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Appendix A: The Board’s Learning Problem

This Appendix solves the board’s learning problem, which is a Kalman filtering problem.

I use the notation κϵ ≡ σ2
ϵ/ (ϕ

2σ2
0) and κz ≡ σ2

z/σ
2
0. The surprises in the additional signal

and persistence-adjusted profitability equal

δz,t ≡ zt − µt (IA.1)

δy,t ≡ 1

ϕ
(yt − yt−1) + yt−1 − µt = α+

1

ϕ
ϵt − µt. (IA.2)

Standard results on Bayesian learning (e.g., Pástor and Veronesi (2009)) imply that σ2 (τ),

the board’s variance of ability α after τ periods of learning has occurred, decays monotoni-

cally and deterministically with tenure according to

σ2 (τ) = σ2
0

[
1 + τ

(
κ−1
ϵ + κ−1

z

)]−1
. (IA.3)

The posterior mean evolves according to

µt+1 = µt + δy,tθy (τt) + δz,tθz (τt) (IA.4)

θy (τ) ≡ σ2 (τ)ϕ2

σ2
ϵ

(
1 + σ2 (τ)ϕ2/σ2

ϵ + σ2 (τ) /σ2
z

)−1
(IA.5)

= κ−1
ϵ

(
1 + (τ + 1)

(
κ−1
ϵ + κ−1

z

))−1
(IA.6)

θz (τ) = κ−1
z

(
1 + (τ + 1)

(
κ−1
ϵ + κ−1

z

))−1
. (IA.7)

The posterior mean follows a random walk with no drift. The board rationally ignores the

industry component of profitability, vt, which contains no information about the CEO’s skill.

Also, the board adjusts for persistence in profitability (equation (IA.2)).

Next I compare the influence of the profitability signal and additional z signal on the

board’s beliefs about CEO skill. Specifically, I compare the change in posterior beliefs

resulting from a one standard deviation z shock and a one standard deviation profitability

signal shock. The model predicts that the response to the z shock is P ≡ σϵ/(ϕσz) times

larger than the response to the profitability signal shock. This result follows from equations

(IA.4)-(IA.7). A one standard deviation z shock corresponds to δz = σz, which moves beliefs

by θz(τ)σz. A one standard deviation X shock corresponds to δX = σϵ/ϕ, which moves

beliefs by θX(τ)σϵ/ϕ. Taking ratios,

θz(τ)σz

θX(τ)σϵ/ϕ
=

κ−1
z σz

κ−1
X σϵ/ϕ

=
σϵ

σzϕ
≡ P. (IA.8)
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Appendix B: Bellman Equation for the Board’s Optimization
Problem

This Appendix provides the Bellman equation for the board’s optimization problem. I

introduce notation to distinguish between µinc
t , the posterior mean of the incumbent CEO’s

skill α going into period t, and µt, the prior mean of the CEO chosen to serve in period t.

If the firm decides not to fire the incumbent, then µt = µinc
t , otherwise µt = µ0.

Proposition 1 (Bellman equation): The board’s objective function can be simplified as

Ut

κBt

= Et

[
∞∑
s=0

βsvt+s

]
+

(
1− ϕ

1− β (1− ϕ)

)
yt−1 + (IA.9)(

ϕ

1− β (1− ϕ)

)(
1

1− β

)
µ0 + V

(
ηinct , τt, bt

)
(IA.10)

where ηinct = µinc
t − µ0, and the value function V (η, τ, 0) solves the Bellman equation

V (η, τ, 0) = max{Vfire, Vkeep(η, τ)} (IA.11)

Vfire = V (0, 0, 0)− c (IA.12)

c ≡ c(firm) + c(pers)/κ (IA.13)

Vkeep(η, τ) =

(
ϕ

1− β (1− ϕ)

)
η + βf (τ)V (η, τ, 1) + (IA.14)

β (1− f (τ))E [V (η + θX (τ) δX + θz (τ) δz, τ + 1, 0)] (IA.15)(
δy
δz

)
∼ N

([
0
0

]
,

[
σ2
ϵ/ϕ

2 + σ2 (τ) 0
0 σ2

z + σ2 (τ)

])
,

subject to a boundary condition if the CEO has just retired:

V (η, τ, 1) = V (0, 0, 0)− c. (IA.16)

Proof: I distinguish between total turnover costs from forced turnover (cfire) and total

turnover costs from voluntary turnover (cretire). In my main model results and estimation, I

set cfire = cretire = c. In the robustness section, I allow cfire ̸= cretire, so separating the two

here is useful. Substituting equation (IA.13) into (4), and then substituting the result into

(3), the board’s optimization problem is

max
{dt+s}∞s=0

Ut = max
{dt+s}∞s=0

κEt

[
∞∑
s=0

βsBt+s (vt+s + yt+s − dt+scfire − bt+scretire)

]
, (IA.17)
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where dt and bt are indicator variables equal to one if the CEO is fired or retired, respectively,

in period t. Since the firm pays out profits immediately as dividends, the firm’s book value

is constant over time, so Bt+s = Bt and

max
{dt+s}∞s=0

Ut

κBt

= max
{dt+s}∞s=0

Et

[
∞∑
s=0

βs (vt+s + yt+s − dt+scfire − bt+scretire)

]
(IA.18)

= Et

[
∞∑
s=0

βsvt+s

]
+ V Ft, (IA.19)

V Ft = max
{dt+s}∞s=0

Et

[
∞∑
s=0

βs (yt+s − dt+scfire − bt+scretire)

]
. (IA.20)

Next I write yt+s as a function of yt−1, shocks, and future posterior means:

yt = yt−1 (1− ϕ) + ϕµt + ϕδy,t (IA.21)

yt+1 = [yt−1 (1− ϕ) + ϕµt + ϕδy,t] (1− ϕ) + ϕµt+1 + ϕδy,t+1 (IA.22)
... (IA.23)

yt+s = yt−1 (1− ϕ)s+1 + ϕ
s∑

τ=0

µt+τ (1− ϕ)s−τ + ϕ
s∑

τ=0

δy,t+τ (1− ϕ)s−τ (IA.24)

Et [yt+s] = yt−1 (1− ϕ)s+1 + Et

[
ϕ

s∑
τ=0

µt+τ (1− ϕ)s−τ

]
, (IA.25)

since Et [δy,t+τ ] = Et [Et+τ [δy,t+τ ]] and Et+τ [δy,t+τ ] = 0. Next, we have

Et

[
∞∑
s=0

βsyt+s

]
=

∞∑
s=0

βsEt [yt+s] (IA.26)

=
∞∑
s=0

βs

[
yt−1 (1− ϕ)s+1 + Et

[
ϕ

s∑
τ=0

µt+τ (1− ϕ)s−τ

]]
(IA.27)

= yt−1 (1− ϕ)
∞∑
s=0

βs (1− ϕ)s + (IA.28)

ϕ
∞∑
s=0

s∑
τ=0

βs (1− ϕ)s−τ Et [µt+τ ] (IA.29)

=

(
1− ϕ

1− β (1− ϕ)

)
yt−1 +

(
ϕ

1− β (1− ϕ)

) ∞∑
s=0

βsEt [µt+s] (IA.30)

=

(
1− ϕ

1− β (1− ϕ)

)
yt−1 + (IA.31)(

ϕ

1− β (1− ϕ)

) ∞∑
s=0

βs (µ0 + Et [ηt+s]) , (IA.32)
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where I have used the relation

µt = µ0 + ηt. (IA.33)

In sum, we have

Et

[
∞∑
s=0

βsyt+s

]
=

(
1− ϕ

1− β (1− ϕ)

)
yt−1 +

(
ϕ

1− β (1− ϕ)

)(
1

1− β

)
µ0 (IA.34)

+

(
ϕ

1− β (1− ϕ)

) ∞∑
s=0

βsEt [ηt+s] . (IA.35)

Plugging this into the expression for V F,

V Ft ≡
(

1− ϕ

1− β (1− ϕ)

)
yt−1 +

(
ϕ

1− β (1− ϕ)

)(
1

1− β

)
µ0 + V ∗

t , (IA.36)

V ∗
t = max

dt

{(
ϕ

1− β (1− ϕ)

)
ηt − dtcfire − btcretire + βEt

[
V ∗
t+1

]}
, (IA.37)

and so

V
(
ηinct , τt, bt

)
= max

dt

{(
ϕ

1− β (1− ϕ)

)
ηt − dtcfire − btcretire + βEt

[
V
(
ηinct+1, τt+1, bt+1

)]}
.

(IA.38)

If the incumbent CEO has just retired, the firm hires a new CEO (η = 0) and pays the

retirement cost, yielding

Vretire = V
(
ηinct , τt, 1

)
= V (0, 0, 0)− cretire. (IA.39)

Otherwise, if bt = 0 and dt = 1 (the firm fires its CEO), then the firm hires a new CEO and

pays the firing cost, yielding

Vfire

(
ηinct , τt, 0

)
= V (0, 0, 0)− cfire. (IA.40)

If bt = 0 and dt = 0 (the firm keeps its CEO), then

Vkeep

(
ηinct , τt, 0

)
=

(
ϕ

1− β (1− ϕ)

)
ηinct + βEt

[
V
(
ηinct+1, τt+1, bt+1

)]
(IA.41)

=

(
ϕ

1− β (1− ϕ)

)
ηinct + βf (τt)V

retire + (IA.42)

β (1− f (τt))Et

[
V
(
ηinct+1, τt+1, 0

)]
. (IA.43)

The firm chooses dt (fire or keep CEO) according to

V
(
ηinct , τt, 0

)
= max

{
V fire

(
ηinct , τt, 0

)
, V keep

(
ηinct , τt, 0

)}
. (IA.44)
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Recalling from equation (IA.4) that

µinc
t+1 = µinc

t + θy (τt) δy,t + θz (τt) δz,t (IA.45)

µ0 + ηinct+1 = µ0 + ηinct + θy (τt) δy,t + θz (τt) δz,t (IA.46)

ηinct+1 = ηinct + θy (τt) δy,t + θz (τt) δz,t. (IA.47)

I write the Bellman equation in its final form by dropping time and incumbent subscripts

and substituting in for V retire. End of proof.

Equation (IA.9) shows that the board’s objective function is the sum of an industry-

specific component, a component due to persistence in profitability, and a component V

that depends on the CEO’s posterior mean skill and tenure in office. Each period the board

makes a firing decision by comparing its utility from firing the CEO (Vfire) and not firing him

(Vkeep) (equation (IA.11)). Expression (IA.12) shows that after firing the CEO, the board

hires a new one and incurs the firing cost; the firing utility Vfire is constant over time. The

board’s decision depends on the total κ-adjusted turnover cost, defined in equation (IA.13),

not on the firm and personal costs separately. In equation (IA.14), the utility Vkeep from

keeping the CEO depends on his expected contribution this period (the µ term) and the

expected utility V next period, which in turn depends on whether the CEO quits (with

probability f (τ)) at the end of the period. If the CEO does not quit, he enters next period

with posterior mean (minus the prior) equal to η′ = η+θX (τ) δX+θz (τ) δz (from the learning

rule) and one more year of tenure (hence τ +1). The boundary condition in equation (IA.16)

shows that following a voluntary succession, the board hires a new CEO and pays cost c.

The prior mean µ0 drops out of the Bellman equation, which still depends on η, the distance

between the posterior mean and the prior mean.

Appendix C: Numerical Solution of Bellman Equation

This Appendix describes how I numerically solve the Bellman equation to find the board’s

optimal CEO firing rule. I obtain an approximate solution for V (µ, τ, 0) by discretizing the

state space and iterating on the Bellman equation.

I approximate the value function using the Jacobi Iteration method. I start by discretizing

the state space. State variable τt takes values in the set ς = {0, 1, ..., τ − 1} , where τ = sup τ

is the maximum possible number of terms in office. I let µ takes values in finite set M, which

contains 1,001 equally spaced points in the interval [µ0 − cfire − 2σ0, µ0 + cfire + 2σ0] ; the

length of the interval does not need to be extremely large, because the extrapolation used
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below ends up being quite accurate. To speed up the iteration, I start with a guess of V 0

over the grid ς ×M :

V 0(µ, τ, 0) =

(
ϕ

1− β (1− ϕ)

)[
µ0

(1− β)
+ max(µ− µ0, 0)

1− βτ−τ

1− β

]
. (IA.48)

I the update the value function according to

V t+1 (µ, τ, 0) = max{V t (µ0, 0, 0)− cfire,

(
ϕ

1− β (1− ϕ)

)
µ+ (IA.49)

βf (τ)
[
V t (µ0, 0, 0)− cretire

]
+ (IA.50)

β (1− f (τ))E
[
V t (µ+ θX (τ) δX + θz (τ) δz, τ + 1, 0)

]
}, (IA.51)(

δX
δz

)
∼ N

([
0
0

]
,

[
σ2
ϵ/ϕ

2 + σ2 (τ) 0
0 σ2

z + σ2 (τ) .

])
(IA.52)

I approximate the expectation above using Gauss-Hermite quadrature, as follows. Recall

V t (µ, τ) is defined only for µ in the finite set M. First, I create a function V̂ t (µ, τ) that is

defined for all µ ∈ R by performing piecewise cubic spline interpolation and extrapolation

of the function V t (µ, τ) . Second, I apply two-dimensional Gauss-Hermite quadrature with

seven nodes as follows: For each µ ∈ M and τ = 0, 1, ..., τ − 1,

E
[
V t (µ+ θX (τ) δX + θz (τ) δz, τ + 1, 0)

]
(IA.53)

≈ π−1

7∑
i=1

7∑
j=1

ωiωjV̂
t(µ+ θX (τ)

[√
2 (σ2

ϵ/ϕ
2 + σ2 (τ))xi

]
+ (IA.54)

θz (τ)
[√

2 (σ2
z + σ2 (τ))xj

]
, τ + 1, 0), (IA.55)

where {xi} and {ωi} are the Gauss-Hermite quadrature nodes and weights, respectively. I

stop iterating as soon as

max
(τ,µ)∈ς×M

∣∣V t+s − V t
∣∣ < 10−5. (IA.56)

Appendix D: Simulation Method

I define a CEO spell as all the periods a CEO serves in office. To simulate a single spell, I

draw the CEO’s true skill α from the prior distribution, I generate firm-specific profitability

yt and additional signals zt using the CEO’s true skill α, and I update the board’s beliefs

according to the learning rule in equation (IA.4). Simulated CEOs are fired according to the

optimal rule from the Bellman equation, and they leave office voluntarily with probability

f(τ).
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Appendix E: Additional Details on SMM Estimation

I use the optimal weighting matrix

W =
[
Nvar

(
M̂N

)]−1

. (IA.57)

I compute the 14x14 covariance matrix M̂N using the seemingly unrelated regressions ap-

proach. The moments can be expressed as the coefficients from the following system of

regression equations:

y∗it = λ0 + λ1y
∗
it−1 + (IA.58)

∆(−2) +∆(−1) +∆(0) +∆(1) +∆(2) + δit (IA.59)

δ2it = V ar (δ) + wit (IA.60)

dit = h(1−2) + h(2−3) + h(4−6) + h(7+) + ηit (IA.61)

V ari (Xit) = E [V ar (X)] + ei (IA.62)

(Ei [Xit]− E [Ei [Xit]])
2 = V ar (E [X]) + ιi. (IA.63)

The coefficients h(j) are fixed effects for tenure (j). V ari denotes variance within CEO

spell i, and Ei denotes average within CEO spell i. I estimate each regression separately

using ordinary least squares, which provides consistent estimates for each moment as well as

regression disturbances. Each regression above has the form

Yi = Xiβi + εi, (IA.64)

where Yi is Ni × 1 and βi is ki × 1. The covariance between moments estimators βi and βj

is the ki × kj matrix

Cov
(
β̂i, β̂j

)
= (X ′

iXi)
−1

X ′
iΩijXj

(
X ′

jXj

)−1
, (IA.65)

where Ωij = Cov (εi, εj) is the Ni ×Nj matrix whose element t, s is Cov (εit, εjs) . I estimate

the covariance matrix Ωij for each pair of moments ij, allowing for time-series autocorrelation

and also correlation across regressions.

I define

GN = MN − 1

S

S∑
s=1

ms
n(θ). (IA.66)

Applying the result of Pakes and Pollard (1989) with the efficient weighting matrix, we

obtain
√
N

(
θ̂ − θ0

)
→ dN (0,Ω) (IA.67)

Ω =

(
1 +

1

S

)(
Γ′Λ−1Γ

)−1
, (IA.68)
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where S is the number of simulated data sets (I choose S = 10), Γ =plimN→∞ ∂Ĝ (θ0) /∂θ
′,

and Λ = Navar(M̂ (θ0)) = Navar(m̂ (θ0)). I estimate Γ by numerically differentiating Ĝ
(
θ̂
)

with respect to θ, and using Λ̂ = N v̂ar
(
M̂

)
as described above.

We have √
NĜ (θ0) →d N

(
0,

(
1 +

1

S

)
Λ

)
, (IA.69)

so SMM provides the following test of the model’s overidentifying restrictions:

NS

1 + S
Ĝ (θ0)

′ Λ−1Ĝ (θ0)
′ →d χ2 (#moments - #parameters) . (IA.70)

Appendix F: Firing Threshold When Entrenchment Increases
with Tenure

With constant CEO turnover costs, the firing threshold rises with tenure. In the ro-

bustness exercise in Section IV.C of the published paper, I estimate the model forcing the

threshold to be flat. I do so by calculating the model’s predicted threshold (which rises with

tenure), taking this threshold’s value in a CEO’s first year in office, and forcing the threshold

to be constant and equal to this first-year value at all tenure levels. I argue in that section

that a flat threshold may obtain from turnover costs that increase with tenure.

In this Appendix I show how turnover costs must change with tenure in order to obtain a

firing threshold that is flat and equal to its value in year one. The main result is that turnover

costs must increase with tenure (as expected), and (less expected) the average turnover cost

across tenures is higher than the cost estimates I report in Section IV.C of the published

paper. This result supports the claim I make in Section IV.C of the published paper: “These

conclusions are even stronger in the story where entrenchment increases with tenure, since

flattening the firing threshold requires the total turnover cost to start at 5.99% and then

increase with tenure, as I show in the Internet Appendix.”

I solve an extension of the model in which the total turnover cost c(τ) is an arbitrary

function of tenure τ . The extension is straightforward, since tenure is already a state variable

in the board’s dynamic optimization problem. To keep this exercise simple, I assume CEOs

retire after and only after 10 years in office, and I use the same parameter values I used

to create Figure 1 in the published paper. The top panel of Figure IA.1 plots the firing

threshold that obtains when the total turnover cost c(τ) is constant at 3% of assets at all

tenures τ . As expected, the firing threshold increases with tenure. Next I numerically search
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for values of c(τ), t = 1, 2, ..., 9, so that the firing threshold becomes flat and equal to the

first-year value of the rising threshold produced by the constant cost c(τ) = 3%. I do not

constrain the numerical search in any way. The line with O’s in the top panel of Figure

IA.1 shows the resulting flat threshold, and the line with O’s in the bottom panel shows the

time-varying turnover costs that produce this flat threshold. For comparison, the bottom

panel also plots the 3% turnover cost that produced the rising threshold in the top panel

(line with X’s).

The main result is that, to produce the flat threshold, the turnover costs rise from 3.2% at

τ = 1 to 4.8% at τ = 9. Since the turnover costs start rising at approximately 3% (the level

that produced the rising threshold), the average of these turnover costs across tenures is well

above 3%. There are two important caveats. I have not proven that this result obtains for

parameter values besides the ones I use in this exercise, nor have I proven that the turnover

costs shown in Figure IA.1 are the unique values that produce the flat threshold in the figure.

However, to the extent that these results hold more generally, they have implications for the

results in Section IV.C of the published paper. In that robustness section I report that the

model with a flat threshold requires an estimated total turnover cost of 5.99% to fit the data.

A constant turnover cost of 5.99% will produce a firing threshold that increases with tenure.

In that exercise, I take the increasing threshold and make it flat and equal to the first-year

value of the increasing threshold. The results of this Appendix suggest that flattening the

threshold in this way would require the turnover cost to start near 5.99% in a CEO’s first

year in office, and then increase with tenure.
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Figure IA.1. Firing threshold with turnover costs that vary with tenure. The

top panel shows two predicted firing thresholds as a function of CEO tenure. The line with

X’s shows the firing threshold produced by constant CEO turnover costs; parameter values

are β = 0.9, µ0 = 1%, σ0 = 2%, σϵ = 3%, c = 3%, ϕ = 0.12, and σz = 7%, and voluntary

turnover occurs after (and only after) completing 10 periods in office. The line with O’s

shows the predicted firing threshold using these same parameter values, but using time-

varying CEO turnover costs c(τ) as shown in the bottom panel. The line with X’s in the

bottom panel shows the constant turnover costs used to produce the firing threshold with

X’s in the top panel. The line with O’s in the bottom panel shows the time-varying turnover

costs c(τ) used to produce the flat firing threshold in the top panel.
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