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4. Explaining GMB’s performance

� Table A.2. How much stock return variance is explained by measures of earnings news?

� Table A.3. Version of paper’s Table 4 comparing early and late subperiods

� Section 4.1. Computing ESG assets

� Table A.4. Version of paper’s Table 5 using Fama-French alphas

� Figure A.2. Version of paper’s Figure 7 including the climate news measure of Engle

et al. (2020)

� Table A.5. Components of the climate concern index

� Figure A.3. Version of paper’s Figure 7 including oil price shocks and long-term bond

returns

� Table A.6. Performance of industry-adjusted GMB

� Table A.7. FAANG returns, GMB, and climate concerns

5. The green factor

� Table A.8. Explaining the industry-neutral HML factor with the green factor

� Table A.9. Version of paper’s Table 9 replacing green factor with GMB

� Table A.10. Green-factor performance

A-1



1. German twin bonds
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Panel B.  Yield spread ("greenium")
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Panel C.  Cumulative return on the long-short portfolio
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Figure A.1. Five-year German twin bonds. This figure matches Figure 1 in the paper
but shows results for five-year rather than ten-year bonds. The five-year bonds were first
issued in November 2020.
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2. Implied cost of capital (ICC)

2.1. Computing the ICC

This section describes how we compute stocks’ ICCs. We follow the approach of Hou, van

Dijk, and Zhang (2012), henceforth “HVZ,” which builds on the residual-income valuation

model of Gebhardt, Lee, and Swaminathan (2001). Instead of using IBES earnings forecasts,

the HVZ approach uses earnings forecasts from regressions. We stay as close as possible to

the implementation of HVZ by Lee, So, and Wang (2021).

The implied cost of capital, denoted re below, is the internal rate of return that equates

the present value of future dividends to the current stock price:

Pi,t = Bi,t +
∞∑
τ=1

Et[EPSi,t+τ ]− reEt[Bi,t+τ ]

(1 + re)τ
, (1)

where Pi,t is the current stock price, EPSi,t+τ is the forecast of earnings per share in year

t + τ , and Bi,t+τ is the book value per share. The ICC (re) is specific to firm i and time

t, but we omit those subscripts for notational ease. We also drop the i subscripts going

forward. Using a twelve-year forecast horizon with a terminal perpetuity, and recognizing

that earnings equal ROE times book equity, the equation becomes

Pt = Bt +
11∑
τ=1

Et[(ROEt+τ − re)Bt+τ−1]

(1 + re)τ
+

Et[(ROEt+12 − re)Bt+11]

re(1 + re)11
. (2)

For the first three years ahead, earnings are forecasted using the HVZ methodology. Each

month, and for each horizon τ = 1, 2, and 3 years, we estimate a pooled cross-sectional regres-

sion of firms’ τ -years-ahead realized dollar earnings (net income before extraordinary items)

on lagged dollar assets, earnings, dividend payment, dividend-payment dummy, negative-

earnings dummy, and accruals. The regressions are estimated using the previous ten years

of data as of the forecasting date. Following HVZ, variables are measured in dollars without

scaling, and we winsorize the cross section of dollar-denominated variables at the 1% and

99% levels each year. We use the estimated cross-sectional regressions to forecast future

dollar earnings. Note this approach allows forecasted earnings to be negative.

For forecast horizons τ = 4, ..., 12 years, we forecast each firm’s ROE using a linear

interpolation from the three-year-ahead ROE forecast to the industry median ROE. The

assumption is that ROE is expected to revert to the historical industry median value by

year t+12. Following Lee et al. (2021), we compute industry median ROEs each year using

available data over the preceding ten years. We classify firms into industries based on the

48 Fama-French industry categories. Following HVZ, we exclude loss-making firms when

calculating the median industry ROEs.
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Book-equity forecasts are derived from clean-surplus accounting and depend on forecasted

net income (E) and dividends (D):

Bt+τ = Bt+τ−1 + Et+τ −Dt+τ . (3)

HVZ assume that the dividend-payout ratio remains constant over the entire forecasting

horizon and equal to the realized payout ratio in year t. For firms with positive earnings in

year t, dividends are calculated from the current dividend payout ratio, dt:

Dt+τ = dtEt+τ =
Dt

Et

Et+τ . (4)

For firms with negative earnings in year t, dividends are calculated from the current dividends

and a fraction of total assets:

Dt+τ =
Dt

0.06At

Et+τ . (5)

Since a dividend-payout ratio above one is unrealistic over the long run, we set dt = 1

if the data imply dt > 1. We further adjust these “raw” dividend forecasts, Dt+τ , if the

forecasted Bt+τ < 0 but Bt+τ−1 > 0 for some τ , with 1 ≤ τ ≤ 11. In these cases, we set

dividends τ periods ahead equal to net earnings in the same period, i.e., Dt+τ = Et+τ . After

this adjustment, dividends may be negative, which can be interpreted as equity issuance by

the firm. We make this adjustment because ROE is undefined—producing a missing ICC

value—if book equity is negative, and the adjustment produces fewer negative book-equity

forecasts.

We compute re from equation (2) for each firm and month. We discard less than 0.2%

of ICC values that are implausibly large (above 100%) or small (below −50%). We discard

roughly 0.07% of observations where the bisection and Newton-Raphson algorithms deliver

different solutions for re in equation (2). We winsorize the remaining ICC values at the 1st

and 99th percentiles.

A-4



Table A.1

Panel regressions of ICC on greenness

The dependent variable is the firm’s ICC estimate at the beginning of the month, in units

of percent per year. Regressor g is the firm’s greenness, also measured at the beginning of

the month. Time Trend equals the number of months since November 2012, the beginning

of our sample. Both regressions include month fixed effects and cluster by firm.

(1) (2)
g -0.483 -0.262

(-11.90) (-5.62)

g× Time Trend -0.00544
(-5.52)

Observations 193,216 193,216
R2 0.056 0.058
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3. Comparing r̄ and â

This section contains derivations of the probabilities in Figure 5 of the paper. We compare

r̄ and â as estimators of µr, deriving the distributions of the usual t-statistics for both

estimators when µr ̸= 0.

Let θ̂ denote the OLS estimator of θ = [a b]′, and note that the two estimators of µr that

we compare, r̄ and â, are of the form

µ̂r = h′θ̂, (6)

with h = [1 x̄]′ for µ̂r = r̄ and h = [1 0]′ for µ̂r = â. Define the T×1 vectors r = [r1 r2 · · · rT ]′,
x = [x1 x2 · · ·xT ]

′, ι = [1 1 · · · 1]′ and the T × 2 matrix X = [ι x]. The t-statistic for r̄ is

tr̄ =
r̄

ŝe(r̄)
, (7)

where ŝe(r̄) = σ̂r/
√
T and σ̂2

r = (r − ιr̄)′(r − ιr̄)/(T − 1). The t-statistic for â is

tâ =
â

ŝe(â)
, (8)

where

ŝe(â) =

√√√√s2

T

(
1 +

x̄2

σ̂2
x

)
, (9)

which is the square root of the (1,1) element of

Ω̂ = s2(X ′X)−1 =
s2

T σ̂2
x

[
σ̂2
x + x̄2 −x̄
−x̄ 1

]
, (10)

with s2 = (r − Xθ̂)′(r − Xθ̂)/(T − 2) and σ̂2
x = (x − ιx̄)′(x − ιx̄)/T . We derive here the

sampling distributions, conditional on x, of the above t-statistics when µr ̸= 0.

Let σ2
ϵ denote the variance of ϵt in equation (4). Define Ω as the same matrix as in

equation (10) but with σ2
ϵ replacing s2. From standard regression theory, θ̂ ∼ N(θ,Ω), and

thus

z =
h′(θ̂ − θ)√

h′Ωh
∼ N(0, 1), (11)

while, distributed independently,

q = (T − 2)s2/σ2
ϵ ∼ χ2

T−2 (12)

(“∼” denotes “is distributed as”). Also, by a standard result for the noncentral t distribution,

for a given constant δ,
z + δ√

q/(T − 2)
∼ t(δ, T − 2), (13)
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where t(δ, ν) denotes a noncentral-t variate with noncentrality parameter δ and ν degrees of

freedom. We set δ = h′θ/
√
h′Ωh, giving

h′θ̂√
h′Ωh

√
σ2
ϵ/s

2 ∼ t

(
h′θ√
h′Ωh

, T − 2

)
. (14)

To derive the distribution of tr̄, first note that when h = [1 x̄]′, it is easily verified that

h′Ωh = σ2
ϵ/T (15)

h′θ̂ = r̄ (16)

h′θ = µr + bx̄, (17)

which when combined with (14) give

r̄√
s2/T

∼ t

µr + bx̄√
σ2
ϵ/T

, T − 2

 . (18)

Also, the regression’s true R-squared is

R2 = ρ2rx = 1− σ2
ϵ/σ

2
r , (19)

where ρrx is the correlation between rt and xt. Next observe that the t-statistic for x̄ is

tx̄ =
x̄

ŝe(x̄)
=

x̄√
T

T−1
σ̂x/

√
T

=
x̄

σ̂x/
√
T − 1

, (20)

recalling that σ̂2
x is defined with a divisor of T instead of T − 1. Using (19) and (20),

bx̄ =
(
σr

σx

ρrx

)
x̄ = σr

√
R2

(
x̄

σx

)
= σr

√
R2/(T − 1)

(
σ̂x

σx

)
tx̄, (21)

where σ2
x is the variance of xt, and the square root of R2, applying (19), is positive since

b ≥ 0. The sample’s adjusted R-squared is given by

R̄2 = 1− s2/σ̂2
r , (22)

so, using (7),
r̄√
s2/T

=
r̄√

(1− R̄2)σ̂2
r/T

=
tr̄√

1− R̄2
. (23)

Combining (19), (21), and (23) allows (18) to be rewritten as

tr̄ ∼
√
1− R̄2 × t

µr + σr

√
R2/(T − 1)

(
σ̂x

σx

)
tx̄√

(1−R2)σ2
r/T

, T − 2

 . (24)
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To derive the distribution of tâ, first note that when h = [1 0]′, it is easily verified that

h′Ωh =
σ2
ϵ

T

(
1 +

x̄2

σ̂2
x

)
(25)

h′θ̂ = â (26)

h′θ = µr, (27)

which when combined with (14) give

â√
s2

T

(
1 + x̄2

σ̂2
x

) ∼ t

 µr√
(1 + x̄2/σ̂2

x)σ
2
ϵ/T

, T − 2

 . (28)

Using (8), (9), (19), and (20) allows (28) to be rewritten as

tâ ∼ t


√
Tµr√(

1 + t2x̄
T−1

)
(1−R2)σ2

r

, T − 2

 . (29)

Recall that we assume µr < 0 in constructing Figure 5 in the paper.

For r̄, Panel B of Figure 5 in the paper plots the probability that tr̄ > tcrit0.975,T−1, where

tcrit0.975,T−1 is the 97.5 percentile of Student’s t distribution with T − 1 degrees of freedom,

i.e., the positive critical value for the usual two-tailed 5% test of significance for the sample

mean. We compute this probability using the distribution in (24), making the simplifying

assumptions that R̄2 = R2 and σ̂2
x = σ2

x. For â, Panel B plots the probability that tâ >

tcrit0.975,T−2, where t
crit
0.975,T−2 is the 97.5 percentile of Student’s t distribution with T − 2 degrees

of freedom, i.e., the positive critical value for the usual 5% test of significance for the intercept

in a simple regression. This probability is computed using the distribution in (29). Panel A

of Figure 5 in the paper plots the probabilities that r̄ > 0 and â > 0. These probabilities

can be computed as above by setting the tcrit values to zero, or they can be computed using

the normal distribution in (11), with

h′θ̂√
h′Ωh

∼ N

(
h′θ√
h′Ωh

, 1

)
, (30)

and using (15) through (17) for r̄ and using (25) through (27) for â.
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4. Explaining GMB’s performance

Table A.2

How much stock return variance is explained by measures of earnings news?

This table shows results from panel regressions of quarterly percent stock returns on contem-

poraneous earnings-news measures and quarter fixed effects. Earnings announcement ret.

is the stock’s sum of the three-trading-day excess returns (stock minus market, in percent)

around earnings announcements and management earnings forecasts (if available) during the

quarter. Delta earnings forecast is the change in analysts’ mean long-term earnings growth

rate forecast for the stock during the quarter. The bottom row shows the R-squared from

a regression of stock returns on quarter fixed effects only. The gap between that R-squared

and the R-squared in the penultimate row measures the fraction of return variance explained

by the earnings-news variable. Robust t-statistics clustered by quarter are in parentheses.

(1) (2)
Earnings announcement ret. 1.02

(22.57)

Delta earnings forecast 29.04
(8.84)

Observations 60057 64134
R2 0.371 0.225
R2 (FEs only) 0.201 0.222
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Table A.3

Version of paper’s Table 4 comparing early and late subperiods

This is the same as the paper’s Table 4 but estimates the regressions in two subsamples,

early (November 2011 to August 2015) and late (September 2015 to June 2018).

Dependent variable
Independent variable GMB return GMB alpha

Panel A: Early subperiod

∆ Climate concerns (same month) 0.86 3.90 0.73 3.64
(0.38) (2.01) (0.33) (1.77)

∆ Climate concerns (prev. month) 1.54 3.63 1.53 3.49
(0.66) (1.67) (0.79) (1.85)

Earnings announcement returns 1.33 1.19
(2.13) (1.90)

∆ Earnings forecasts 68.20 69.02
(1.94) (2.66)

Constant 0.67 -0.37 0.47 -0.51
(1.63) (-0.75) (1.37) (-0.99)

Observations 34 34 34 34
R2 0.012 0.211 0.015 0.251

Panel B: Late subperiod

∆ Climate concerns (same month) 6.28 7.08 6.34 6.58
(2.83) (3.80) (3.19) (3.33)

∆ Climate concerns (prev. month) 2.59 3.44 1.90 2.35
(1.21) (1.69) (1.14) (1.52)

Earnings announcement returns 1.13 0.91
(2.97) (2.25)

∆ Earnings forecasts -31.36 -18.10
(-1.81) (-0.83)

Constant -0.27 -0.45 -0.39 -0.49
(-0.81) (-1.41) (-1.17) (-1.49)

Observations 34 34 34 34
R2 0.330 0.476 0.319 0.433
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4.1. Computing ESG assets

We provide details on computing “ESG assets,” which first appears in the paper in Table

5. From Morningstar’s 2021 Sustainable Funds U.S. Landscape Report, we obtain annual

sustainable fund AUM. We convert Morningstar’s annual series to a quarterly series by

using data on ESG flows and market returns, to approximate capital gains and losses. We

estimate ESG funds’ AUM at the end of quarter t, denoted ̂AUM t as

̂AUM t =

{
True, known AUMt if t is the year’s last quarter̂AUM t−1(1 +Rmkt

t ) + ESGFlowt(1 +
1
2
Rmkt

t ) otherwise,
(31)

where Rmkt
t is the market return in quarter t. The fraction 1/2 reflects that flows arrive

throughout a quarter.
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Table A.4

Version of paper’s Table 5 using Fama-French alphas

This table is the same as Table 5 in the paper but replaces returns on GMB and the green and

brown legs with their respective Fama-French three-factor alphas as the dependent variables.

GMB alphas are computed as in the paper’s Table 4. Green and brown alphas are computed

the same way, except we replace the GMB spread with the leg’s return in excess of the

risk-free rate.

Dependent variable
Independent variable GMB alpha Green leg Brown leg
∆ Climate concerns (same month) 3.69 2.12 -1.56

(2.67) (3.06) (-1.90)

∆ Climate concerns (prev. month) 2.74 0.48 -2.26
(2.15) (0.76) (-2.89)

Earnings announcement returns 0.70 0.72 0.29 0.32 -0.40 -0.40
(2.64) (2.31) (2.48) (2.08) (-2.22) (-2.08)

∆ Earnings forecasts 16.95 9.40 3.33 1.50 -13.62 -7.90
(1.29) (0.80) (0.62) (0.30) (-1.50) (-0.99)

ESG flows 30.45 6.39 13.77 1.13 -16.68 -5.26
(1.42) (0.98) (1.65) (0.35) (-1.07) (-1.19)

ESG assets -0.52 -0.78 -0.20 -0.24 0.33 0.54
(-0.81) (-1.13) (-0.65) (-0.79) (0.77) (1.19)

Constant -0.42 1.98 -0.34 0.65 0.09 -1.34
(-0.36) (1.45) (-0.55) (1.13) (0.12) (-1.46)

Observations 68 95 68 95 68 95
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Figure A.2. Version of paper’s Figure 7 including the climate news measure of
Engle et al. (2020). Engle et al. create two climate indexes, one using data from the
Wall St. Journal and one using data from Crimson Hexagon. We use the latter since it
has a longer time series. We download AR(1) innovations in the Crimson Hexagon index
from the authors’ website and add its same- and previous-month values to the regressors
used in column 2 of Table 4 in the paper. We use that expanded regression to compute
counterfactual GMB returns. When computing counterfactual returns, we set all shocks,
including those based on the Engle et al. measure, to zero. Remaining details are the same
as in Figure 7 Panel A in the paper.
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Table A.5

Components of the climate concern index

Each row contains results from a time-series regression with dependent variable equal to

the monthly percent GMB return. Each regression is the same as in Table 4 column 1 in

the paper, except ∆ Climate concerns is computed using one of the eight themes provided

by Ardia et al. (2021). We start with the 40 sub-topics’ scores provided by Ardia et al.

(2021). For each theme, we sum the daily scores across the theme’s constituent topics. We

then average this sum across days in a month to compute a monthly theme-level MCCC

measure. For each theme, we create an analogue of our main ∆C variable by computing

the prediction error from rolling AR(1) models applied to the theme-level MCCC measure.

Each time-series regression has 68 monthly observations. Remaining details are the same as

in Table 4 in the paper.

Coefficient on ∆ Climate concerns
Theme Same month Prev. month R2

Agreement and Summit 0.017 0.025 0.15
(1.85) (2.61)

Societal Impact 0.029 0.016 0.12
(2.48) (1.17)

Financial and Regulation 0.014 0.018 0.11
(1.86) (2.07)

Environmental Impact 0.063 0.015 0.10
(2.54) (0.57)

Research 0.062 0.019 0.08
(2.01) (0.65)

Agricultural Impact 0.047 0.006 0.05
(1.63) (0.20)

Disaster 0.014 0.009 0.02
(0.91) (0.55)

Other 0.103 0.020 0.03
(1.35) (0.23)
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Figure A.3. Version of paper’s Figure 7 including oil price shocks and long-
term bond returns. Details are the same as in Figure 7 Panel A in the paper, except we
also control for oil price shocks and monthly returns on 30-year U.S. Treasury bond in the
regression model used to compute counterfactual returns. We set oil price shocks and bond
returns to zero when computing counterfactual returns. The oil price shock is derived from
data on Cushing, Oklahoma crude oil future contracts. The shock equals the fraction change
in expected “front month” value of oil during the month. Bond returns are from CRSP.
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Table A.6

Performance of industry-adjusted GMB

This table is the same as the paper’s Table 3, except this table uses the industry-adjusted

GMB return rather than the original GMB return as the dependent variable. Industry-

adjusted GMB is constructed the same as GMB except we replace g with gWithin = g −
gAcross.

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 0.16 0.30 0.12 0.12 0.12 0.12 0.09 0.09
(0.99) (1.59) (0.82) (0.78) (0.79) (0.79) (0.59) (0.56)

Mkt-RF -0.11 -0.01 -0.01 -0.01 -0.01 0.03 0.03
(-1.99) (-0.36) (-0.18) (-0.26) (-0.24) (0.80) (0.72)

SMB -0.35 -0.35 -0.33 -0.31
(-5.57) (-5.37) (-4.89) (-4.50)

HML -0.14 -0.12 -0.13 -0.19
(-2.40) (-1.91) (-2.44) (-3.48)

UMD 0.03
(0.65)

LIQ -0.03
(-0.69)

RMW 0.09
(1.00)

CMA 0.17
(1.68)

ME -0.32 -0.32
(-4.94) (-4.83)

I/A 0.05 0.05
(0.57) (0.55)

Roe 0.19 0.19
(3.45) (2.48)

Eg -0.00
(-0.02)

Observations 98 98 98 98 98 98 98 98
R2 0.00 0.08 0.44 0.44 0.44 0.47 0.45 0.45
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Table A.7

FAANG returns, GMB, and climate concerns

The dependent variable is the monthly percent return on the value-weighted FAANG port-

folio. The sample begins in November 2012. The sample ends in December 2020 in column

1 and June 2018 in column 2.

(1) (2)
GMB 0.18

(0.54)

∆ Climate concerns (same month) 0.39
(0.09)

∆ Climate concerns (prev. month) 5.18
(1.22)

Constant 2.07 1.61
(3.48) (2.23)

Observations 98 68
R2 0.00 0.03
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Table A.8

Explaining the industry-neutral HML factor with the green factor

The dependent variable is the monthly HML industry-neutral return, obtained from Peter

Hecht of AQR. Remaining details are the same as in Table 9 in the paper.

(1) (2)
Constant -0.66 -0.23

(-2.69) (-1.37)

Mkt-RF 0.26 0.21
(3.02) (3.03)

Green Factor -0.62
(-5.60)

Observations 98 98
R2 0.23 0.53
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Table A.9

Version of paper’s Table 9 replacing green factor with GMB

Value Momentum
Constant -0.71 -0.32 0.66 0.21

(-1.93) (-1.07) (1.92) (0.63)

Mkt-RF 0.14 0.11 -0.37 -0.34
(1.18) (1.23) (-3.75) (-3.71)

GMB -0.55 0.64
(-3.22) (3.61)

Observations 98 98 98 98
R2 0.04 0.19 0.17 0.29
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Table A.10

Green-factor performance

This is the same as Table 3 in the paper but replaces the monthly GMB return with the

monthly green factor as the dependent variable.

(1) (2) (3) (4) (5) (6) (7) (8)
Constant 0.58 0.69 0.38 0.34 0.38 0.39 0.41 0.30

(2.91) (3.38) (2.48) (2.46) (2.42) (2.60) (2.28) (1.61)

Mkt-RF -0.09 0.01 0.07 0.02 0.01 0.00 0.03
(-1.28) (0.17) (1.19) (0.29) (0.17) (0.00) (0.43)

SMB -0.23 -0.18 -0.20 -0.32
(-3.77) (-3.54) (-2.24) (-4.02)

HML -0.37 -0.22 -0.37 -0.28
(-6.42) (-3.78) (-5.70) (-4.49)

UMD 0.24
(4.57)

LIQ -0.04
(-0.38)

RMW -0.24
(-1.62)

CMA -0.26
(-2.36)

ME -0.27 -0.23
(-3.57) (-2.99)

I/A -0.49 -0.40
(-4.89) (-3.61)

Roe 0.16 0.04
(1.37) (0.28)

Eg 0.24
(2.41)

Observations 98 98 98 98 98 98 98 98
R2 0.00 0.03 0.41 0.52 0.41 0.46 0.38 0.40
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