settlement rules that satisfy a second-price rule.

Specifically, any (C̃, α̃) such that z(C̃i, α̃i,Mi) = max{1, z(Cj , αj ,Mj)} can be used as a valid

settlement. However, given a specific settlement rule in place, the bidders choose a corresponding

bidding strategy such that the resulting ultimate payment achieves the same expected profit. In

other words, as long as the equilibrium described in Definition 1 is unique with a given settlement

rule, the choice of settlement rule is not critical, because, though the equilibrium bids (Ci, αi) is

different (since they are contingent on the settlement rule), the expected ultimate payment is the

same. From the practical perspective, however, the specific settlement rule that we choose has

two advantages. First, information asymmetry about the acquirer’s stock value is the source of

the target’s confusion. Therefore, the target may have a preference for cash over equity, which in

turn requires the winning bidder to lower its nominal equity bid while leaving the cash part

unchanged for settlement. Second, though not being considered in our model, in practice bidders

sometimes face pressure from competing financial bidders to pay cash, and this pressure creates

another reason for adjusting the bid’s equity part rather than the cash part in the settlement.
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A.2. Proof of Proposition 1

Since the acquirer knows its own value Xi and the valuation of the target Vi, the optimization

problem (2) can be written as

b∗i = argmax
b=(C,α)

E

{
(Xi + Vi − C̃) ·

[
Vi − C̃

Xi + Vi − C̃
− α̃∗

]
· 1{α̃∗6α}

∣∣∣∣∣Φi

}
,

subject to C 6 ki, where C̃ = min{C,max{1, z(b∗(Φj),Mj)}} and the substitution of 1{α̃∗6α} for

1{max{1,z(b∗(Φj),Mj)}6z(C,α,Mi)} is based on the definition of the equity settlement and the fact that

given C, the scoring function is nondecreasing in α.

Note that given C and that the rival follows the optimal equilibrium bidding rule, the

transformed share α̃∗ does not depend on α. We may have the following discussion to establish

the equilibrium relation specified in Proposition 1.

We first consider the case where C > max{1, z(b∗(Φj),Mj)}. Let S1 be the support of Φj on

which this relation is true. In this case the integrand degenerates to Vi−max{1, z(b∗(Φj),Mj)} > 0

which does not depend on α. This simplification is based on the fact that α̃∗i = 0 on S1 so that

1{α̃∗6α} = 1 for all α > 0. Therefore, the deviation of α from (Vi−C)/(Xi+Vi−C) does not improve

the objective function value on S1. Next we focus on the cases where C < max{1, z(b∗(Φj),Mj)}
and C̃ = C.

If (Vi − C)/(Xi + Vi − C) > α̃∗ (let S2 be the support of Φj for this relation), the integrand of

the expectation operator is positive and the part in front of the indicator function does not depend

on α. The deviation of α only changes the likelihood of winning the auction. The deviation to

α′ > (Vi − C)/(Xi + Vi − C) or (Vi − C)/(Xi + Vi − C) > α′ > α̃∗ does not change the value of

the objective function since the winning probability is not affected, and the deviation to α < α̃∗

reduces the value of the objective function since it reduces the winning probability on this support.

Therefore, the deviation of α from (Vi−C)/(Xi + Vi−C) does not improve the objective function

value on S2.

If (Vi − C)/(Xi + Vi − C) < α̃∗ (let S3 be the support of Φj for this relation), the integrand of

the expectation operator is non-positive and at α = (Vi −C)/(Xi + Vi −C), the integrand is zero.

The deviation to α′ < (Vi−C)/(Xi +Vi−C) or (Vi−C)/(Xi +Vi−C) < α′ 6 α̃∗ does not change

the value of the objective function. And the deviation to α > α̃∗ makes the integrand negative and

reduces the value of the objective function. Again, the deviation of α from (Vi −C)/(Xi + Vi −C)

does not improve the objective function value on S3.

If (Vi − C)/(Xi + Vi − C) = α̃∗ (let S4 be the support of Φj for this relation), the integrand

of the expectation operator is zero regardless the value of the indicator function. Therefore, any

deviation from α = (Vi − C)/(Xi + Vi − C) does not change the value of the objective function on

S4.

In sum, on the whole support of Φj the deviation of α from (Vi − C)/(Xi + Vi − C) does not

improve the objective function value. Therefore, in the equilibrium it is weakly dominant that the

optimal bids satisfy the relation α∗i = (Vi − C∗i )/(Xi + Vi − C∗i ).
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Given this equilibrium relation between the cash and equity components of the bid, the value

of the bid submitted to the target is α∗i (Xi +Vi−C∗i ) +C∗i = Vi should the bid be executed, which

means that it is a weakly dominant strategy in the equilibrium for the acquirers to bid their true

valuation of the target.

Substitute the equilibrium relation between the cash and equity components in a bid into the

scoring rule (1) and use the equilibrium implication of truthful bid Vi = α∗i (Xi + Vi − C∗i ) + C∗i .

We can easily drive the updated scoring rule that incorporates the equilibrium implications:

z(C,α,M) =
αM

1− α
(1− E[ε|C,α,M ; b∗(·)]) + C.

It is theoretically interesting to show that an equilibrium with the above features is unique.

However, formally proving the equilibrium’s uniqueness is difficult and beyond the scope of this

paper given its empirical focus. Nevertheless, it is reassuring that for any parameters we have

considered, we have searched numerically and found no evidence of multiple equilibria.
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A.3. Numerical Solution of Model

A.3.1. Solving the Equilibrium

The solution to the equilibrium described in Definition 1 is a functional fixed point b∗(·) defined

on the space of (s, ε, k,M) that satisfies (2). We know from Proposition 1 that the optimal α and

C satisfy the relation α∗i (Xi + Vi − C∗i ) + C∗i = Vi. Therefore, we only need to solve the optimal

cash offer C∗(·) and derive the optimal equity share α∗(·) using this equilibrium relation. We adopt

the following iterative procedure to solve for the optimal bidding rule C∗(·) and the implied scoring

rule z(·).
We start with an initial guess of the bidding rule C0(·) = k, assuming that the acquirers exhaust

their cash capacity k.A1 In the subsequent iterations, based on the optimal bidding rule solved in

iteration t−1 > 0, we derive the implied joint distribution ht−1(s, C, α,M) and compute the target

scoring rule zt−1(·) as

zt−1(C,α,M) = 1 +

∫
s s · ht−1(s, C, α,M)ds∫
s ht−1(s, C, α,M)ds

.

We carry this scoring rule into iteration t and solve the optimal bidding rule using the equilibrium

condition pertaining the bids:

Ct(s, ε, k,M) = argmax
C

∫
Φ′

[M(1− ε) + (1 + s)− C̃t−1]× (α− α̃t−1)

×It−1(C,α,M,Φ′)dF(Φ′),

where all variables with an apostrophe superscript belong to the rival acquirer; Φ = (s, ε, k,M)

and F(·) is the joint distribution of Φ; C̃t−1 = min{C,max{1, zt−1(bt−1(Φ′),M ′)}}, C ≤ k; α

satisfies the equilibrium relation α = [(1 + s) − C]/[M(1 − ε) + (1 + s) − C]; α̃t−1 = 0 if

C > max{1, zt−1(bt−1(Φ′),M ′)} and otherwise α̃t−1 is determined by zt−1(C, α̃t−1,M) = max{1,
zt−1(bt−1(Φ′),M ′)}; and indicator function It−1(·) is defined as

It−1(C,α,M,Φ′) =

{
1 if zt−1(C,α,M) > max{1, zt−1(bt−1(Φ′),M ′)}
0 if otherwise.

We repeat this procedure until ‖Ct(·) − Ct−1(·)‖ < δ, where δ is the criterion of convergence. To

carry out the above iterative procedure, we discretize the state variable space as well as the space

of (C,α,M) and iterate the computation on the grid.

A.3.2. Scoring Rule

After we solve the model numerically, we plot the scoring rule of the target in Fig. A.1 as a

function of cash payment C (Panel a), equity fraction α (Panel b), and acquirer relative size M

A1 Note that the model does not necessarily construct a contraction mapping equilibrium, so the initial guess of the
optimal bidding rule is critical to the convergence of the fixed point algorithm. We pick the initial guess of the
optimal bidding rule as to make the bidders follow a pecking order decision: they use as much cash as possible in
the bids, and if the target value is larger than their cash capacity, they make the remaining payment with equity.

7



(Panel c). The blue solid lines depict the score assigned by the target, determined by Eq. (4) in

the paper.

As discussed in the paper, cash payment and equity payment may induce different revelation

effects, reflected by the term E[ε|C,M,α] in Eq. (4) in the paper. To illustrate the revelation effect,

we construct a hypothetical score with the revelation effect held constant when we allow C or α to

change (i.e., assume revelation effect is E[ε|C = 0,M, α] and E[ε|C,M,α = 0] in Panel (a) and (b),

respectively). We compare this hypothetical score (red dash line) with the true score the target

assigns to a bid (blue solid line), and the difference between the lines indicates the revelation effect.

Fig. A.1 shows that the hypothetical score lies below the true score when C increases, indicating

that more cash payment has a positive revelation effect. The hypothetical score lies above the true

score when α increases, indicating that equity payment has a negative revelation effect.

The rest of this subsection explains the paper’s claim that equity bids made by highly overvalued

acquirers appear to be worth more than they truly are. In other words, the target assigns these

bids a score Z that exceeds the bids’ true value. We provide a simple numerical example followed

by a plot from the full model.

Consider an example in which two bidders are drawn from the model distribution, F(·), such that

(1) they have the same relative size of one (M1 = M2 = 1), the same synergy of one (s1 = s2 = 1),

and the same zero cash capacity (k1 = k2 = 0); (2) bidder one is overvalued and its true stand-alone

value is 0.5; and (3) bidder two is undervalued and its true stand-alone value is 1.5. This precise

information is private and not available to the target or the rival bidder. In the equilibrium, they

both bid the true valuation and hence bidder one offers α1 = 2/(0.5+2) = 4/5 and bidder two offers

α2 = 2/(1.5 + 2) = 4/7. Apparently, though they have the same synergy and their bids have the

same true value, the bid made by the overvalued bidder (bidder one) appears more attractive to the

target, because all else equal, a sweetened bid (higher equity offer given the same cash component)

appears more valuable in the eyes of the target in the equilibrium.

In Fig. A.2 we show how the target’s assessment of a bid’s value (i.e., the score) varies with the

bidder’s misvaluation, assuming that the bidder submits its optimal bid (C, α, and M) and the

target evaluates the bid based on its scoring rule. The red line depicts the score when the bidder

has sufficient cash capacity for the bid and the blue line depicts the score when the bidder has zero

cash capacity. The black dash line represents the true deal value 1 + s. We assume the bidder has

a s = 0.62 and a M equal to the median size.

When a bidder has sufficient cash (i.e., the red line), it chooses to pay all cash when its

misvaluation ε is low. Since cash payment has no ambiguity, the score it receives equals to the

true bid value 1 + s. As its equity becomes more and more overvalued, the bidder starts to pay

more and more equity even though it can afford to pay all cash. The score it receives increases

and becomes higher than the true value of the bid, indicating that overvalued bidders make bids

that appear more attractive than they really are, and in this way they manage to take advantage

of their overvaluation. When the bidder has zero cash (i.e., the blue line), it has to pay all equity

regardless of its misvaluation. When its equity is undervalued, the score it receives lies well below

the true bid value, 1 + s. That is, the bids from undervalued bidders appear less attractive than
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they really are. When its equity is overvalued, the score it receives becomes higher than the true

bid value.

The red line and the blue lines converge once the two bidders’ overvaluations are high enough,

because with high overvaluation the bidders would optimally choose to pay all in equity regardless

of their cash capacity. Since the two bidders have the same s and M , their bids would be exactly

the same in this case. Note that the two lines meet when the misvaluation is around 0.11 instead

of 0, because the bidder with sufficient cash capacity would begin choosing to use no cash at that

point.

A.3.3. Announcement Returns

In most acquisitions, only one bidder is publicly announced. In our sample, 89% of initial

bidders successfully acquired their targets. Therefore, to map our model to the data we assume

that in our simulation the winning bidder becomes the initial bidder with a probability of 89% and

the losing bidder becomes the initial bidder with a probability of 11%. Between the two bidders i

and j, let bidder i be the announced bidder. To compute the abnormal announcement returns to

the initial bidder and the target, as well as the combined abnormal abnormal return, we consider

the following three cases.

1. No bidder eventually wins. Let I1 = I1(Mjn, bjn;Min, bin) be the indicator of this case, where

bin = (Cin, αin). Then E[I1|Min, bin] = Pr(max{Zin, Zjn} < 1|Min, bin). In this case, the

abnormal return to the initial bidder is

ARain,1 = E[(1− εin)|Min, bin, I1 = 1]− 1.

That is, the abnormal return only reflects the revision of the market value of the bidder given

the announced bid. Since no bidder wins, the abnormal return to the target is zero. That is,

ARtin,1 = 0. And finally, the combined abnormal return is

ARcin,1 =
MinE[(1− εin)|Min, bin, I1 = 1]

1 +Min
− 1.

2. Bidder i eventually wins. Let I2 = I2(Mjn, bjn;Min, bin) be the indicator of this case. Then

E[I1|Min, bin] = Pr(Zin > max{1, Zjn}|Min, bin).

In this case, the abnormal return to the initial acquirer is

ARain,2 = (1− α̃in) ·MinE[(1− εin)|Min, bin, I2 = 1] + E[(1 + sin)|Min, bin, I2 = 1]− C̃in
Min

− 1,

where C̃in = min{Cin,max{1, Zjn}} and α̃in is the equity share determined by the settlement

rule discussed in Section 2.1. The abnormal return to the target is

ARtin,2 = C̃in+α̃in

{
MinE[(1− εin)|Min, bin, I2 = 1] + E[(1 + sin)|Min, bin, I2 = 1]− C̃in

}
−1.
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And finally, the combined abnormal return is

ARcin,2 =
MinE[(1− εin)|Min, bin, I2 = 1] + E[(1 + sin)|Min, bin, I2 = 1]

1 +Min
− 1.

3. Bidder j eventually wins. Let I3 = I3(Mjn, bjn;Min, bin) be the indicator of this case. Then

E[I3|Min, bin] = Pr(Zjn > max{1, Zin}|Min, bin).

In this case, the abnormal return to the initial bidder again only reflects the revision of its

market value given the announced bid since it loses the contest.

ARain,3 = E[(1− εin)|Min, bin, I3 = 1]− 1.

The abnormal return to the target is

ARtin,3 = C̃jn + α̃jn

{
MjnE[(1− εjn)|Mjn, bjn, I3 = 1]

+E[(1 + sjn)|Mjn, bjn, I3 = 1]− C̃jn
}
− 1,

following the second-price auction setting, where C̃jn = min{Cjn,max{1, Zin}} and α̃jn is

determined by the settlement rule discussion in Section 2.1. And the combined abnormal

return in this case is

ARcin,3 =
Min(1 +ARain,3) + 1 +ARtin,3

1 +Min
− 1 =

Min

1 +Min
ARain,3 +

1

1 +Min
ARtin,3.

Since by the time of bid announcement the market does not know which case will happen, the

announcement returns are computed as the weighted average of abnormal returns across different

states. That is, we can compute the ex-ante abnormal announcement returns as follows.

ARain = Ej
[
I1 ·ARain,1 + I2 ·ARain,2 + I3 ·ARain,3|Min, bin

]
ARtin = Ej

[
I1 ·ARtin,1 + I2 ·ARtin,2 + I3 ·ARtin,3|Min, bin

]
ARcin = Ej

[
I1 ·ARcin,1 + I2 ·ARcin,2 + I3 ·ARcin,3|Min, bin

]
where the subscript j of the expectation operator indicates that the expectation is taken with

respect to the state variables of the bidder j. Note, bidder j’s state is given within the expectation

operator of Ej(·). So the conditions of I1, I2, and I3 in the announcement returns are redundant.

Empirically, the announced initial bidder wins with a probability of 89%. The market takes

this information into account when they evaluate the deals. Therefore, the expectations above

must be computed with the joint distribution conditional on this perception. Let h(Φj |bi,Mi, Ji)

be the joint distribution of the state variables of bidder j (Φj = {sj , εj , kj ,Mj}) conditional on the

observation of the bid by bidder i and the fact that i is announced (Ji is the indicator). Then,

h(Φj |bi,Mi, Ji) = h(Φj , Zi > Zj |bi,Mi, Ji) + h(Φj , Zi < Zj |bi,Mi, Ji)
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= h(Φj |bi,Mi, Ji, Zi > Zj) Pr(Zi > Zj |bi,Mi, Ji)

+h(Φj |bi,Mi, Ji, Zi < Zj) Pr(Zi < Zj |bi,Mi, Ji)

= h(Φj |bi,Mi, Zi > Zj)× 0.87 + h(Φj |bi,Mi, Zi < Zj)× 0.13

where the last equality holds because conditional on Zi < Zj or Zi > Zj , Ji does not have additional

information on Φj . To complete the computation, note

h(Φj |bi,Mi, Zi > Zj) =
h(Φj)I(Z(b(Φj),Mj) < Z(bi,Mi))

Pr(Z(b(Φj),Mj) < Z(bi,Mi))

h(Φj |bi,Mi, Zi < Zj) =
h(Φj)I(Z(b(Φj),Mj) > Z(bi,Mi))

Pr(Z(b(Φj),Mj) > Z(bi,Mi))

where h(Φ) is the unconditional joint distribution of the state variables, I(·) is an indicator function

that equals one if the argument is true and zero otherwise, b(·) the optimal bidding rule, and Z(·)
is the scoring rule used by the target.

In the real data, in most cases we observe the cash as percentage of the transaction value. To

translate it into a dollar amount, we need to define what the transaction value means in our model

setting. For case two, it is unambiguous that the transaction value is the higher of the loser’s score

and the target’s standalone value, max{1, Zjn}. In cases one and three, since the bidder loses, we

map the transaction value as the own score, Zin. The rationale is that in an ascending English

auction, the last observed bid of the loser is its own valuation of the target. And with private

valuation, the second-price sealed auction is equivalent to the ascending English auction both ex

ante and ex post. As a summary, let cin be the percentage of cash reported in the data, then

Cin =

{
cin ×max{1, Zjn} if i wins,

cin × Zin if i loses.
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A.4. Comparing the Variances of Misvaluations and Synergies

One of our paper’s main findings is that the high-synergy bidder almost always wins the auction.

The explanation given in the paper is that Stdev(s) � Stdev(ε), so it is almost always synergies

rather than misvaluations that determine the auction’s winner. This section explains why this

explanation is correct.

The target chooses the bid with the higher score Z. The expression for Z is shown in the

main paper’s Eq. (1). If variation in synergies (s) rather than misvaluations (ε) drives most of

the variation in Z, then it is almost always synergies rather than misvaluations that determine the

auction’s winner. To show that variation in synergies (s) rather than misvaluations (ε) drives most

of the variation in Z, it would be sufficient (but not necessary) to show that (a) Stdev(s)� Stdev(ε)

and (b) Z is equally sensitive to ε and s. However, Z is not equally sensitive to ε and s, and in

fact ε and s are not measured in the same units. (Variable s is measured as a fraction of target

size, and ε is unitless, as we explain in the paper.) To compare the sensitivity of Z to s and ε,

we ask how Z would change in response to a one-standard-deviation change in ε combined with a

one-standard-deviation change in s. The change in Z would be approximately

∆Z =
∂z

∂ε
Stdev(ε) +

∂z

∂s
Stdev(s).

Eq. (1) in the paper shows that ε and s affect Z via their effects on the choice of C and α,

and this relation depends also on M . We cannot compute the partial derivatives above in closed

form, and their values vary across the state space. We therefore compute the derivatives’ values

numerically, and we summarize their values across a simulated sample from the estimated baseline

model. We find that the ratio
∣∣∣∂z/∂ε∂z/∂s

∣∣∣ has a mean of 1.3 and a standard deviation of 0.7. Its

value almost never exceeds 2.5. This result implies that, on average, Z is 1.3 times more sensitive

to ε than to s, and it is almost never more than 2.5 times more sensitive. Recall we estimate

Stdev(ε) = 7% and Stdev(s) = 44%. Even if we use the ratio’s upper bound of 2.5, we still find

that Stdev(s)� 2.5×Stdev(ε). It follows that most of the variation in scores Z, and hence auction

outcomes, comes from variation in synergies rather than misvaluations.
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A.5. Results Without Bayesian Updating by the Target

In Section 4.3 of the main paper, we ask how the average synergy loss would change if targets did

not update their beliefs about bidder misvaluation upon seeing the bid’s method of payment. First,

we assume targets score bids as in Eq. (1), except targets set E[εi|Ci, αi,Mi] = 0. In other words,

targets behave as if bidders were fairly valued. Second, we solve for bidders’ optimal response to

the target’s revised scoring rule. We plot the optimal bidding rule in Fig. A.3, which is analogous

to Fig. 1 in the main paper. Bidders respond to targets’ näıve behavior by bidding with all equity

if the bidder is overvalued (i.e., C∗ = 0 if ε > 0), and by bidding with as much cash as possible

when the bidder is undervalued (i.e., C∗ = min(1 + s, k) if ε < 0). Intuitively, if targets no longer

penalize bidders for paying with equity, overvalued bidders will try to dump as much equity as

possible onto the target. We simulate data from this revised model, keeping all parameters at their

estimated values. With näıve targets, we find that 9.75% of deals are inefficient, and the average

synergy loss among these inefficient deals is 14.16% of the target’s size. The unconditional average

synergy loss is 1.38% of target size, which equals 9.75% × 14.16%. For comparison, in our main

results with rational targets, we find that 7.01% of deals are inefficient, the average synergy loss

in inefficient deals is 9.02% of target size, and the unconditional average synergy loss is 0.63% of

target size (Table 5).
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A.6. Results from Overidentified SMM

In the paper’s main analysis we use eight moments to identify eight model parameters (i.e., exact

identification). To assess the robustness of our results to the choice of moments, we consider an

overidentified model that includes three additional moments from the subsample of all-cash bids.

These moments are the mean and conditional variance of offer premium and the mean acquirer

announcement return, all computed within the subsample in which the initial bidder offers an

all-cash bid.

We choose these additional moments for the following reasons. In all-cash bids, the target

does not need to learn about the degree of acquirer misvaluation, because the value of cash is

unambiguous. Also, we know the bidder’s cash constraint is not binding. Therefore, the

distribution of offer premiums and acquirer announcement returns in this subsample may be

especially informative about the distribution of synergies. Also, the all-cash subsample represents

the outcome of an endogenous selection effect in our model—bidders optimally choose their bids

and the method of payment based on their characteristics, i.e., misvaluation, cash capacity, and

synergy. These variables’ distributions affect which bidders choose to pay all in cash, so the

properties of the all-cash subsample are informative about the parameters controlling these

distributions.

Table A.3 confirms the intuition above by showing the sensitivity of the extra moments to

the model’s parameters. We show that, as expected, the average offer premium and acquirer

announcement return within the all-cash bids are indeed sensitive to the parameter µs (i.e., the

mean of the synergy), and the variance of offer premium within the all-cash bids is sensitive to the

parameter σs (i.e., the standard deviation of the synergy). The table also indicates that the average

offer premium in the all-cash subsample is sensitive to the standard deviations of misvaluation and

cash capacity. This sensitivity results from the endogenous selection effect described above. To

see this, note that the difference in average offer premium between the full sample and the all-cash

subsample to some extent reflects the full-sample dispersion in bidder characteristics. For the same

reason, we find that the subsample average of acquirer announcement return is also informative

about the dispersion of misvaluation.

Comparing Tables A.3 and 2, we see that the magnitudes of the sensitivities for the eight original

moments used in our main analysis decrease when we add the three extra moments. This change,

however, does not indicate that the eight moments become less sensitive to the parameters when

we include the three extra moments. Note that the tables’ sensitivity measures are adjusted by

the standard deviation of the parameters divided by the standard deviation of the moments. The

decrease in magnitude is almost completely due to the decrease in parameters’ standard deviations

that occurs when we include extra moments in the SMM procedure.

We report SMM results from the overidentified model in Table A.4. In Panel A, we show the

model fit by reporting both the data moments used in the estimation and their model counterparts.

The original eight moments and the three extra moments are all matched reasonably well. None of

the differences between the data moments and their model counterparts is statistically significant.
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More important, the economic magnitudes of the differences are all quite small. It is comforting

that the model can match properties of the offer premium and acquirer announcement return in

both the full sample and the all-cash subsample. This result suggests that the model does a good

job of capturing the endogenous selection effects described above. With three more moments than

parameters, we can now assess the overall model fit using a J-test. The test shows that our model

can be rejected at the 5% confidence level but not at the 1% level. However, the rejection of the

model is mainly due to the high precision (i.e. low standard errors) of the empirical moments, not

large gaps between the empirical and simulated moments.

In Panel B of Table A.4, we report the parameter estimates, which we have transformed as in

Table 4 to make them easier to interpret. Using the expanded set of moments has almost no effect

on our parameter estimates. Comparing the estimates between Table 4 and Table A.4, we see that

the parameter estimates barely change. The largest percent change in a parameter’s value is for

Stdev(ε), which decreases in value from 0.070 to 0.065. Adding the extra moments increases the

standard errors for some parameters while decreasing the standard errors of others.

We also report the estimated inefficiencies in Panel C of Table A.4. Compared with the baseline

results, we find that the percentage of inefficient deals, the average loss in inefficient deals, and the

average loss in all deals all become slightly smaller. For example, the average synergy loss decreases

from 0.63% to 0.52%. This decrease is due to the slight decrease in the estimated value of Stdev(ε).

To summarize, adding three additional moments to the SMM estimation does not significantly

change the model fit, parameter estimates, or estimated inefficiency. Our paper’s main conclusions

are therefore robust to adding these extra moments.
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A.7. Additional Details on Paper’s Table 8

This section provides additional details about the robustness exercises from Table 8 in the main

paper.

• Specification 2 extends our main model to account for the effect of target misvaluation on the

target’s reservation price. We add the following assumptions to our main model. The target’s

fundamental value equals its market value times by 1 − δ. The bidder observes δ but the

market does not. Everyone understands that δ follows a normal distribution Nδ(µδ, σ2
δ ). For

the target to accept a bid, the bid must exceed the target’s market value and fundamental

value. Therefore, the target’s reservation price equals its market value times max{1, 1− δ}.
The winning bidder must pay whichever is greater, the second highest bid or the target’s

reservation price.

• Specification 3: When measuring our moments, we supplement Controls with eight bidder

characteristics, three proxies for the target’s information about the bidder’s value, and two

proxies for the external pressure to pay in cash. Bidder characteristics include the bidder’s

size (log of book assets), leverage, cash holdings scaled by assets, market to book equity ratio,

a dividend-payer dummy, R&D expenditure scaled by assets, asset tangibility, and return on

assets. All eight characteristics are constructed exactly following Eckbo et al. (2017). Our

proxies for the target’s information include a local deal dummy that indicates whether the

target and the bidder are located within 25 miles of each other, a recent SEO and acquisition

dummy that indicates whether the bidder has SEOs or other acquisitions 24 months around

the bid announcement, and a horizontal merger dummy that indicates whether the target and

the bidder are in the same Fama-French 48 industry. Our two proxies for external pressure

to pay in cash capture the competition from private buyers and competition among industry

peers. The former is the fraction of all merger bids in the target’s Fama-French 48 industry and

year in which the bidder is private, and the latter is measured by the Herfindahl Hirschman

Index (HHI) for the bidder’s industry. We re-estimate the model using the updated moments,

then compute the new model implications.

• Specification 4 allows more than two bidders. To do so, we keep the parameter estimates and

model solution unchanged except in each contest we simulate multiple bidders (3, 4, or 5, as

shown in the table).

• Specification 5 uses our main model’s assumptions but simulates contests with a random

number of bidders, i.e., random N . We assume Pr{N = 1} = 0.5, Pr{N = 2} = 0.25, and

Pr{N = 4} = 0.25. Using these altered assumptions, we re-estimate the model’s parameters.

• Specification 6 allows negative synergies by moving the model’s lower bound of synergies (s)

from 0 to −0.2. We then re-estimate the model and compute the model implications. When

s can be negative, there are two types of inefficiencies. The first type of inefficiency is the

same as in our baseline model: the winner has a non-negative s, but the winner’s s is lower
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than the loser’s s. The second type of inefficiency is that the winner has a negative s. We

define efficiency loss as the difference between the winner’s s and the loser’s s in the first

type of inefficient deals, and as the gap between the winner’s s and the maximum of zero

and the loser’s s in the second type of inefficient deals. The table reports the sum of the two

inefficiencies.

• Specification 7 assumes that the synergy of competing bidders are correlated. We keep the

parameter estimates and model solution unchanged, except we simulate bidders with

correlated synergies s.

• Specification 8 allows the bidder’s misvaluation to be correlated with its cash capacity. We set

the correlation to the value shown in the table, then we re-estimate the model and recompute

its implications.

• Specification 9 controls for the negative price pressure induced by M&A arbitrageurs on

acquirers’ announcement returns in equity or mixed deals. We use the method of Mitchell

et al. (2004) to estimate the predicted change in short interest of acquirer stocks for equity

or mixed bids, and we include the predicted change in the vector Controls in regression

(6). We also cut the average acquirer announcement returns to half following Mitchell et al.

(2004). We re-estimate the model using the updated data moments and characterize the

model implications based on the new parameters.

• Specification 10 estimates the model after replacing the offer premium with the target’s

announcement return. This change affects the values of both the simulated and data moment.

• Specification 11 re-estimates the model using 11 moments instead of 8. The extra 3 moments

are the mean and conditional variance of offer premium and the mean of the acquirer’s

announcement return, all computed within the sample of all-cash bids. Additional details

and estimation results from this exercise are in Online Appendix Section A.6.

• Specification 12 replaces the offer premium reported by SDC with an alternative measure

computed following Officer (2003). Specifically, we first obtain different components of

payment offered to target shareholders from SDC (cash, equity, debt, etc). Then we

compute a premium measure using the aggregate amount of each form of payment, scaled

by the target’s market value of equity 23 trading days prior to the bid announcement.

Finally, we follow Officer (2003) and calculate the offer premium as the combined premium

as follows: It is equal to the premium from the component data if that number is between

zero and two; if it is not, the combined premium is set to the premium reported by SDC if

this provides a number between zero and two; if neither condition is met, the combined

premium is left as missing. We also update the observations in SDC with missing data on

the method of payment whenever they become available based on Officer (2003). We

re-estimate the model using the updated data moments and characterize the model

implications based on the new parameters.
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• Specification 13 re-estimates the model after reducing the conditional variance of offer

premium measured in data by half. We also reduce the loading of offer premium on log(M)

by 1/
√

2. We re-estimate the model using the updated data moments and characterize the

model implications based on the new parameters.

18



0 0.5 1 1.5 2 2.5

3

3.5

4

4.5

5

5.5

6

(a) Z(C)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

6

8

10

12

14

16

(b) Z(α)

0 50 100 150 200 250

0

50

100

150

200

250

(c) Z(M)

Figure A.1: Scoring Rule

This figure illustrates how the target’s assessment of a bid’s value (i.e., the scoring rule) varies
with the observed bid characteristics, C (Panel a), α (Panel b), and M (Panel c). The red dash
lines in Panel (a) and Panel (b) represent the hypothetical score if the revelation effect is held
constant when C and α change. The blue solid lines depict the true score with the target’s rational
expectation of the revelation effect.
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Figure A.2: Score of the Bid with Different Bidder’s Misvaluation

This figure illustrates how the target’s assessment of a bid’s value (i.e., the scoring rule) varies with the
bidder’s misevaluation ε, assuming that the bidder submits its optimal bid (C, α, and M) and the target
evaluates the bid based on its scoring rule. The red line depicts the score when the bidder has sufficient cash
capacity for the bid and the blue line depicts the score when the bidder has zero cash capacity. The black
dash line represents the true deal value 1 + s. We assume the bidder has a s = 0.6 and a M equal to the
median size.
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Figure A.3: Cash Fraction in the Optimal Bid When Targets Are Naive

This figure is the same as Fig. 1 in the main paper, except we assume that targets do not use Bayes’ Rule
to update beliefs about bidder misvaluation upon observing the bid’s method of payment.
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Table A.1: Robustness - Moments with Additional Controls

This table reports how the data moments used in SMM estimation would change if we added additional variables to the vector Controls in regression
(5)-(7) in the main paper. The columns under Full Sample are the moments based on the baseline method; the columns under E-index Sample are
the moments computed with and without E-index included as a control variable; the columns under Blockholder Sample are the moments computed
with and without the percentage of shares held by blockholders included as a control variable; and the columns under TarFounder CEO Sample
are the moments computed with and without the dummy indicating whether the target CEO is the founder CEO included as a control variable.
The first moment, Mean OfferPrem, is the average offer premium. The second moment is the conditional variance of offer premia, measured using
regression (5). The third moment is a1, the slope coefficient of offer premium on the logarithm of relative firm size, also from regression (5). The
fourth moment, Mean AcqAR, is the average acquirer announcement return. The fifth moment is b1, the slope coefficient of acquirer announcement
return on the fraction of cash used in the bid, from regression (6). The sixth moment, Mean CashFrac, is the average fraction of cash in bids.
The seventh moment is the conditional variance of CashFrac, measured using regression (7). The eighth moment is c1, the slope coefficient of cash
usage on the logarithm of relative firm size, from regression (7).

E-index Sample Blockholder Sample TarFounder CEO Sample

Moment Full Sample excld. as ctrl incld. as ctrl excld. as ctrl incld. as ctrl excld. as ctrl incld. as ctrl

Mean OfferPrem 0.437 0.393 0.393 0.431 0.431 0.411 0.411

Cond. Var. of OfferPrem 0.085 0.050 0.050 0.081 0.081 0.042 0.042

Slope of OfferPrem on log(M) 0.033 0.039 0.040 0.032 0.033 0.014 0.014

Mean AcqAR −0.023 −0.026 −0.026 −0.024 −0.024 −0.032 −0.032

Slope of AcqAR on CashFrac 0.031 0.041 0.040 0.027 0.027 0.032 0.031

Mean CashFrac 0.306 0.419 0.419 0.298 0.298 0.228 0.228

Cond. Var. of CashFrac 0.119 0.093 0.092 0.115 0.115 0.062 0.062

Slope of CashFrac on log(M) 0.050 0.069 0.076 0.052 0.052 0.022 0.022

Number of Observations 2,503 459 459 2,236 2,236 249 249
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Table A.2: Robustness – Implied Bidder Characteristics in Additional Subsample Analysis

This table reports the bidder characteristics implied by the estimated parameters from estimating the model in different subsamples. The subsample
of low (high) acquirer entrenchment index is comprised of M&A contests in which the acquirer’s E-index value is below (above) the median. The
subsample of low (high) acquirer blockholder ownership contains M&A contests in which the fraction of the acquirer’s shares held by a blockholder,
defined as a shareholder with at least a 5% block, is below (above) the median. The subsample of horizontal (diversifying) mergers is comprised of
M&A contests in which the acquirer and target belong to the same (unrelated) industry. We define a horizontal merger as one in which the target
and acquirer belong to the same four-digit SIC industry, and a diversifying merger as one that is neither horizontal nor vertical. Following Fan
and Goyal (2006), we define a vertical merger as one in which the acquirer and target industries are different and yet connected, as measured by
the BEA input-output tables. The subsamples based on acquirer CEO overconfidence use the Malmendier and Tate (2005) option-based measure,
closely following the implementation by Humphery-Jenner et al. (2016). Subsample 6 excludes from the full sample all deals in which the acquirer
is involved in another M&A or had equity issuance in the window of [−12, 12] months around the deal announcement. Subsample 7 excludes from
the full sample all deals in which the target’s asset intangibility measure ranks in the top quintile. We measure intangibility as in Section 4.4.
Subsample 8 excludes 280 contests that do not result in the purchase of the target firm.

E[s] SD[s] E[ε] Stdev[ε] E[k] Stdev[k] rsM rkM

1. Full sample 0.676 0.444 0.058 0.070 0.869 1.034 0.386 0.441

2. Entrenchment

Low 0.622 0.395 0.055 0.081 0.690 0.749 0.369 0.464

High 0.590 0.356 0.049 0.070 0.706 0.650 0.450 0.466

3. Acquirer blockholder ownership

Low 0.702 0.457 0.049 0.089 0.893 1.037 0.393 0.388

High 0.691 0.443 0.053 0.079 0.877 1.035 0.411 0.481

4. Merger types

Horizontal 0.663 0.421 0.048 0.072 0.794 0.906 0.465 0.464

Diversification 0.716 0.452 0.056 0.081 0.864 0.940 0.426 0.469

5. Acquirer CEO Overconfidence

Yes 0.612 0.392 0.060 0.072 0.691 0.749 0.387 0.461

No 0.572 0.350 0.057 0.071 0.759 0.763 0.308 0.482

6. No M&A or SEO surrounding deal 0.637 0.393 0.055 0.062 0.622 0.693 0.439 0.372

7. Excld. high-intangibility targets 0.644 0.418 0.055 0.063 0.698 0.814 0.437 0.381

8. Excluding failed bids 0.694 0.453 0.051 0.080 1.083 1.208 0.394 0.489
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Table A.3: Sensitivity of Moments to Parameters in Overidentified SMM

This table shows the sensitivity of model-implied moments (in columns) with respect to model parameters (in rows). To make the sensitivities

comparable across parameters and moments, we scale the sensitivities by a ratio of standard errors. The table contains the values of dm
dp

Stderr(p)
Stderr(m) ,

where dm
dp is the derivative of simulated moment m with respect to parameter p (evaluated at estimated parameter values), Stderr(p) is the

estimated standard error for parameter p, and Stderr(m) is the estimated standard error for the empirical moment m (from Table A.4). The first
moment is E[OfferPremi], the average offer premium. The second moment is V ar(ui), the conditional variance of offer premia, measured using
regression (5). The third moment is a1, the slope coefficient of offer premium on the logarithm of relative firm size, also from regression (5). The
fourth moment is E[AcqARi], the average acquirer announcement return. The fifth moment is b1, the slope coefficient of acquirer announcement
return on the fraction of cash used in the bid, from regression (6). The sixth moment is E[CashFraci], the average fraction of cash in bids. The
seventh moment is V ar(wi), the conditional variance of CashFrac, measured using regression (7). The eighth moment is c1, the slope coefficient
of cash usage on the logarithm of relative firm size, from regression (7). The ninth moment is E[OfferPremi|All Cash], the average offer premium
of the all-cash bids. The tenth moment is V ar[ui|All Cash], the conditional variance of offer premium within the all-cash bids. The last moment
is E[AcqReti|All Cash], the average acquirer announcement return among the all-cash bids. Parameter definitions are as follows. Synergy s is
assumed to follow a normal distribution N (µs, σ

2
s) that is left-truncated at zero. The misvaluation factor ε is assumed to follow a normal distribution

N (µε, σ
2
ε). Cash capacity is assumed to follow a normal distribution N (µk, σ

2
k) that is left-censored at zero. Parameter ρsM is the Spearman’s

rank correlation between synergy and acquirer relative size. Parameter ρkM is the Spearman’s rank correlation between cash capacity and acquirer
relative size.

Offer Premium Acquirer Ann. Return Fraction of Bid in Cash All-Cash Subsample

Parameter Mean Cond. Var. Slope on Mean Slope on Mean Cond. Var. Slope on Mean of Cond. Var. Mean of

log(M) Cash Frac log(M) Prem. of Prem. AcqRet

µs 0.658 0.422 0.065 0.225 −0.029 −0.033 0.247 −0.252 0.341 0.529 0.411

σs 0.419 0.748 0.104 0.284 −0.355 0.019 −0.322 0.050 0.093 0.858 0.172

ρsM −0.121 −0.204 0.980 −0.416 0.102 −0.162 −0.342 −0.199 −0.053 −0.030 −0.219

µε −0.008 0.041 −0.108 −0.744 −0.005 −0.034 0.055 0.099 −0.135 0.253 −0.458

σε 0.014 −0.048 0.131 −0.193 0.627 −0.181 −0.465 −0.105 0.669 −0.180 0.485

µk 0.158 0.051 −0.102 0.279 0.115 0.657 0.372 −0.170 0.435 0.190 0.250

σk 0.026 −0.061 0.021 −0.101 0.402 −0.033 0.593 −0.144 0.876 −0.373 −0.009

ρkM −0.269 −0.219 0.290 −0.098 −0.660 −0.186 −0.417 0.600 −0.312 0.044 −0.638
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Table A.4: Results from Overidentified SMM

This table reports the results of SMM estimation with three additional moments. Panel A shows how well the model fits the eleven moments targeted
in SMM estimation. The first moment is E[OfferPremi], the average offer premium. The second moment is V ar(ui), the conditional variance of
offer premia, measured using regression (5). The third moment is a1, the slope coefficient of offer premium on the logarithm of relative firm size, also
from regression (5). The fourth moment is E[AcqARi], the average acquirer announcement return. The fifth moment is b1, the slope coefficient of
acquirer announcement return on the fraction of cash used in the bid, from regression (6). The sixth moment is E[CashFraci], the average fraction
of cash in bids. The seventh moment is V ar(wi), the conditional variance of CashFrac, measured using regression (7). The eighth moment is c1,
the slope coefficient of cash usage on the logarithm of relative firm size, from regression (7). The ninth moment is E[OfferPremi|All Cash], the
average offer premium of the all-cash bids. The tenth moment is V ar[ui|All Cash], the conditional variance of offer premium within the all-cash
bids. The last moment is E[AcqReti|All Cash], the average acquirer announcement return among the all-cash bids. Standard errors for the data
moments are in parentheses. Panel B reports the quantities implied by the parameter estimates from SMM. E[s], E[ε], and E[k] are the implied
means of synergy, misvaluation, and cash capacity, respectively. Stdev[s], Stdev[ε], and Stdev[k] are the implied standard deviations of synergy,
misvaluation, and cash capacity, respectively. rsM and rkM are the implied Pearson’s linear correlations between the subscripted variables. Panel
C reports the model implications. Percent of deals inefficient is the percent of simulated deals in which the low-synergy bidder wins; Avg. loss in
inefficient deals is the average synergy loss across all inefficient deals; and Avg. loss in all deals is the average synergy loss across all deals. Both
average losses are measured as a percent of the target’s pre-acquisition market value.

Panel A: Model Fit

Offer Premium Acquirer Ann. Return Fraction of Bid in Cash All-Cash Subsample

Parameter Mean Cond. Var. Slope on Mean Slope on Mean Cond. Var. Slope on Mean of Cond. Var. Mean of

log(M) Cash Frac log(M) Prem. of Prem. AcqRet

Data 0.437 0.085 0.033 −0.023 0.031 0.306 0.119 0.050 0.479 0.079 0.004

Standard error (0.016) (0.006) (0.004) (0.004) (0.005) (0.028) (0.007) (0.009) (0.019) (0.011) (0.004)

Model 0.432 0.085 0.031 −0.023 0.024 0.284 0.117 0.040 0.503 0.081 0.006

Difference −0.005 0.000 −0.002 0.001 −0.007 −0.022 −0.002 −0.010 0.024 0.002 0.002

t-stat −0.307 0.057 −0.523 0.174 −1.354 −0.799 −0.312 −1.130 1.254 0.184 0.525

Overidentification test χ2 10.34 p-value 0.02

Panel B: Quantities Implied by Parameter Estimates

E[s] Stdev[s] E[ε] Stdev[ε] E[k] Stdev[k] rsM rkM

Estimate 0.678 0.445 0.054 0.065 0.893 1.040 0.403 0.457

Standard error (0.017) (0.013) (0.003) (0.005) (0.070) (0.070) (0.032) (0.037)

Panel C: Model Implications

Percent of deals inefficient 6.25

Avg. loss in inefficient deals (%) 8.31

Avg. loss in all deals (%) 0.52
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