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Abstract

The impact of uncertainty shocks on asset prices and macroeconomic dynamics depends

on the degree of risk sharing in the economy and the origin of uncertainty. We develop a

general equilibrium model with imperfect risk sharing and two sources of uncertainty shocks: (i)

productivity uncertainty shocks, which affect the idiosyncratic volatility of firms’ productivity,

and (ii) investment uncertainty shocks, which affect the idiosyncratic variability of firms’

investment opportunities. My model deviates from the neoclassical setting in two respects:

first, firms’ investment policies are set by the managers who are subject to a moral hazard

problem and thus must maintain an undiversified ownership stake in the firm; and second, costly

hedging can be obtained through intermediaries. As a result, risk sharing capacity between

managers and other investors is limited, which is governed by the intermediary condition.

Limited risk sharing distorts equilibrium investment choices, firm valuation, and prices of

risk in equilibrium relative to the frictionless benchmark. In the calibrated model, the risk

premium on investment uncertainty shocks is negative when risk sharing capacity is low and

positive otherwise. Moreover, the cross-sectional spread in valuations between value and growth

stocks loads positively on the investment uncertainty shocks under poor risk sharing conditions

and negatively otherwise. The calibrated model provides quantitative implications that help

understand empirical patterns. Empirical tests also support the predictions of the model.
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1 Introduction

The volatility of idiosyncratic shocks can affect agents’ economic behaviors when markets are incomplete

or technologies contain optionality features. The literature refers to the aggregate shock to the common

component of idiosyncratic volatilities as an uncertainty shock, since it alters agents’ information sets about

future economic outcomes altogether.1 Uncertainty shocks have proven useful in explaining macroeconomic

fluctuations and have been adopted as a standard feature of dynamic stochastic general equilibrium (DSGE)

models for policy analysis.2

Despite substantial advances in understanding the economic impact of uncertainty shocks, two central

and fundamental questions remain unsolved: first, how to reconcile the mixed empirical evidence about the

effect of uncertainty shocks on asset prices and investment in one coherent framework; second, what are

the factors underpinning the impact of uncertainty shocks. In particular, whether a positive uncertainty

shock benefits or harms growth firms relative to value firms remains debatable, as does whether a rise in

uncertainty boosts or curtails aggregate investment. The stylized facts are summarized in Figure 1.3

To address these questions, I develop a tractable investment-based general equilibrium model of asset

prices with heterogeneous firms and agents in incomplete markets. Using the model as a guide, I revisit the

link between asset prices and uncertainty with an explicit emphasis on the interaction with risk sharing

conditions in the economy. The model not only provides a theoretical framework that quantitatively makes

sense of these seemingly contradictory empirical findings; its main contribution is to do so by providing a

fundamental economic mechanism through the explicit modeling of endogenous imperfect risk sharing. The

model recognizes two key elements shaping the impact of uncertainty shocks: (i) the risk sharing condition

of the economy and (ii) the sources of uncertainty shocks.

Let me describe the main features of my model, starting with the characteristics of firms’ technologies

then turning to the characteristics of the agents. In the model, firms produce consumption goods using

1There has been a fast growing literature studying the aggregate effects of such uncertainty shocks (e.g., Pástor and
Veronesi, 2006, 2009; Bloom, 2009; Arellano, Bai and Kehoe, 2011; Bloom et al., 2013; Bachmann and Bayer, 2014; Christiano,
Motto and Rostagno, 2010, 2014; Bundick and Basu, 2014; Gilchrist, Sim and Zakrajsek, 2014; Herskovic et al., 2014). Here,
the use of the term uncertainty is different from Knightian uncertainty, which emphasizes the situations where agents cannot
know all the information they need to set accurate odds in the first place (e.g., Knight, 1921; Hansen and Sargent, 2008).
Also, uncertainty here is different from aggregate volatility, which has also been extensively studied in the literature (Bansal
and Yaron, 2004; Drechsler and Yaron, 2011; Shaliastovich, 2015; Campbell, Giglio and Polk, 2013; Campbell et al., 2015;
Fernandez-Villaverde et al., 2011; Nakamura, Sergeyev and Steinsson, 2014; Segal, Shaliasovich and Yaron, 2015; Gourio,
Siemer and Verdelhan, 2015; Ai and Kiku, 2015).

2Policy authorities, including the Federal Reserve Board and the European Central Bank have claimed that uncertainty
has an adverse effect on economy, and they have built uncertainty shocks into their core DSGE models as a main driver of the
aggregate fluctuations (Christiano, Motto and Rostagno, 2010, 2014). For example, at the 2013 Causes and Macroeconomic
Consequences of Uncertainty conference, Federal Reserve Bank of Dallas President Richard Fisher gave a formal speech titled
“Uncertainty matters. A lot.” It emphasized that uncertainty could worsen the Great Recession and the ongoing recovery.

3I use the average idiosyncratic volatility across U.S. public firms’ stock returns as a proxy for the total uncertainty. In
Panels A and B of Figure 1, the high uncertainty in the late 1980s occurs with positive value spreads (i.e., cross-sectional
spreads between value and growth stock returns) and high investment, and the high uncertainty in the late 1990s occurs with
negative value spreads and high investment. However, the high uncertainty in the early 1990s and the late 2000s accompanies
negative value spreads and low investment. Panel C shows that aggregate market volatility is almost perfectly correlated
with total uncertainty over the period 1980 - 2014. The mixed empirical evidence on total uncertainty’s effects illustrated in
Panels A and B are thus linked to the ambiguous impacts of market volatility on asset prices and macroeconomic dynamics
documented by Bansal et al. (2014) and Campbell et al. (2015), among others.
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production units, which are building blocks of assets in place. The existing assets in place depreciate over

time. Firms invest to create new assets in place using growth options. Growth options are intangible

assets associated with innovations such as blueprints and research and development (R&D) projects. The

investment decision is an option that the firm exercises optimally only when it receives an investment

opportunity. Their investment opportunities arrive randomly over time and are subject to firm-specific

shocks.

Firms’ technologies feature two sources of uncertainty shocks: the cash-flow uncertainty shock and

the growth uncertainty shock. Cash-flow uncertainty captures the variation in idiosyncratic volatility

of assets-in-place productivity; growth uncertainty captures the variation in idiosyncratic volatility of

investment-opportunity quality. Growth uncertainty can have a very different effect than cash-flow

uncertainty due to the optionality embedded in growth options. This optionality arises from the flexibility

in the innovation process. Simply put, if the quality of the investment opportunity turns out to be

exceedingly good, the firm has the flexibility to dial up investment to exploit the beneficial realization

of the investment shock; alternatively, the firm can tune down investment to insure against the adverse

realization of the investment shock. The optionality makes the benefit of growth options a convex function

of the underlying shock. As a result, growth uncertainty increases the value of growth options and the

aggregate investment. Effectively, the growth uncertainty shock affects the economy in the same way as a

simple aggregate investment-specific technological (IST) shock, which directly alters the economy’s real

investment environment.4

By their nature, the two uncertainty shocks cause different impacts in complete markets; moreover,

their effects on the economy can be altered by the interactions between imperfect risk sharing and

uncertainty shocks. To understand the interactions, I introduce financial frictions that endogenously

arise from a standard moral hazard problem. Specifically, agents in my economy are either experts or

households. Each expert is a representative agent for a team of managers and active insiders, who are

usually financial intermediaries. Within each team, the managers and active insiders perfectly insure each

other’s consumption risks.5 Each expert uses her unique skills to manage a particular firm’s assets. In

other words, the expert is the key talent without whose efforts the particular firm would cease to perform.

To invest, each expert raises funds from the capital markets by issuing equity. However, experts face a

moral hazard problem that imposes a co-investment or skin-in-the-game constraint: each expert must

retain an undiversified ownership stake in the firm as a commitment not to make managerial decisions that

maximize private benefits at the cost of reduced firm value. This incentive constraint limits an expert’s

capacity to insure against idiosyncratic cash flow and investment risks. On the other hand, households

cannot run firms or trade assets, but they can invest in financial securities and therefore partially share

4The aggregate investment-specific technological shock has become a standard feature of real business cycle models
(Greenwood, Hercowitz and Krusell, 1997, 2000; Fisher, 2006; Justiniano, Primiceri and Tambalotti, 2011). Moreover, recent
papers show that the aggregate investment-specific technological shock can help explain asset pricing puzzles (Christiano and
Fisher, 2003; Papanikolaou, 2011; Kogan and Papanikolaou, 2013, 2014; Garlappi and Song, 2014; Kogan, Papanikolaou and
Stoffman, 2015).

5This is a simplification assumption widely adopted in the macroeconomic models with financial sectors (e.g., Gertler and
Kiyotaki, 2010; Gertler and Karadi, 2011; Brunnermeier and Sannikov, 2014). In other words, like mine here, these models
focus on the financial frictions between households versus insiders of the corporate and financial sectors.
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risks with experts.

My model therefore deviates from the neoclassical setting in one key respect: firms’ investment policies

are set by experts who are subject to background risks imposed by incentive constraints.6 This friction

distorts experts’ investment decisions and portfolio allocation from the first-best benchmark; households

provide risk sharing to experts through financial markets trying to mitigate the distortion and smooth their

own consumption. When experts’ balance sheets are well capitalized, they bear a small amount of implied

idiosyncratic wealth risks and thus have a higher capacity to share risks with households; otherwise, they

bear a large amount of implied idiosyncratic wealth risks and thus have a lower capacity to share risks

with households, because they require more insurance from households to keep up real investment. The

theoretical concept of the risk sharing condition can be interpreted as the condition of the financial sector

in the data; in reality, the financial sector plays the largest role in determining the degree of risk sharing in

the economy.

Due to experts’ endogenous background risks, the impact of uncertainty shocks on asset prices and

investment depends on the degree of risk sharing. When risk sharing is limited, positive uncertainty shocks

dramatically increase the severity of background risks to experts, who become implicitly more risk averse.

More precisely, in response to a positive cash-flow uncertainty shock, experts require higher risk premia on

assets in place; for a rise in growth uncertainty, experts require higher risk premia on growth options. Yet

whether the implied higher risk premia eventually increase or curtail experts’ willingness to invest depends

on the specification of preferences. More precisely, it depends on whether the intertemporal substitution

effect dominates the wealth effect. In general, the intertemporal substitution effect dominates when the

elasticity of intertemporal substitution (EIS) is larger than one.7 In such cases, a rise in uncertainty induces

experts to invest less in firms’ assets today and more in the future, since their desire for a better investment

environment dominates that for consumption smoothing. The interest rate tends to decline due to the

fly-to-quality effect, and yet it remains stable because of the high EIS coefficient. As a result, assets’ prices

have to drop to provide higher risk premia. Specifically, a rise in cash-flow uncertainty always decreases

the prices of assets in place. However, a rise in growth uncertainty can have an ambiguous impact on

growth option’s prices. The net effect of higher growth uncertainty depends on the competition between

the positive force of the optionality and the negative force of the precautionary saving motive. In times

when risk sharing is limited, the precautionary saving motive becomes strong enough to dominate the

option effect.

Compared to cash-flow uncertainty shocks, higher growth uncertainty causes an additional risk to

experts. It is the risk of increasing inequality in the distribution of innovation benefits from growth options.

The skewness in the distribution of innovation benefits matters when the risk sharing of idiosyncratic

investment shocks is limited. Such a high-moment risk thus becomes particularly devastating when the

6The implications of background risks for asset prices and firms’ financing and investment behavior have been investigated
by Heaton and Lucas (1997, 2000a,b); Miao and Wang (2007); Chen, Miao and Wang (2010), among others. In my model,
the background risks are endogenously derived from a moral hazard problem, in an explicit and coherent way, within a
general equilibrium macroeconomic framework. I focus on investigating the general equilibrium implications of the endogenous
background risks.

7The discussion on the relationship between the EIS coefficient and the dominance of intertemporal substitution effect can
be found in Weil (1990) and Bhamra and Uppal (2006).
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risk sharing condition is poor. The intuition is further elaborated as follows. Most of the benefits from

innovation accrue to a small fraction of experts, while the majority of experts bear the cost of creative

destruction since they need to pay for the new assets in place to keep up their production levels. Wealth is

reallocated from the experts who do not invest to those who receive high-quality investment opportunities.

This reallocation becomes more skewed when growth uncertainty becomes higher, since growth-option

benefits are asymmetric. Technically speaking, each expert faces a more skewed idiosyncratic investment

risk.8 For a risk averse expert, the higher skewness in the idiosyncratic risk leads to lower certainty

equivalent wealth. Therefore, the growth uncertainty shock contributes to an adverse redistribution risk:

the displacement risk.9

The risk sharing condition, moreover, is endogenous and affected by uncertainty shocks. When the

intertemporal substitution effect dominates, experts charge higher risk premia and want to sell assets to

reduce their exposure to idiosyncratic risks, in response to a rise in uncertainty. This leads to a plunge in

asset prices. Experts are atomistic, so they do not take into account the general equilibrium effect of their

own asset sales on asset prices, even though they are aware of the adverse effect of plunging asset prices

on their risk sharing conditions. This pecuniary externality arises from financial constraints, together

with competitive asset markets.10 Due to such a pecuniary externality, the adverse feedback loop between

plunging asset prices (soaring risk premia) and deteriorating risk sharing conditions characterizes the

equilibrium.

This fundamental economic mechanism has important asset pricing implications. To understand them,

it is necessary to establish how these shocks affect the marginal investor’s utility and determine how

uncertainty shocks affect the cross section of firms.

The cash-flow uncertainty shock always carries a negative market price of risk,11 because the cash-flow

uncertainty decreases experts’ current and future consumption. However, when growth uncertainty rises,

experts face three endogenous risks: the investment risk, the endogenous financial risk, and the displacement

risk. When the EIS coefficient is sufficiently large, the latter two contribute to a negative market price of

risk for growth uncertainty shocks, whereas the investment risk contributes to a positive market price of risk.

The risk sharing condition determines the net effect between the two countervailing forces. The positive

force of investment risk dominates when risk sharing is efficient; the negative force of the endogenous

financial risk and the displacement risk dominates otherwise.

Uncertainty shocks do not affect all firms equally in the cross section. The heterogeneous impacts are

time varying; they depend on risk sharing conditions. A positive cash-flow uncertainty increases the value

of growth options relative to assets in place. This is because a higher cash-flow uncertainty immediately

increases the riskiness of assets in place. As a result, experts gravitate to safer assets, including growth

8In contrast, the idiosyncratic cash flow risk is always symmetric.
9There is more discussion and a literature review on the asset pricing implications of displacement risks in Section 1.1.

10This particular pecuniary externality has been explicitly investigated and highlighted by Lorenzoni (2008). The models
studying financial stability and its macroeconomic implications are mainly built on this basic mechanism (e.g., Bernanke
and Gertler, 1989; Kiyotaki and Moore, 1997; Bernanke, Gertler and Gilchrist, 1999; He and Krishnamurthy, 2011, 2013;
Brunnermeier and Sannikov, 2014; Di Tella, 2014).

11Recall that the formal (technical) definition of market price of risk for a shock is the negative contemporaneous response
of a marginal investor’s marginal utility to a unit increase in such a shock.
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options. This portfolio rebalancing tendency increases the price of growth options. Meanwhile, the price of

investment goods decreases, which provides a hedge for growth options against the drop in the value of

assets in place. A rise in growth uncertainty can increase or decrease the value of growth options relative

to assets in place; the sign depends on the risk sharing condition. When risk sharing is efficient, the growth

uncertainty increases the investment risk attached to the growth options, which increases the value of

growth options relative to assets in place; otherwise, the growth uncertainty shock increases the endogenous

financial risk and the displacement risk attached to growth options, which pushes experts to safer assets,

including assets in place. The portfolio rebalancing tendency has an increasing effect on the value of assets

in place. In summary, uncertainty shocks affect firms differently depending on whether they derive most of

their value from growth options or assets in place, and depending on whether the risk sharing condition is

good or poor.

Using state-of-the-art techniques, I solve the model globally to capture the nonlinearity of economic

dynamics and the endogenous fluctuations of risk sharing conditions. I calibrate the model to match the

moments of macroeconomic variables and check whether the calibrated model can provide reasonable asset

pricing moments and cross-sectional dynamics of firms. In my calibration, the model has a reasonable

quantitative performance, which is summarized as follows. First, the model reproduces a sizable equity

premium, mainly attributed to the market incompleteness; it also reproduces a large value premium, mainly

attributed to the heterogeneous effects of cash-flow uncertainty shocks. Second, in the model as in the

data, the sales dispersion is countercyclical, while the investment dispersion is pro-cyclical. This empirical

pattern is highlighted in Bachmann and Bayer (2014) as an important cross-equation restriction for the

macroeconomic models with uncertainty shocks. My model provides a novel reconciliation for the two

dispersion processes within a unified framework. In this framework, the sales dispersion is driven by the

cash-flow uncertainty shock, but not by the growth uncertainty shock; it is countercyclical because the

cash-flow uncertainty leads to economic downturns. On the other hand, the investment dispersion is driven

by the growth uncertainty shock, but not by the cash-flow uncertainty shock; it is pro-cyclical because the

impact of growth uncertainty shocks on the investment dispersion is asymmetric: the effect is larger when

the risk sharing condition is good. These connections between uncertainty and dispersion are verified in

the data using estimated uncertainty shocks.

I empirically test the model’s main predictions. I first set up a regime-switching model in which the

exposure of value spreads to growth uncertainty shocks is time-varying and characterized by a latent

Markovian state variable. My theory implies that the latent state in which the exposure is higher should

correspond to the state in which risk sharing is limited. I use the credit spread (e.g., Gilchrist and Zakrajsek,

2012) and the chronologies of financial crisis constructed by Reinhart and Rogoff (2009) as proxies for the

risk sharing condition in the data. The empirical evidence is consistent with the model: the estimated

likelihood of being in the latent state of higher growth uncertainty shock exposure is significantly, positively

associated with the proxies of risk sharing conditions. I also provide additional empirical tests verifying

this particular prediction; the results of statistical tests are significant. Then, I verify the predictions of

the market price of risk for uncertainty shocks in the data.

In summary, this paper casts light on the recent debate on the role of uncertainty shocks in explaining
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asset pricing phenomena and macroeconomic dynamics, and on how the cross section of asset returns can

identify uncertainty shocks from different sources. Moreover, the time-varying cross-sectional moments

of asset prices, depending on the degree of risk sharing, impose additional cross-equation restrictions on

the properties of uncertainty shocks used in macroeconomic models and thus can provide extra insights

on the origins of aggregate fluctuations. Further, as both the model and empirical evidence highlight the

importance of sources and risk sharing conditions for determining how the economy reacts to uncertainty

shocks and the endogeneity of aggregate volatilities driven by different underlying uncertainty shocks,

this paper provides a cautionary note to empirical studies using one aggregate volatility index to draw

conclusions on the economic impact of uncertainty.

1.1 Related Literature

The idea that uncertainty shocks affect investment and asset prices dates back at least to the literature

exploring the (implicit) optionality associated with production and investment technologies (e.g., Oi, 1961;

Hartman, 1972; Abel, 1983; Caballero, 1991; Dixit and Pindyck, 1994; Bar-Ilan and Strange, 1996; Abel

et al., 1996). Since then, many different dynamic structural models have been developed based on these

ideas trying to quantify the relevance of uncertainty shocks in the data.

The technical challenge of analyzing stochastic dynamic general equilibrium models with structural links

between uncertainty shocks and the data is well known. The existing literature tries to make progress by

focusing on a single isolated channel in each model. One strand of literature investigates the wait-and-see

effect by introducing decreasing-scale-to-return production, sizable adjustment costs, and irreversibility into

the dynamic setting (e.g., Bloom, 2009; Bloom et al., 2013; Bachmann and Bayer, 2014). The asymmetric

effect of uncertainty on benefits and costs of waiting captures the essence of the waiting option effect. This

is referred to as the bad news principle by Bernanke (1983). However, the waiting option effect can be

mitigated or even turned over when some environmental variables shift. For example, this idea has been

demonstrated in Miao and Wang (2007) and Bolton, Wang and Yang (2013) under partial equilibrium

frameworks. For investors bearing uninsurable idiosyncratic risks and firms being financially constrained,

the uncertainty shock can have both a positive and a negative effect on investment and financing decisions.

My model deliberately brings the idea of financial friction and imperfect risk sharing into a general

equilibrium framework in which the opposite impacts of uncertainty shocks emerge endogenously.

Another strand of literature explores the credit risk premium channel (e.g., Christiano, Motto and

Rostagno, 2010, 2014; Arellano, Bai and Kehoe, 2011; Gilchrist, Sim and Zakrajsek, 2014). The key idea is

that in an economy with corporate debt and costly default, higher uncertainty lifts the default probability

for firms that are already near default boundaries, and hence the cost of debt financing increases. This in

turn reduces the investment and increases the default probabilities for firms that are originally not so close

to the default boundaries. As a result of the ripple effect, aggregate hiring decreases, which leads to lower

household consumption and thus feeds back to a higher credit risk premium. This adverse feedback loop

reinforces the ripple effect, dragging the whole economy into recessions and creating high credit spreads. It

is clear that if the financial sector is strong and very few firms are close to financially binding constraints,
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the adverse risk premium effect will be largely dampened.

A third strand of literature investigates the interaction between learning and uncertainty shocks. One

interaction is the learning-by-doing mechanism, which assumes that investors have imperfect information

about the underlying state and that the only way to achieve extra signals about the true state is through a

sequence of real investments. Naturally, in a high uncertainty environment, investors conduct earlier and

more intensive investment to learn the underlying state (e.g., Roberts and Weitzman, 1981; Pindyck, 1993;

Pavlova, 2002). Moreover, in Pástor and Veronesi (2006, 2009), the authors show that the uncertainty

shock increases the value of growth options relative to assets in place, and this effect is particularly large

when uncertainty shocks are convolved with Bayesian learning. On the other hand, uncertainty shocks,

interacting with learning, can also depress asset prices and investment. In Van Nieuwerburgh and Veldkamp

(2006), if acquiring information becomes slower and belief uncertainty becomes higher during economic

downturns, the learning mechanism generates slow recoveries and countercyclical asset pricing dynamics.

Moreover, Fajgelbaum, Schaal and Taschereau-Dumouchel (2013) show that low activity and slower learning

can form an unpleasant feedback loop. The fixed point for this feedback loop is the equilibrium that

displays uncertainty traps: self-reinforcing episodes of high uncertainty and low activity. The uncertainty

trap can substantially worsen recessions and increase their duration.

A main contribution of this paper is to introduce two sources of uncertainty shocks into one unified

theoretical framework in which the impact of uncertainty shocks varies endogenously, governed by a

macroeconomic condition: the degree of risk sharing in the economy. Importantly, the theoretical

framework is tractable, which allows for accurate global solutions. This model is motivated by several

strands of literature. Basically, I incorporate the models of heterogeneous agents bearing undiversified

idiosyncratic risks and the macroeconomic models of financial stability into an investment-based general

equilibrium model for asset prices. Therefore, my paper is also deeply connected to the following three

strands of literature.

The asset pricing literature on heterogeneous agents with undiversified idiosyncratic risks explores the

possibility of solving the equity premium puzzle based on market incompleteness. This literature goes

back to Mankiw (1986) and Constantinides and Duffie (1996). The key idea is that the time-varying

cross-sectional dispersion of consumption can increase the volatility of the stochastic discount factor (e.g.,

Constantinides and Duffie, 1996; Storesletten, Telmer and Yaron, 2007; Herskovic et al., 2014; Ghosh

and Constantinides, 2015), and the undiversified idiosyncratic investment risks increase the correlation

between the individual consumption growth and the asset return (e.g., Heaton and Lucas, 1997, 2000a,b).

In my model, both effects arise endogenously from a moral hazard problem. The resulting effects are

further amplified by endogenous financial frictions. Most importantly, a key difference of my model is

that the marginal investors of the aggregate equity have fully diversified portfolios. Here, the undiversified

idiosyncratic shocks affect the economy initially through the real investment channel; then, the distorted

real investment deteriorates agents’ risk sharing on aggregate shocks due to the limited market participation.

More broadly, my model is connected to the papers trying to rationalize the volatile stochastic discount

factors through market incompleteness, such as Alvarez and Jermann (2000, 2001), Chien and Lustig

(2010), Chien, Cole and Lustig (2012), and Dou and Verdelhan (2015).
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The idea of undiversified idiosyncratic risks has also been adopted in dynamic structural corporate

models (or partial equilibrium dynamic macroeconomic models) to study firm’s investment and financing

behavior (e.g., Miao and Wang, 2007; Chen, Miao and Wang, 2010; Panousi and Papanikolaou, 2012;

Glover and Levine, 2015). My model incorporates these partial equilibrium mechanisms, together with

asset pricing channels, into a general equilibrium model to study their aggregate implications.

The macroeconomic literature on financial stability builds financial frictions into otherwise standard

neoclassical models. This literature started from Bernanke and Gertler (1989), Kiyotaki and Moore (1997),

and Bernanke, Gertler and Gilchrist (1999). Recent advances explore the concentration of aggregate risk

and its role in creating systemic risks and nonlinear risk premia dynamics through the balance sheet

channel (e.g., Adrian and Boyarchenko, 2012; He and Krishnamurthy, 2013; Brunnermeier and Sannikov,

2014; Di Tella, 2014; Haddad, 2014; Drechsler, Savov and Schnabl, 2014). One contribution of my paper to

this literature is to quantitatively examine the asset pricing implications of financial frictions in the cross

section of various types of assets.

My model fits within the literature studying asset prices in investment-based general equilibrium

models. It is most closely related to the papers explicitly modeling assets in place and growth options and

focusing on the cross section of asset prices. Gomes, Kogan and Zhang (2003) study a model in which

book-to-market ratios are positively associated with average returns. But, growth options are riskier than

assets in place in the model. Papanikolaou (2011) presents a model with aggregate investment shocks,

which by nature affect assets in place and growth options differently. In this calibrated model, the aggregate

investment shock benefits growth options relative to assets in place, and carries a negative market price of

risk if the late resolution of uncertainty is preferred by investors. Pástor and Veronesi (2009) and Gârleanu,

Panageas and Yu (2012) study the asset pricing dynamics in models with episodes of endogenous technology

adoption. Ai and Kiku (2013) study a model in which the cost of option exercise is pro-cyclical and thus

the assets in place are riskier. Ai, Croce and Li (2012) study a model in which the younger vintages of

assets in place have lower exposure to aggregate productivity shocks and thus growth options are less risky.

These papers all assume perfect risk sharing. However, Gârleanu, Kogan and Panageas (2012) and Kogan,

Papanikolaou and Stoffman (2015) rationalize the negative price of risk for the aggregate investment shock

by introducing displacement risks that arise from market incompleteness. Moreover, Opp (2014) explicitly

incorporates the venture capital intermediation into an otherwise standard dynamic general equilibrium

macroeconomic model of asset prices and focuses on the asset pricing phenomenon of venture capital cycles.

Despite perfect risk sharing, the informational friction causes costly external financing for new ventures

and hence distorts investment; the venture capital firms alleviate such information frictions in the economy.

Also, the displacement risk of technological innovations plays an important role in determining the risk

premia in the model. My model studies the unequal effects of uncertainty shocks on asset returns in the

cross section and the time variation of these effects driven by endogenous imperfect risk sharing. In my

model, growth uncertainty shocks endogenously cause displacement risks, especially when the risk sharing

condition is poor.
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2 Model

In this section, I develop a continuous-time general equilibrium model with two sectors: the consumption

goods sector and the investment goods sector. I summarize the model’s features as follows. First, there

are two types of agents in the economy: experts and households. Experts with population κ indexed by

f ∈ F ≡ [−κ, 0] are the only ones who can manage and trade firm’s assets; households with population 1

indexed by h ∈ H ≡ [0, 1] provide labor. Second, firms hold two classes of assets: assets in place generate

consumption goods; growth options create new assets in place. Although assets are irreversible at the

aggregate level, they can be continuously traded among firms. Third, outputs are affected by firm-specific

idiosyncratic shocks, which are unobservable to agents except the expert who literally manages the assets.

The information asymmetry makes it possible for the expert to take hidden actions such as shirking

efforts or stealing for the private benefit at the expense of diffused shareholders. To deal with the agency

problem, the expert is restricted to become a blockholder who owns a significant fraction of the firm’s

equity. Fourth, the volatilities of idiosyncratic shocks are time varying and driven by aggregate shocks.

These are the uncertainty shocks. Experts respond optimally to the uncertainty shocks in making decisions

on investment and hiring for the firm. Fifth, all agents can trade financial contracts in capital markets

where a full set of Arrow-Debreu securities are available. Sixth, I deliberately cast the model in continuous

time, because the continuous-time formation allows me to characterize the key equilibrium relationships by

cleaner expressions and conveniently summarize the equilibrium conditions by a set of coupled ordinary

differential equations.

2.1 Firms and Technologies

There is a continuum of infinitely-lived firms in the consumption goods sector. Each firm is managed by an

expert and indexed by f ∈ F. Existing assets in place depreciate with a constant rate δ, and new assets in

place are built based on a combination of existing growth options and investment goods newly produced in

the investment goods sector. Growth options can be used to create new assets in place when investment

opportunities arrive.

Consumption goods firms. Each firm’s assets consist of assets in place and growth options. The equity

of the firm f is freely traded, and it is the claim on the dividends generated by the assets in place and the

value added by the creation of new assets in place from growth options.

Assets in place. Denote by kt the aggregate amount of assets in place in the economy and by kf,t the

amount of assets in place held by the individual firm f , where t ∈ [0,∞) is the time index. Assets in place

kf,t held by the firm f generates output at rate yf,t, over the period [t, t+ dt],

yf,t = kϕf,t`
1−ϕ
f,c,t , (1)
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where ϕ ∈ (0, 1) captures the capital share in production and `f,c,t represents the labor input for production.

When held by the expert f , the old existing assets in place evolves according to

dkf,t
kf,t

= −δdt+ σdZt + dAf,t,

where δ is the constant depreciation rate, Zt is a Brownian motion describing an aggregate shock in the

economy, and Af,t is a cumulative firm-specific process describing the idiosyncratic cash flows. The shocks

dZt and dAf,t can be interpreted as the aggregate and the idiosyncratic (short-term) cash flow shocks,

respectively.12 The cash-flow uncertainty is defined as the volatility of the idiosyncratic shock dAf,t:

νc,t ≡ vol (dAf,t) .

The exposure to the aggregate shock is constant σ; however, the exposure to the idiosyncratic shock,

denoted by νc,t, is stochastic. The idiosyncratic volatility νc,t represents an aggregate economic condition

because the prospects of short-term cash flows become blurred when νc,t increases.

Growth options, investment opportunities, and new assets in place. Growth options allow the firm

to create new assets in place when investment opportunities arrive. Specifically, the growth options are

intangible assets associated with ideas of technological innovations such as R&D projects, blueprints,

and patents; however, these innovative ideas are necessary but not alone sufficient to realize the final

commercial benefits. The investment opportunities are business opportunities or ideas to commercialize the

technological innovations and turn them into commercial benefits through making real investment. The

arrivals of investment opportunities are firm-specific, so the model has the feature that investment is lumpy

at the firm level but smooth at the aggregate level, which is consistent with the data. This modeling feature

is crucial since it allows me to study the time-series properties of cross-sectional investment dispersions.13

I denote it by sf,t the amount of growth options held by the firm f and denote it by pt the unit price

of growth options. Although the aggregate amount of growth options is assume to be constant st = s,14

the firms can freely trade growth options with each other at the price pt. The existing stock of growth

options stay constant over period [t, t+ dt]; that is, dsf,t = 0.

Let Mf,t be the firm-specific point process that describes the number of investment opportunities

obtained by firm f up to time t. Upon the reception of a new investment opportunity at time t (i.e.,

12This way of modeling capital accumulation and production is actually equivalent to the conventional TFP shock method,
where the adjustment cost function is not only homogeneous with respect to capital stock kt but also the TFP shock at, i.e.,
the adjustment cost, is ι(gt)atkt, if there is an adjustment cost function.

13This follows the standard modeling in the literature on the implications of lumpy investment for aggregate macroeconomic
dynamics, such as Khan and Thomas (2008).

14The exogenous stationarity in the relative-growth option scale is standard in the asset pricing literature and growth
literature (e.g., Gomes, Kogan and Zhang, 2003; Ai and Kiku, 2013). In order to avoid tracking an extra endogenous
state variable, models either assume constant growth options or assume that the growth options grow proportionally to the
total assets in place. In my model, the value of growth options is linear in kt. Then, the relative growth option scale is
ptst/(qtkt) = sp̂t/q̂t, where pt and qt are prices of growth options and assets in place, respectively. In equilibrium, sp̂t/q̂t is a
stationary process.
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dMf,t = 1), the firm f decides whether to invest or not. This is similar to Khan and Thomas (2008), which

explicitly accounts for the micro-level investment spikes and the fluctuation of the extensive margin of

investments. The firm can undertake an investment only upon payment of its fixed adjustment cost $,

specifically by forfeiting $ptsf,t of current consumption goods. The fixed adjustment cost denominated in

the units of growth options captures the essence of the real-option model of investment in Jovanovic (2009)

and Ai and Kiku (2013), among others.15 Denote by uf,t the variable characterizing whether the firm f

undertakes an investment or not. If it is undertaken, uf,t = 1; otherwise, uf,t = 0. Upon uf,t = 1, the firm

creates new assets in place knewf,t using the technology:

knewf,t = εf,t︸︷︷︸
idio. IST shock

× m (sf,t, gf,t) kt︸ ︷︷ ︸
inputs and scaling

, (2)

where εf,t is the idiosyncratic investment-specific (IST) shock to capture the idiosyncratic shock on the

quality of investment opportunities, sf,t is the amount of existing growth options, and gf,t is the input of

investment goods. To create new assets in place with the amount of εf,tm(sf,t, gf,t)kt, the capital stock

of growth options sf,t is prefixed (i.e., not adjustable at time t after the realization of εf,t); however, the

firm can choose the investment goods input gf,t optimally conditional on the realization of εf,t. The cost

of purchasing investment goods is τtgf,t, where τt is the equilibrium market price of investment goods.16

The production function m(s, g) is a constant-elasticity-of-substitute (CES) function. In particular, I

assume that m(s, g) has the Cobb-Douglas functional form with the share of capital to be α; that is,

m(s, g) ≡ s1−αgα.17

Once the firm f receives an investment opportunity at time t (i.e. dMf,t = 1) and implements it (i.e.

uf,t = 1), the new assets in place knewf,t are created from the growth options with the rate:

if,t ≡ knewf,t /kt = εf,tm (sf,t, gf,t) .

Growth uncertainty. The idiosyncratic IST shock εf,t in (2) is assumed to be independently distributed

over time and across firms, to avoid having to keep track of the distribution of εf,t as an infinitely-

dimensional state variable. The assumption of idiosyncratic investment risks have been adopted by the

15In Jovanovic (2009) and Ai and Kiku (2013), the growth options fully depreciate after being used for investment. In
macroeconomic models studying the role of micro-level nonconvex costs of investment adjustment in generating nonlinear
aggregate investment dynamics, the fixed adjustment costs are usually denominated by profits (e.g., Bloom, 2009) or
denominated by labor (e.g., Khan and Thomas, 2008).

16It should be noted that, similar to Gomes, Kogan and Zhang (2003), although the tangible assets is complementary to the
intangible assets investment at the aggregate level, each individual expert cannot really internalize the aggregate impact of
their tangible asset holdings, and hence in the decentralized economy the assets in place investment has zero complementarity
for the R&D investments. Therefore, there is an externality in the economy, which makes the allocations in a competitive
equilibrium not necessarily identical to those solved by the social planner’s problem.

17Similar to Gomes, Kogan and Zhang (2003), I assume that the scale of new assets in place created from growth options is
linear in the aggregate assets in place. This guarantees that the ratios of the aggregate new to the aggregate existing assets in
place and of the aggregate value of growth options to the aggregate value of assets in place are both stationary over time.
Other examples include Ai, Croce and Li (2012) where the aggregate investment is assumed to be a deterministic function
of the aggregate investment goods by restricting the cross-sectional distribution of idiosyncratic investment shocks, and Ai
and Kiku (2013) where the aggregate assets in place and the aggregate growth options are assumed to follow an exogenous
common stochastic trend which is the arrival intensity of new growth options.
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macroeconomics literature (e.g., Khan and Thomas, 2008; Bachmann and Bayer, 2014), and by the asset

pricing literature (e.g., Gomes, Kogan and Zhang, 2003; Ai, Croce and Li, 2012). However, a key difference

in this model is that the variance of the distribution of idiosyncratic growth opportunity quality shocks

is time varying. More precisely, I assume that εf,t has a symmetric distribution εf,t ∼ N
(
0, ν2

g,t

)
. The

growth uncertainty is the standard deviation of the IST shock

νg,t ≡ std (εf,t)

where the growth uncertainty νg,t evolves randomly over time. The idiosyncratic volatility νg,t represents

an aggregate economic condition because the prospects of investment opportunities become blurred when

νg,t increases.

Optimal investment. Here, I describe the investment decision of an expert when an investment

opportunity arrives. Because experts can choose the variable utilization rate of growth options uf,t, the

optimal investment decision-making can be decomposed into two steps. First, conditioning on the full

utilization (i.e., uf,t = 1), the expert maximizes the net present value Πf,t by choosing investment goods

input gf,t. Given the price of assets in place, denoted by qt, and the price of investment goods τt, the

optimization problem and the net present value Πf,t can be expressed as

max
gf,t

Πf,t ≡ qtknewf,t − τtgf,t, with knewf,t ≡ if,tkt and if,t ≡ εf,ts1−α
f,t g

α
f,t. (3)

In other words, the net present value Πf,t is the market value of the new assets in place knewt minus

its investment cost τtgf,t. The optimal input of investment goods is strictly convex in the idiosyncratic

investment shock εf,t and is linear in the stock of existing growth options sf,t:

gf,t = ogsf,tε
1

1−α
f,t

(
qtkt
τt

) 1
1−α

, with constant og ≡ α
1

1−α . (4)

This is the result of a simple intratemporal optimization based on (3). The optimal investment condition (4)

is similar to the standard q-theory of investment developed by Hayashi (1982) where the optimal investment

is directly linked to the marginal q of assets in place (
qtkt
τt ), denominated by the investment goods. Yet there

is one key difference. Because 0 < α < 1, the optimal investment goods demand gf,t is a convex function

of marginal q instead of a concave function, which is a direct result of the Oi-Hartman-Abel-Caballero

channel. Given the price of growth options, denoted by pt, the optimal present value of newly created

assets in place can be expressed as Πf,t ≡ πf,tsf,tpt where the optimal net present value rate πf,t has the

analytical expression:

πf,t = oπε
1

1−α
f,t

(
qtkt

p1−α
t ταt

) 1
1−α

, where oπ ≡ (1− α)og is a constant. (5)
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And the optimal investment rate is if,t = oιε
1

1−α
f,t

(
qtkt
τt

) α
1−α

sf,t, where oι = oαg is a constant. In the second

step, the expert chooses the utilization rate uf,t ∈ {0, 1} to maximize the profits from creating new assets in

place. It is clear that a firm will absorb its fixed cost $ptsf,t to undertake the investment opportunity if the

investment profit rate πf,t is at least $. It follows immediately that a firm will undertake the investment

opportunity if its idiosyncratic IST shock εf,t lies at or above some threshold values. Because all agents

face the same option-exercising problem, the threshold value only depends on the aggregate state variables.

I denote the exercising boundary by ξt, which is characterized as follows:

εf,t ≥ ξt if and only if πf,t = oπε
1

1−α
f,t

(
qtkt

p1−α
t ταt

) 1
1−α
≥ $.

From (5), it leads the analytical expression for the exercising threshold ξt:

ξt = oξ$
1−α

(
qtkt

p1−α
t ταt

)−1

, where oξ ≡ oα−1
π is a constant. (6)

Thus, the profit rate of growth options for the firm f is

πf,t = (πf,t −$)1{εf,t≥ξt}.

Investment goods firms. There is a representative firm in the investment goods sector. It uses the labor

of households to produce the investment goods needed to create new assets in place in the consumption

goods sector. More precisely, the production function for the investment goods output rate over the

infinitesimal interval [t, t+ dt) is

gt = zι`ι,t, (7)

where zι is the average total productivity factor in the investment goods sector and `ι,t is the total

labor demand to produce investment goods gt. I assume constant return to scale for labor input for

simplification.18

Spot markets. The outputs (consumption goods and investment goods) and the firm’s assets (assets in

place and growth options) are traded in perfectly competitive spot markets. There is one spot price in each

market, and this spot price is only determined by the aggregate state of the economy, even though the

participants are heterogeneous. The spot prices are market-clearing prices for which each single participant

is a price taker.

18Similar to Papanikolaou (2011) and Kogan, Papanikolaou and Stoffman (2015), the production function of the investment
goods only works with fixed amount of capital input. But, to guarantee profits on the capital input and thereby generate
meaningful share prices of investment goods firms, Papanikolaou (2011) assumes decreasing returns to scale for the labor
input. Like Kogan, Papanikolaou and Stoffman (2015), my focus is not to link investment-minus-consumption (IMC) portfolio
returns to aggregate shocks in the economy. So, I also assume constant return to scale for the labor input.
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2.2 Uncertainty Shocks

The cash-flow uncertainty νc,t and the growth uncertainty νg,t move stochastically. The uncertainty shocks

are large shocks driving the state variable νt, which has a one-to-one correspondence to the 2-tuple (νg,t, νc,t).

I assume that the growth uncertainty νg,t follows a 2-state homogeneous continuous-time Markov chain

taking values in the set Vg ≡
{
νLg , ν

H
g

}
, where νLg < νHg . Similarly, I assume that the cash-flow uncertainty

νc,t follows a 2-state homogeneous continuous-time Markov chain taking values in the set Vc ≡
{
νLc , ν

H
c

}
where νLc < νHc . For simplicity, the growth uncertainty process and the cash-flow uncertainty process are

assumed to move independently with the transition rate matrices Qg and Qc, respectively,

Qg ≡

[
λ(νLg ,ν

H
g ) −λ(νLg ,ν

H
g )

−λ(νHg ,ν
L
g ) λ(νHg ,ν

L
g )

]
and Qc ≡

[
λ(νLc ,ν

H
c ) −λ(νLc ,ν

H
c )

−λ(νHc ,ν
L
c ) λ(νHc ,ν

L
c )

]
.

The transition intensity for νt is denoted as λ(νt,ν′) which only depends on Qg and Qc.

2.3 Preferences

Both experts and households have stochastic differential utility of Duffie and Epstein (1992a,b). This

preference is a continuous-time version of the recursive preferences proposed by Kreps and Porteus (1978),

Epstein and Zin (1989), and Weil (1990). The Epstein-Zin-Weil recursive preference has become a standard

preference in asset pricing and macro literature to capture the reasonable joint behavior of asset prices and

macroeconomic quantities. More precisely, the utility is defined recursively as follows:

U0 = E0

[∫ ∞
0

f(ct, Ut)dt

]
,

where

f(ct, Ut) ≡ ρ

[
u(ct)

((1− γ)Ut)
θ−1−1

− θUt

]
, with θ ≡ 1− γ

1− ψ−1

and the felicity function f(ct, Ut) is an aggregator over current consumption rate ct and future utility level

Ut. The coefficient ρ is the rate parameter of time preference, γ is the risk-aversion parameter for one-period

consumption, and ψ is the parameter of elasticity of intertemporal substitution (EIS) for deterministic

consumption paths. The period utility function has the form:

u(ct) =
c1−ψ−1

t

1− ψ−1
.

The preference between consumption and leisure can be viewed as a special case of the KPR preference

(King, Plosser and Rebelo, 1988, 2002) and the GHH preference (Greenwood, Hercowitz and Huffman,

1988), where leisure is not appreciated or work is not undervalued. Thus, the labor supply is inelastic.19

19The inelastic labor supply is adopted for several reasons: (1) this is a useful benchmark that allows a direct comparison to
the existing literature on production-based asset pricing and investment in incomplete markets where inelastic labor supply is
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To ensure stationarity between experts and households, I assume that agents die independently of

each other according to a Poisson process with constant intensity µ. New agents are born at the same

rate µ with a fraction κ
1 + κ as experts and 1

1 + κ as households, so the measure of households and the

measure of experts both remain constant. The wealth of agents who die is bestowed on the newly born on

a per-capita basis. The subjective discount factor ρ captures the effective time preference because I make

it include the adjustment for the likelihood of death for each agent (see Gârleanu and Panageas, 2015).

2.4 Labor Markets

The aggregate labor supply is one since each household inelastically supplies their labor-hours endowment.

On the demand side, the labor choices are endogenous in both the consumption goods sector and the

investment goods sector. Driven by the aggregate shocks in the economy, the share of aggregate labor

supply allocated between the two sectors is time-varying. The labor demand in the investment goods sector

is straightforward. It is determined by the aggregate investment goods demand. According to (7), it holds

that the aggregate labor demand in the investment goods sector is

`ι,t = z−1
ι gt.

The optimal labor demand of each firm is a static (i.e., state-by-state) optimization problem. This is

because the firm’s employment `f,c,t affects only the profits rate yf,t − wt`f,c,t at time t. As a result, the

optimal labor demand maximizes profits state-by-state at time t. As a result, given wages, the optimal

labor demand can be solved only based on the intratemporal Euler equation, which is independent of the

intertemporal optimizations. They are summarized by Proposition 1. All the detailed proofs of propositions

and corollaries can be found in the online appendix.

Proposition 1 (Optimal Labor Demand and Output). Given wt and kf,t, labor demand and output are

linear in kf,t and decreasing in wt: `c,f,t = `(wt)kf,t and yf,t = y(wt)kf,t, where `(wt) ≡
[

(1− ϕ)
wt

]1/ϕ

and

y(wt) ≡
[

(1− ϕ)
wt

] 1−ϕ
ϕ

.

From Proposition 1, the aggregate labor demand and the aggregate output, by the Law of Large

Numbers, are

`c,t ≡
∫
f∈F

`c,f,tdf = `(wt)kt and yt ≡
∫
f∈F

yf,tdf = y(wt)kt, respectively.

the most common assumption (e.g., Danthine and Donaldson, 2002; Angeletos, 2007; Guvenen, 2009; Kogan, Papanikolaou
and Stoffman, 2015); (2) this allows us to focus on illustrating our key mechanism that results from the financial friction;
(3) in the literature, it is shown that this assumption together with limited risk sharing can provide reasonable asset pricing
implications; and (4) this is actually a not-far-off approximation to the reality. Wages have risen in the U.S. over long periods
of time, but the proportion of time spent working has not changed very much. This old stylized fact has recently been
reconfirmed by Ramey and Francis (2009). I can investigate the extent to which labor supply choice can be endogenized
without compromising the performance on the asset pricing side, and study how frictions in labor markets can help improve
the quantitative performance of our model. These are definitely important questions to understand but out of the scope of
this paper. I leave them as the future research agenda.
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The endogenous labor reallocation between the consumption goods sector (`c,t) and the investment goods

sector (`ι,t) play a crucial role in understanding the cross-section of stock returns.

2.5 Firms’ Payouts and Assets’ Holding Returns

Because firms face no financing frictions, the irrelevance theorems (see Modigliani and Miller, 1958; Miller

and Modigliani, 1961) hold for firms’ capital structures and payout policies. Similar to most macroeconomic

and asset pricing models, I assume that the firms are all-equity firms and pay out earnings. So, for each

firm f , its payout is equal to the profits from assets in place ϕy(wt)kf,tdt plus value added by growth

options πf,tsf,tptdMf,t minus expenditures for assets in place qtitkf,tdt:

dDf,t = ϕy(wt)kf,tdt+ πf,tsf,tptdMf,t︸ ︷︷ ︸
total profits

− qtitkf,tdt.︸ ︷︷ ︸
expenditure for new assets in place

Here, Df,t is the cumulative payout of firm f and the incremental payout dDf,t can theoretically be

negative in the model. Because I do not particularly specify the external financing frictions of the firm,

the negative payout can be interpreted as issuing new equity by the firm. In fact, numerically, under my

baseline calibration, the payout turns out to be negative only in the extreme ranges of the state space

which are visited by the economy very rarely in simulations.

The total payout of a firm can be decomposed into two components. One is due to the capital stock

of assets in place and the other is due to the capital stock of growth options. They are relevant for the

valuation of assets in place and growth options, respectively. More precisely, the decomposition based on

the accounting for assets in place and growth options is as follows:

dDf,t = [ϕy(wt)kf,t − qtitkf,t] dt︸ ︷︷ ︸
payout due to assets in place

+ πf,tptsf,tdMf,t.︸ ︷︷ ︸
payout due to growth options

Moreover, the instantaneous holding returns of assets in place and growth options for experts are,

respectively,

dRk
f,t = µkf,tdt+ (σqt + ϕσ)dZt +

∑
ν 6=νt

ς
q,(νt,ν)
t dN

(νt,ν)
t + dAf,t, (8)

and

dRs
f,t = µsf,tdt+ (σpt + ϕσ)dZt +

∑
ν 6=νt

ς
p,(νt,ν)
t dN

(νt,ν)
t + πf,tdMf,t, (9)

where the drift terms µkf,t and µsf,t can be found in the online appendix and the diffusion terms σpt and σqt

and the jump size terms ς
q,(νt,ν)
t and ς

p,(νt,ν)
t are defined in the beginning of Section 3.
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2.6 Financial Markets

There is a full set of short-term financial contracts available to all agents. Each financial contract has zero

net supply. And their prices are always normalized at one. All agents trade those short-term contracts

in a perfectly competitive capital market. The contracts are traded continuously at time t with the

payoffs realized at the end of the infinitesimal interval [t, t + dt]. Among the financial contracts, one

is the short-term risk-free bond with payoff 1 + rtdt, one is traded on the aggregate Zt shock with a

contingent payoff 1 + rZt dt+ dZt, one is traded on the growth uncertainty shock with a contingent payoff

1 + r
νg
t dt+

[
dN

(νg,t,ν′g)
t − λ(νg,t,ν′g)dt

]
, one is traded on the cash-flow uncertainty shock with a contingent

payoff 1+rνct dt+
[
dN

(νc,t,ν′c)
t − λ(νc,t,ν′c)dt

]
, a continuum of short-term contracts are traded on idiosyncratic

cash flow shocks Wf,t with payoffs 1 + rWf,tdt+ dWf,t for all f ∈ F, and a continuum of short-term contracts

are traded on idiosyncratic investment shocks εf,tdNf,t with payoffs 1 + rNf,tdt+ [εf,tdNf,t − E(εf,t)λdt] for

all f ∈ F. In sum, the financial market is complete.

The expected payoffs rt, r
Z
t , r

νg
t , r

νc
t , r

W
f,t, and rNf,t are endogenously determined by the market clearing

conditions. Importantly, later I shall show that the expected rate of returns are time varying, driven by

the cash-flow uncertainty shocks and the growth uncertainty. Moreover, each firm’s equity can be freely

traded. However, because a full set of contingent claims are already available to all agents, the equities of

firms become redundant in terms of spanning the contingent space. Without loss of generality, I assume

that a firm’s equity on its assets in place and equity on its growth options can be traded separately.

Although a full set of contingent claims are available, the market can be endogenously incomplete due

to lack of commitments. Later I show that due to zero commitment in long-term contracts and a moral

hazard problem, experts face portfolio constraints including limited access to short-term financial contracts

on particular idiosyncratic risks.

2.7 Moral Hazard

I now introduce an agency conflict induced by the separation of ownership and control. The diffused

investors fund the firm controlled by the expert. In contrast to the neoclassical model in which the

firm-specific cash flow process Af,t and the investment opportunity process Mf,t are exogenously specified,

those processes in my model are affected by expert’s unobservable actions. Specifically, the expert is able

to secretly divert cash flows and investment opportunities from the firm under her control, which I describe

explicitly as follows.

Hidden actions in cash flows. The expert f ’s hidden action aAf,t ∈
[
0, aA

]
determines the expected rate

of idiosyncratic cash flow shock dAf,t, so that

dAf,t = −aAf,tdt+ νc,tdWf,t,
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where Wf,t is a Brownian motion capturing the firm f ’s underlying (short-term) idiosyncratic cash flows.

The expert controls the drift, but not the idiosyncratic volatility of the process Af,t.
20 When the expert

takes the action aAf,t, she enjoys a flow of pecuniary private benefits with intensity aAf,tφqtkf,t over [t, t+ dt].

Here, 0 ≤ φ < 1, which means that the stealing is inefficient. More precisely, the variable aAf,t can be

interpreted as the fraction of cash flows that the expert diverts for her pecuniary private benefits and

the parameter φ captures the expert’s net pecuniary benefits per dollar diverted. Given the linearity,

this framework of stealing is effectively equivalent to the binary setup in which the expert can steal (i.e.,

aAf,t = aA) or not steal (i.e., aAf,t = 0).

Hidden actions in growth options. Similarly, I assume that the investment opportunity Mf,t is affected

by the expert’s unobserved action in the following way,

dMf,t = (1− aMf,t)dNf,t, (10)

where Nf,t is a Poisson count process that describes the number of investment opportunities of firm f that

arrive up to time t. The intensity of the underlying Poisson process Nf,t is λ. The action aMf,t is binary.21

In particular, the expert does not steal when aMf,t = 0 and steals when aMf,t = 1. When the expert takes

the action aMf,t = 0, she obtains zero pecuniary private benefit. By contrast, when the action of aMf,t = 1 is

taken by the expert, she steals the investment opportunity from the firm to launch new ventures in her

own private account.22 The lumpy pecuniary benefit is φπf,tptsf,t, where the coefficient φ equals to the

expert’s net pecuniary benefits per dollar diverted.

Severity of agency problem. Here, 1 − φ can be interpreted as the deadweight loss rate of stealing

incurred by the expert. Thus, φ represents the severity of the agency problem and, as I show later, captures

the minimum levels of incentives required to prevent the expert from stealing.

Formulating the optimal contracting problem. The history paths in

Ht ≡ σ
(
{Zt′ , νg,t′ , νc,t′ , Af,t′ ,Mf,t′ : 0 ≤ t′ ≤ t, f ∈ F}, {εf,t′ : 0 ≤ t′ < t, f ∈ F}

)
20A common setting is that there is a menu of projects whose risk characteristics are common knowledge and yet experts

can choose which to be undertaken (e.g., Cadenillas, Cvitanic and Zapatero, 2007). My model can be extended to allow the
expert to choose among multiple projects and the main mechanism is not altered. Moreover, the expert can also affect the
volatility by secretly injecting funds from her own hidden saving accounts. This is not the focus on this paper. To rule out the
possibility of altering the idiosyncratic volatility secretly through injecting cash flows from the hidden saving account, I assume
that the expert cannot affect the idiosyncratic volatility of (short-term) cash flows and that her net worth is observable, which
is without loss of generality due to the Revelation-Principle type of results (e.g., DeMarzo and Fishman, 2007). The similar
assumptions are also adopted in DeMarzo et al. (2012), among others. In particular, DeMarzo and Sannikov (2006) restrict
the stealing process to be Lipschitz continuous. And, it is well known that all sample paths of a standard Brownian motion
have infinite total variation. Thus, idiosyncratic volatility cannot be secretly altered in their model.

21As in the free cash flow case, the binary-action setting is equivalent to the continuous-action setting when pecuniary
private benefit is linear in actions. However, the binary-action setting has a more natural interpretation for the diversion of
investment opportunities.

22The investment opportunity is non-replicable; otherwise, the value of growth options is infinity, which is pathological.
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are observable and contractable. Denote Ht to be a particular history path in Ht. Similar to He and

Krishnamurthy (2011), Brunnermeier and Sannikov (2014) and Di Tella (2014), I take the approach of

short-term contracts: the relation only lasts from t to t+ dt; at time t+ dt, the contract (relation) ends. In

fact, the optimal contract can be implemented by a sequence of short-term contracts even when long-term

contracts are available in my setting, if experts are assumed to have zero commitment to long-term contracts

and to be able to modify the older contracts and offer new contracts at any time in a costless manner. The

intuition is that the participation constraint for the diffused investors is always binding in each short period

[t, t+ dt], which simply is the capital market non-arbitrage condition, and the incentive compatibility of

the contracts in each short period [t, t+ dt] is not affected by the history; hence the current contract is

always subject to being replaced by new contracts and hence recontracting continuously is optimal.23

Right after the realization of the history Ht, the expert and her diffused investors meet up and enter

contracts for [t, t + dt]. The expert f offers contracts to her diffused investors (the principals in the

contracting relation), which specifies the upfront lumpy payment Pf,t collected from the diffused investors

and the cash payment Pf,t + dFf,t paid from the expert to her diffused investors over [t, t+ dt]. Here, dFf,t

is the net cash payment by the expert over [t, t+ dt]. The cumulative net payment process Ff,t and the

upfront payment Pf,t are required to be adapted to the filtration Ht. Thus, a short-term contract consists

of a pair of functions (Pf,t, dFf,t) specifying the investors’ upfront payment to the expert at t and the net

cash payment of the expert to the investors over [t, t+ dt]. Let Cf,t ≡ Cf (Ht) ≡ (Pf,t,dFf,t) represent the

contract offered by the expert. The participation constraint for the diffused investors is

0 = Eat
[
dFf,t + (Pf,t + dFf,t)

dΛt
Λt

]
, (11)

where Λt is the stochastic discount factor of households and is determined in the Walrasian equilibrium

with details illustrated in Section 4.3 and Ea is the expectation operator under the probability measure

that is induced by the hidden action processes. The participation constraint for the expert is endogenously

mingled with her occupational choice: she endogenously decides whether to become a household by selling

off all productive assets (assets in place and growth options). That is, by choosing kf,t = sf,t = 0, the

expert f endogenously becomes a household. However, in the equilibrium, the expert never converts herself

to a household; the expert is always offered a high enough risk premia for holding the productive assets.

This is a result of the limited market participation assumption that households cannot choose to become

experts due to the lack of the specialized knowledge or skills.24

23There three important points here. First, it is worth pointing out that this result is very different from the equivalence
results of long- and short-term contracts such as Fudenberg, Holmstrom and Milgrom (1990). Those papers investigate sufficient
conditions under which a sequence of short-term contracts can achieve the same efficiency level for long-term contracts where
commitment is nonzero. Second, if I assume the expert is committed to long-term contracts, like in DeMarzo and Sannikov
(2006), Biais et al. (2007), DeMarzo and Fishman (2007), and DeMarzo et al. (2012), the tractability will be worsened with
the main mechanism remaining unchanged. Third, the short-term contracting problem I focus on in this paper is analogous to
the contracting problem in a one-period principal-agent problem (e.g., Holmstrom and Tirole, 1997).

24This is different from the limited market participation of certain financial markets for risky financial securities (e.g.,
Mankiw and Zeldes, 1991; Allen and Gale, 1994; Basak and Cuoco, 1998; Vissing-Jorgensen, 2002; Guvenen, 2009) in two
folds: first, households cannot invest or manage firms’ assets and thus the economy stops functioning without experts; second,
households can freely trade all financial securities in capital markets.
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Given any sequence of contracts characterized by Cf ≡ {Cf,t : t ≥ 0}, the expert will choose an optimal

sequence of strategies Sf ≡ {Sf,t : t ≥ 0} that specifies the hidden actions, the consumption, and investment

choices Sf,t ≡
(
aAf,t, a

M
f,t, c

e
f,t, kf,t, sf,t, gf,t

)
. More precisely, for a sequence of contracts Cf , the expert f ’s

net worth follows the law of motion,

dne
f,t =− ce

f,tdt +

depending on hidden actions aAf,t and aMf,t︷ ︸︸ ︷
qtkf,tdR

k
f,t + ptktsf,tdR

s
f,t︸ ︷︷ ︸

gains from assets holdings

− dFf,t︸ ︷︷ ︸
contract pay

+ aAf,tφqtkf,tdt+ aMf,tφπf,tptsf,tdNf,t︸ ︷︷ ︸
privite benefits from shirking

, (12)

where the instantaneous returns from holding the assets can be found in Equation (8). Further, given

prices and wages, the expert f chooses the strategies Sf to solve

U
(
H0, n

e
f,0;Cf

)
= max

Sf
Ea0
[∫ ∞

0
f
[
ce
f,t′ , U(Ht′ , n

e
f,t′ ;Cf )

]
dt′
]
,

where the net worth process
{
ne
f,t′ : t′ ≥ 0

}
includes the potential private benefits from taking a se-

quence of actions
{
aAf,t, a

M
f,t : t′ ≥ 0

}
and the gain from the holding of firms’ assets by taking choosing{

kf,t′ , sf,t′ , gf,t′ : t′ ≥ 0
}

.

The contract-strategy pair (Cf , Sf ) is feasible if it satisfies the solvency constraint ne
f,t ≥ 0 for all history

paths Ht ∈ Ht. A feasible contract-strategy pair (Cf , Sf ) is optimal if there is no other pair that provides

the same payoff to the diffused investors and a higher expected utility to the expert. And, a feasible pair

(Cf , Sf ) is incentive compatible if the optimal strategy Sf implements the efficient actions aAf,t = aMf,t = 0

all the time given the contracts Cf . To characterize an optimal contract-strategy pair, I start with a

Revelation-Principle type result as in the context of mechanism design: given any contract-strategy pair

(Cf , Sf ) for the expert, there exits an incentive-compatible contract-strategy pair (C∗f , S
∗
f ) with the same

payoff to diffused investors and a weakly higher expected utility for the expert. It allows me to focus on the

incentive-compatible contract-strategy pairs for finding optimal contracts. The intuition is straightforward

(e.g., DeMarzo and Fishman, 2007) and the rigorous proof is in the online appendix. I denote E to be the

expectation operator under the probability measure induced by the efficient actions.

More precisely, an incentive-compatible contract-strategy pair (Cf , Sf ) is optimal if it maximizes the

value function of the expert f , given prices and wages,

U
(
Ht, n

e
f,t

)
= max

Cf
U
(
Ht, n

e
f,t;Cf

)
(13)

subject to the participation constraint of diffused investors in (11), where U
(
Ht, n

e
f,t;Cf

)
is the optimal

utility achieved by the optimal strategy Sf given the contracts Cf with

U
(
Ht, n

e
f,t;Cf

)
= Et

[∫ ∞
t

f
[
ce
f,t′ , U

e(Ht′ , n
e
f,t′ ;Cf )

]
dt′
]
.

In summary, I incorporate the optimal contracting problem into a dynamic general equilibrium framework,
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and thus the optimal contracts are part of the fixed point solution for a (Walrasian) general equilibrium.

More precisely, at the decentralized level, optimal contracts are derived as if agents take the aggregate

price and wage dynamics as given; in turn, the aggregate level, the demand and supply formed from the

aggregation of decentralized optimal contracts need to match so that the markets are cleared. To finally

solve the optimal contracts and the general equilibrium, it is useful to first provide a characterization (i.e., a

necessary condition for the optimal contracts) and an implementation mechanism for the optimal contracts.

After incorporating the characterization and the implementation, the general equilibrium framework with

optimal contracting becomes a rather standard model for asset pricing and risk sharing in incomplete

markets.

2.8 Concentrated Risk: the Optimal Contracts and Implementations

Characterization of optimal contracts. Because the cumulative payment process Ff,t is adapted to Ht,

the net cash payment specified by the contract can be formulated as follows25

dFf,t = µFf,tdt + (1− βAf,t)qtkf,tdAf,t +
[
πf,t − βMf,t(εf,t)

]
ptsf,tdMf,t︸ ︷︷ ︸

contingent payments on idiosyncratic shocks

+ βZf,tσdZt +
∑
ν 6=νt

β
V,(νt,ν)
f,t dN

(νt,ν)
t ,︸ ︷︷ ︸

contingent payments on aggregate shocks

where the (functional) processes µFf,t, β
A
f,t, β

M
f,t(·), βZf,t, and β

V,(νt,ν)
f,t are adaptive to the filtration Ht.

Particularly, the function βMf,t(·) can be nonlinear. Plugging the expression of dFf,t above into (12), the

dynamics of the net worth of expert f can be rewritten as follows

dne
f,t = (φ− βAf,t)qtkf,taAf,tdt+

[
φπf,t − βMf,t(εf,t)

]
ptsf,ta

M
f,tdNf,t︸ ︷︷ ︸

terms altered by aAf,t and aMf,t

+
[
terms independent of aAf,t or aMf,t

]
.

Thus, for any incentive-compatible contracts (i.e., satisfying aAf,t = aMf,t = 0), it must satisfy the following

two conditions:

βAf,t ≥ φ and βMf,t(ε) ≥ φπf,t(ε) for all ε.

It is straightforward that the optimal contracts must satisfy that βAf,t ≡ φ and βMf,t ≡ φπf,t for all f and t.

This is because the expert is risk averse and hence wishes to dump all the idiosyncratic risks dWf,t and

dNf,t − λdt, while at the same time households can buy it for free due to their capacity to fully diversify

any idiosyncratic risks.

25The net payment dFf,t does not depend on the idiosyncratic shocks not associated with the firm f , because all agents
are risk averse and avoid unnecessary idiosyncratic risk exposures. Another important feature is that jumps with random
sizes affect the payoff process (e.g., Sung, 1997; Biais et al., 2010; Hoffmann and Pfeil, 2010). In general, it leads to nonlinear
optimal contracts. However, the linearity of optimal contracts in this setting is due to two main reasons: first, it follows the
timing convention of taking hidden actions after the realization of shocks (e.g., DeMarzo and Fishman, 2007; Edmans and
Gabaix, 2011; Edmans et al., 2012); second, the private pecuniary benefit is contingent and proportional to the payoff.
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Implementation of optimal contracts. I now characterize the optimal contracts in terms of an optimal

mechanism. In particular, I consider the implementation of optimal contracts based on simple financial

contracts, including firms’ stock shares, options, risk free bond, and indices tracking aggregate states.

Specifically, the expert f achieves her optimal incentive-compatible contracting results in the following

ways: (1) she buys and manages assets in place kf,t and growth options sf,t; (2) she sells 1− φ fraction

of the firm’s equity to her diffused shareholders; and (3) she trades indices in perfect financial markets.

In summary, this implementation features blockholding and active trading on indices.26 Rather than

attempting to describe all possible implementations, I shall focus on this simple yet empirically relevant

mechanism.

The following proposition describes the detailed specifications of the implementations and establishes

their optimality.

Proposition 2 (Blockholding and Indexation). For each f ∈ F, suppose the expert f has initial net worth

nf,0. She gets infinite penalty unless the solvency condition nj,t ≥ 0 holds. The expert f is required to hold

φ share of the firm f ’s equity. The expert f is not allowed to diversify or hedge away the idiosyncratic risks

of firm f as a blockholder. She can trade a risk-free bond and financial indices tracking aggregate shocks.

Under the capital market configuration, it is optimal for each expert f to choose actions aAf,t = aMf,t = 0.

2.9 Aggregation: Investments and Productions

In this section, I discuss the aggregation results on the production and investment side of the economy.27

An important feature of our model is that, the evolution of the aggregate assets in place follows the

standard process as in the neoclassical growth model, though heterogeneous firms make decentralized

investment decisions in my economy.

More precisely, under incentive-compatible optimal contracts, the law of motion for the aggregate

capital stock of assets in place kt =
∫
f∈F kf,tdf is not affected by any particular idiosyncratic shocks; it

can be characterized as follows:

dkt = (it − δ)ktdt+ σktdZt.

Here it ≡
∫
f∈F if,t1{εf,t>ξt}dNf,t is the aggregate investment rate with the analytical formula:

it =

↑ in νg,t︷ ︸︸ ︷
Gα (νg,t; ξt)︸ ︷︷ ︸

marginal efficiency of investment

×

↑ in qt/τt︷ ︸︸ ︷
oι

(
qtkt
τt

) α
1−α

.︸ ︷︷ ︸
conventional q theory

(14)

26An alternative theory that generates the same results is that the experts bargain with diffused shareholders’ for the rents,
subject to some capital market constraints. Rents can be efficient. For example, Myers (2000) and Lambrecht and Myers
(2007, 2008, 2012) show how rents can align managers’ and shareholders’ interests if the managers maximize the present
value of rents subject to a capital market constraint. Also, Eisfeldt and Papanikolaou (2013) develop a model in which the
outside option of the key talent determines the share of firm cash flows that accrue to shareholders. This outside option varies
systematically and renders firms depending more on the key talents riskier from shareholders’ perspective.

27The detailed derivations in this section can be found in the online appendix.
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The term Gα(νg,t; ξt) acts as the endogenous marginal efficiency of investment and the shocks that drive

its fluctuations are endogenous aggregate investment shocks. As shown in Proposition 3, the endogenous

investment shock Gα(νg,t; ξt) is increasing in νg,t and decreasing in ξt. In fact, it has the following analytical

expression

Gα(νg,t; ξt) ≡ λ× ν
1

1−α
g,t × Γ̄α (ξt/νg,t) , (15)

and the function Γ̄α(·) is defined as

Γ̄α(ξt/νg,t) ≡ oα × Γ̄

(
1

2
(ξt/νg,t)

2 ,
2− α
2− 2α

)
(16)

where Γ̄(·, ·) is the standard upper incomplete gamma function and oα is a universal constant.28

The function Gα(νg,t; ξt) is the key to understand how growth uncertainty can increase aggregate

investment. More precisely, I decompose the function into a multiplication of two terms that capture the

complementary effect and the option effect of growth uncertainty on the aggregate investment

Gα(νg,t; ξt)︸ ︷︷ ︸
marginal efficiency of investment

= ν
α

1−α
g,t︸ ︷︷ ︸

complementary effect

×

intensive margin︷︸︸︷
νg,t ×

extensive margin︷ ︸︸ ︷
Γ̄α(ξt/νg,t)× λ

 .
︸ ︷︷ ︸

option effect

(17)

The first term ν
α

1−α
g,t captures the exogenous positive effect of growth uncertainty on aggregate investment.

It is similar to the Oi-Hartman-Abel-Caballero effect: the flexible inputs, which can be adjusted after

productivity shocks are realized and are complementary to the productivity of the capital, create optionality

in the capital. In my case, when α = 0, investment goods are not needed in creating new assets in

place (i.e. zero complementarity). As a result, the Oi-Hartman-Abel-Caballero effect disappears. The

second term νg,t × Γ̄α(ξt/νg,t)× λ captures the option effect of exercising investment opportunities. The

variable νg,t captures the intensive margin effect caused by growth uncertainty shocks: the high-quality

investment opportunities are likely to be more profitable when growth uncertainty increases. Moreover,

the function Γ̄α(ξt/νg,t) captures the extensive margin effect caused by growth uncertainty shocks: more

experts endogenously choose to make investment for fixed exercising boundary ξt. However, the exercising

boundary is endogenously adjusted in the economy, which can partly offset the exogenous effect of increasing

growth uncertainty; this is called wait-and-see effect (e.g., Miao and Wang, 2007; Bloom, 2009).

Another important feature of our model is that, the aggregate output is Cobb-Douglas with diminishing

return to scale in the aggregate assets in place as in a standard neoclassical growth model, though each

firm’s optimal output is linear in terms of its own assets in place. More precisely, the aggregate output of

the consumption goods sector is

yt = kϕt `
1−ϕ
c,t ,

28The upper incomplete gamma function is defined as Γ̄(x1, a1) =
∫∞
x1
xa1−1e−xdx and oα ≡ 2(2α−1)/(2−2α)π−1/2 where π

is the mathematical constant but not the profit rate of growth options π.
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and under incentive-compatible optimal contracts, the aggregate output of the investment goods sector is

gt = Gα(νg,t; ξt)× og
(
qtkt
τt

) 1
1−α

.

Intuitively, the aggregate investment goods demand gt is affected by the growth uncertainty νg,t similarly

to the aggregate investment rate it through the function Gα(νg,t; ξt).

The aggregate payout from assets in place and the aggregate profit from growth options are summarized

as follows. Particularly, the analytical formula of aggregate profit from growth options provides intuitions

that help understand how growth uncertainty shocks affect the value of growth options. More precisely,

under incentive-compatible optimal contracts, the aggregate net payout due to assets in place is

dt = ϕyt − qtitkt

and the aggregate profit of growth options is Πt ≡ πtpts where

πt
λ

= $

(
νg,t
ξt

) 1
1−α

︸ ︷︷ ︸
effective payoff

× Γ̄α(ξt/νg,t)︸ ︷︷ ︸
adj. prob. of exercising

− $︸︷︷︸
strike price

× Φ̄(ξt/νg,t),︸ ︷︷ ︸
prob. of exercising

(18)

where the function Γ̄α(·) is defined in (16), and the function Φ̄(·) is the complementary cumulative

distribution function (CCDF) of a standard normal variable. The net profit rate of growth options derived

in (18) resembles the well-known Black-Scholes-Merton option pricing formula (Black and Scholes, 1973;

Merton, 1973b). In the following decomposition, the term $
(
νg,t
ξt

) 1
1−α

can be viewed as the effective

payoff when the option is exercised, the term Γ̄α(ξt/νg,t) can be interpreted as the adjusted likelihood of

exercising the option (εf,t > ξt), the term $ is strike price, and the term Φ̄(ξt/νg,t) is the actual probability

of exercising the growth option (εf,t > ξt).

Thus, keeping the exercising boundary ξt fixed, the profit rate of growth options is monotonically

increasing in growth uncertainty. This is summarized in the following proposition.

Proposition 3 (Optionality). Under incentive-compatible optimal contracts, the aggregate profit rate of

growth options (πt) is strictly increasing in growth uncertainty (νg,t) and strictly decreasing in the exercising

boundary ξt fixed. At the same time, the endogenous investment efficiency That is, the partial derivatives

always hold the following signs: ∂πt/∂νg,t > 0, ∂πt/∂ξt < 0, ∂Gα/∂νg,t > 0, and ∂Gα/∂ξt < 0.

3 Equilibrium

I denote ηt to be the market price of risk for the aggregate shock zt, and denote κ
(νt,ν)
t to be the market

price of risk for the uncertainty shock N
(νt,ν)
t . The market prices of the aggregate shocks depend only

upon the aggregate state variables, though the economy is full of idiosyncratic shocks. I define the

de-trended asset prices and human capital after taking out the economy’s balanced growth path as follows:
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p̃t ≡ pt/k
ϕ
t , q̃t ≡ qt/k

ϕ−1
t , and ~̃t ≡ ~t/kϕt . I conjecture that the prices q̃t, p̃t, and the human capital ~̃t

follow the Ito processes with jumps

dq̃t
q̃t

= µqtdt+ σqt dZt +
∑

ν 6=νt
ςq,(νt,ν)dN

(νt,ν)
t ,

and
dp̃t
p̃t

= µptdt+ σpt dZt +
∑

ν 6=νt
ςp,(νt,ν)dN

(νt,ν)
t ,

and
d~̃t
~̃t

= µ~tdt+ σ~t dZt +
∑

ν 6=νt
ς~,(νt,ν)dN

(νt,ν)
t .

Here, the coefficient functions µpt , µ
q
t , µ

~
t , σ

p
t , σ

q
t , σ

~
t , ς

p,(νt,ν), ςq,(νt,ν), and ς~,(νt,ν) are endogenously

determined in equilibrium. In equilibrium, the prices and human capital are driven by the aggregate shocks

Zt and N
(νt,ν)
t , but not by the idiosyncratic shocks {Wf,t}f∈F, {Nf,t}f∈F, or {εf,t}f∈F. Later, I shall show

that the productivity shock dZt does not affect the fluctuations of the de-trended prices (see Corollary 2).

So, it holds that σqt ≡ σ
p
t ≡ σ~t ≡ 0.

3.1 Households’ Optimization Problem

Given prices and wages, households face a standard portfolio problem with labor income. Although they

cannot manage or trade firm assets, they can freely access to a complete financial market. Taking the

processes of market price of risk ηt and
{
κ(νt,ν) : νt, ν ∈ V

}
and the prices pt, qt, τt and the wages wt as

given, they solve the following utility maximization problem

Uh
h,0 = max{

chh,t,ϑ̂
h
h,t,ϑ̂

h,(νt,ν)
h,t

}
t≥0

E0

[∫ ∞
0

f(ch
h,t, U

h
h,t)dt

]
(19)

subject to the solvency constraint nh
h,t ≥ 0 the dynamic budget constraint

dnh
h,t

nh
h,t

=
[
µh
h,n,t − ĉh

h,t

]
dt+ σh

h,n,tdZt +
∑
ν 6=νt

ς
h,(νt,ν)
h,n,t

[
dN

(νt,ν)
t − λ(νt,ν)dt

]
,︸ ︷︷ ︸

only aggregate risk expsoures

(20)

where the expected growth rate on net worth (pre consumption) is µh
h,n,t and the aggregate risk exposures

are

σh
h,n,t = ϑ̂h

h,t︸︷︷︸
indices

+ (1− φ)
qtkt

nh
t

(σqt + ϕσ) + (1− φ)
pts

nh
t

(σpt + ϕσ)︸ ︷︷ ︸
diversified equity holdings

+ %
~t
nh
t

(σ~t + ϕσ),︸ ︷︷ ︸
pledgeable human capital
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and

ς
h,(νt,ν)
h,n,t = ϑ̂

h,(νt,ν)
h,t︸ ︷︷ ︸
indices

+ (1− φ)
qtkt

nh
t

ς
q,(νt,ν)
t + (1− φ)

pts

nh
t

ς
p,(νt,ν)
t︸ ︷︷ ︸

diversified equity holdings

+ %
~t
nh
t

ς
~,(νt,ν)
t ,︸ ︷︷ ︸

pledgeable human capital

with ν ∈ V.

Here, the shares ϑ̂h
h,t ≡ ϑh

h,t/n
h
h,t and ϑ̂

h,(νt,ν)
h,t ≡ ϑh,(νt,ν)

h,t /nh
h,t characterize the household’s positions in risky

assets. Here, the hatted consumption rate ĉh
h,t denotes the consumption rate normalized by the household

h’s net worth, i.e. ĉh
h,t ≡ ch

h,t/n
h
h,t. Because all households are homogenous up to their net worth levels, they

choose homogeneous risk exposures in equity holdings and pledgeable human capital holdings. In other

words, they hold the diversified equity portfolios and the pledgeable human capital proportional to their

net worth. The total net worth of all households is nh
t ≡

∫
h∈H n

h
h,tdh. Because the firm-level idiosyncratic

risks {Wf,t, Nf,t}t≥0 are priced at zero by households in equilibrium, the risk averse household will never

have any exposure to them in equilibrium. The expected growth rate µh
h,n,t includes three components: (i)

the expected returns from the index holdings, (ii) the expected returns from the diversified equity holdings,

and (iii) the identical labor income rate ŵt ≡ wt/nh
t , which is guaranteed by perfect labor insurances among

all households. More detailed explanations are in the online appendix.

3.2 Experts’ Optimization Problem

Given prices and wages, experts face a joint problem of optimal portfolio allocation and optimal real

investment, subject to portfolio constraints. The portfolio constraints arise endogenously as a result of

incentive compatibility constraints in a moral hazard problem (see Section 2.7). Experts can continuously

trade firm’s assets in spot markets. Meanwhile, they can also access to the short-term financial contracts

in the capital markets. Taking the processes of market price of risk ηt and
{
κ(νt,ν) : νt, ν ∈ V

}
and the

prices pt, qt, τt and the wages wt as given, the expert f maximizes the utility

U e
f,0 = max{

ĉef,t,gf,t,kf,t,sf,t,ϑ̂
e
f,t,ϑ̂

e,(νt,ν)
f,t

}
t≥0

E0

[∫ ∞
0

f(ce
f,t, U

e
f,t)dt

]
(21)

subject to the solvency constraint ne
f,t ≥ 0 and the dynamic budget constraint

dne
f,t

ne
f,t

=
(
µe
f,n,t − ĉe

f,t

)
dt+ σe

f,n,tdZt +
∑

ν 6=νt
ς

e,(νt,ν)
f,n

[
dN

(νt,ν)
t − λ(νt,ν)dt

]
︸ ︷︷ ︸

aggregate risk exposures

(22)

+ σe
f,n,W,tdWf,t +

[
ςe
f,n,N,tdNf,t − Eε

(
ςe
f,n,N,t

)
λdt
]︸ ︷︷ ︸

idiosyncratic risk exposures
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where the consumption rate is ĉe
f,t ≡ ce

f,t/n
e
f,t and the expected growth rate on net worth (pre consumption)

is µe
f,n,t. Furthermore, the exposure to the aggregate shock dZt is

σe
f,n,t = ϑ̂e

f,t︸︷︷︸
indices

+ φ
qtkf,t
ne
f,t

(σqt + ϕσ) + φ
ptsf,t
ne
f,t

(σpt + ϕσ),︸ ︷︷ ︸
concentrated equity holdings

(23)

and the exposure to the aggregate uncertainty risk dN
(νt,ν)
t is

ς
e,(νt,ν)
f,n = ϑ̂

e,(νt,ν)
f,t︸ ︷︷ ︸

indices

+ φ
qtkf,t
ne
f,t

ς
q,(νt,ν)
t + φ

ptsf,t
ne
f,t

ς
p,(νt,ν)
t ,︸ ︷︷ ︸

concentrated equity holdings

(24)

The exposures to the idiosyncratic risks are

σe
f,n,W,t = φ

qtkf,t
ne
f,t

νc,t and ςe
f,n,N,t = φ

ptsf,t
ne
f,t

πf,t.︸ ︷︷ ︸
concentrated equity holdings

Here, the shares ϑ̂e
f,t ≡ ϑe

f,t/n
e
f,t and ϑ̂

e,(νt,ν)
f,t ≡ ϑ

e,(νt,ν)
f,t /ne

f,t characterize the expert’s positions in risky

short-term financial contracts. The portfolio constraints forced experts to bear uninsured idiosyncratic

risks σe
f,n,W,t and ςe

f,n,N,t. The implementation described in Proposition 2 requires expert f to retain φ

fraction of firm f ’s equity stake. The concentrated holdings of the aggregate risks in firm f ’s equity can

be offset by the holdings of aggregate indices as in (23) and (24). Thus, the true effect of the financial

restriction is to force each expert to bear the background risks, which are the uninsurable idiosyncratic

investment risks. The expected growth rate µe
f,n,t includes three components: (i) the expected returns from

financial index holdings, (ii) the expected returns from firm’s assets holdings, and (iii) minus the expected

returns of firm’s equity paid out to diffused shareholders.29

3.3 Competitive Equilibrium

Now, I provide the formal definition of the competitive equilibrium with incomplete markets.

Definition 1. Given the initial aggregate assets in place k0 > 0 and growth options s0 > 0 and the

distributions among agents which satisfy
∫
f∈F kf,0df +

∫
h∈H kh,0dh = k0 and

∫
f∈F sf,0df +

∫
h∈H sh,0dh = s0.

Each agent starts with strictly positive and identical net worth kj,0 > 0 and sj,0 > 0 for all j ∈ F ∪ H.

Households sell their capital to experts immediately at time 0. A competitive equilibrium is a set

of aggregate and idiosyncratic stochastic processes adapted to the filtration generated by aggregate and

idiosyncratic stochastic processes Ft ≡ σ{Zt′ , N
(νt′ ,ν)
t′ ,Wf,t′ , Nf,t′ , εf,t′ : 0 ≤ t′ ≤ t, f ∈ F, νt′ , ν ∈ V}. The

set of aggregate stochastic processes include the prices of productive capitals {qt, pt}, the market prices

of aggregate risks {ηt, κ(νt,ν)
t : νt, ν ∈ V}, the aggregate productive capital stocks {kt, st}, the wage process

29More details on the budget constraint of the expert and the household can be found in the online appendix.
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{wt}, the price of investment goods {τt}, and the human capital {~t}. The set of agent-level stochastic

processes include the net worth processes {nef,t, nhh,t}, the consumptions {cef,t, chh,t}, the holdings of firm assets

{kf,t, sf,t}, the investment rates {if,t}, the demands for the investment goods {gf,t}, the labor demands

{`c,f,t, `ι,t}, and risk exposures {σef,n,t, σhh,n,t, ς
e,(νt,ν)
f,n,t , ς

h,(νt,ν)
h,n,t }, for all f ∈ F and h ∈ H, such that

(i) Initial expert net worth satisfies nef,0 = q0k
e
f,0 + p0s

e
f,0 and initial household net worth satisfies

nhh,0 = q0k
h
h,0 + p0s

h
h,0.

(ii) Given the aggregate dynamics, each household solves her utility optimization problem (19) and each

expert solves her utility optimization problem (21).

(iii) Market clearing conditions:

(a) Assets in place market and growth options market:∫
f∈F

kf,tdf = kt and

∫
f∈F

sf,tdf = s.

(b) Consumption goods market:∫
f∈F

cef,tdf +

∫
h∈H

chh,tdh =

∫
f∈F

kϕf,t`
1−ϕ
c,f,tdf −$ptsλΦ̄(ξt/νg,t).

(c) Investment goods market: ∫
f∈F

gf,tdNf,t = zι`ι,t.

(d) Labor markets: ∫
f∈F

`c,f,tdf + `ι,t = 1.

(e) Financial market for insurance Zt risk:∫
f∈F

σef,n,tn
e
f,tdf +

∫
h∈H

σhh,n,tn
h
h,tdh = qtkt(σ

q
t + ϕσ) + pts(σ

p
t + ϕσ) + %~t(σ~t + ϕσ).

(f) Financial market for insurance N
(νt,ν)
t risk:∫

f∈F
ς
e,(νt,ν)
f,n,t nef,tdf +

∫
h∈H

ς
h,(νt,ν)
h,n,t nhh,tdh = qtktς

q,(νt,ν)
t + ptsς

p,(νt,ν)
t + %~tς

~,(νt,ν)
t .

(iv) Law of motion of aggregate capital

dkt =

(∫
f∈F

if,tdNf,t − δ
)
ktdt+ σktdZt and dst = 0.

By Walras’ law, the market for risk-free debt clears automatically.
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3.4 Solving for the Equilibrium Recursively

In order to solve the competitive equilibrium, I have to determine how the prices, investments, and

consumptions of all agents depend on the historical paths of the aggregate shock Zt, the aggregate

uncertainty shocks N
(νt,ν)
t and idiosyncratic shocks Wf,t, Nf,t, εf,t. In fact, I show that the equilibrium

can be characterized, in a recursive formulation, by policy functions of three exogenous state variables

(zt, νg,t, νc,t) and two endogenous state variables. One endogenous state variable is the cross-sectional

distribution of net worth among experts and households. Because Epstein-Zin-Weil preference is homothetic,

the optimal control variables are all linear in the agent’s net worth. The linear property allows me to

simplify the endogenous state space, from an infinite-dimensional state space to a one-dimensional space.

More precisely, I only need to track the evolution of experts’ net worth relative to the total net worth

held by all agents in equilibrium xt =
ne
t

Qt
, where ne

t =
∫
f∈F n

e
f,tdf and Qt ≡ qtkt + spt + %~t. The other

endogenous state variable is the aggregate assets in place kt, which captures the stochastic trend of the

economy. Thus, the equilibrium can be characterized by state variables (zt, νt, kt, xt) where νt ≡ (νg,t, νc,t).

Moreover, the Brownian motion Zt only affects the economy through the i.i.d. shocks (dZt) driving the

stochastic trend of the economy and it is independent of the state variable νt. So, the variable Zt does not

really serve as a state variable characterizing the equilibrium.30 As a result, the equilibrium is characterized

by (νt, kt, xt).

Dynamic evolution of the economy In equilibrium, all variables evolve around the stochastic trend kϕt .

Moreover, the transitory fluctuations along the stochastic trend can be characterized by the state variables

(νt, xt). The uncertainty state variable νt is stationary by assumption. The endogenous state variable xt is

also mean-reverting in equilibrium. The dynamics of the variables in equilibrium can be summarized in

Proposition 4.

Proposition 4 (Growth-trending Variables). The price variables, the firm-level output and payout variables,

and the agent-level net worth variables in equilibrium have the following forms:

pt =p̃tk
ϕ
t , qt = q̃tk

ϕ−1
t , wt = w̃tk

ϕ
t , τt = τ̃tk

ϕ
t , ~t = ~̃tkϕt , and

yf,t =ỹtk
ϕ
t , df,t = d̃tk

ϕ
t , n

e
f,t = ñef,tk

ϕ
t , n

h
h,t = ñhh,tk

ϕ
t , for all f ∈ F and h ∈ H,

where p̃t, q̃t, w̃t, τ̃t, ~̃t, ỹt, d̃t, ñef,t, and ñhh,t are independent of the state variables zt and kt and are only

driven by the state variables νt and xt.

Corollary 1 (Stationary Variables). The firm-level profit rate of growth options πf,t, labor demand for

production `c,f,t, investment goods demand gf,t, and investment rate if,t do not depend on the growth-trend

state variable kt. They depend only on the stationary state variables νt and xt.

I now consider the agent-level consumption, real investment, and portfolio holdings. In equilibrium, as

in classic consumption-portfolio problems studied by Samuelson (1969) and Merton (1969), the individual

30The same feature of i.i.d. cash flow shocks is also adopted in Bolton, Chen and Wang (2011, 2013) and Dou and Ji (2015).
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consumption, real investment, and portfolio holdings are linear in terms of the individual net worth.

This is because Epstein-Zin-Weil preferences are homothetic. Moreover, the linearity and symmetry of

an individual’s decision makes it unnecessary to track either the cross-sectional distribution of experts’

net worth or the cross-sectional distribution of households’ net worth to characterize the equilibrium. It

facilitates the aggregation by making the two infinite-dimensional cross-sectional distributions irrelevant in

equilibrium.

Proposition 5 (Linearity and Symmetry). In equilibrium, the agent-level consumptions cef,t and chh,t, the

firm assets held by individual experts kf,t and sf,t, and the positions of financial short-term contracts shosen

by individual agents ϑef,t, ϑ
e,(νt,ν)
f,t , ϑhh,t, and ϑ

h,(νt,ν)
h,t for any νt, ν ∈ V, f ∈ E and h ∈ H, have the following

forms:

cef,t = ĉetn
e
f,t, c

h
h,t = ĉhtn

h
h,t, kf,t/kt = k̂tñ

e
f,t, sf,t = ŝtñ

e
f,t, and

ϑef,t = ϑ̂etn
e
f,t, ϑ

e,(νt,ν)
f,t = ϑ̂

e,(νt,ν)
t nef,t, ϑ

h
f,t = ϑ̂htn

h
f,t, ϑ

h,(νt,ν)
f,t = ϑ̂

h,(νt,ν)
t nhf,t,

for all νt, ν ∈ V, f ∈ F, h ∈ H. Importantly, the hatted variables ĉet , ĉ
h
t , k̂t, ŝt, ϑ̂

e
t , ϑ̂

h
t , ϑ̂

e,(νt,ν)
t , and

ϑ̂
h,(νt,ν)
t are only dependent on the aggregate stationary state variables νt and xt. The detrended net worth

ñef,t and ñhh,t are defined in Proposition 4.

Value functions. Due to homotheticity of EZW preferences, I know that the value function for an expert

with net worth nj
t takes the following power form:

U j(ζ j
t, n

j
t) =

(
ζ j
tn

j
t

)1−γ

1− γ
,

where ζ j
t is the marginal value of net worth for the agent j ∈ {e,h}. The marginal value ζ j

t captures the

general equilibrium investment environment the agent faces. In particular, a higher marginal value of net

worth ζ j
t means a better investment environment for the agent. I conjecture that ζ j

t follows the dynamic

dζ j
t

ζ j
t

= µj
ζ,tdt+ σj

ζ,tdZt +
∑
ν 6=νt

ς
j,(νt,ν)
ζ dN

(νt,ν)
t , (25)

where all the coefficients µj
ζ,t, σ

j
ζ,t, and ς

j,(νt,ν)
ζ for j ∈ {e,h} are determined in equilibrium.31

Wealth distribution dynamics. Due to the homogeneity of experts and the homogeneity of households

up to their own individual net worth levels, I only need to track the distribution between the aggregate

experts’ net worth ne
t and the aggregate households’ net worth nh

t . I define Q̃t ≡ Qt/k
ϕ
t = ñe

t + ñh
t and

31The HJB equations for experts and households can be found in the online appendix. The expressions of the Ito coefficients
in (25), (26), and (27) are also in the online appendix.
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conjecture that

dQ̃t/Q̃t = µQt dt+ σQt dZt +
∑
ν 6=νt

ςQ,(νt,ν)dN
(νt,ν)
t , (26)

where the coefficients depends on those of the prices qt, pt and human capital ~t. Thus, in equilibrium, the

law of motion of xt can be characterized as follows:

dxt
xt

= µx,tdt+ σx,tdZt +
∑
ν 6=νt

ς
(νt,ν)
x,t dN

(νt,ν)
t , (27)

where µx,t is the expected growth rate and the volatility of wealth share σx,t and the jump size ς
(νt,ν)
x,t are,

σx,t = σe
f,n,t − σ

Q
t − ϕσ, and ς

(νt,ν)
x,t =

ς
e,(νt,ν)
f,n,t + 1

ς
Q,(νt,ν)
t + 1

− 1, respectively.

Because the aggregate Zt process characterizes i.i.d. shocks in the economy which are independent with all

other aggregate shocks and it is not a state variable, it only affects agents’ myopic portfolio decisions and

hence is perfectly shared by agents using contract term contracts on the shock. Thus, in equilibrium, the

aggregate shock dZt should have zero impact on the endogenous state variable xt. In fact, it is not hard to

show the following results.

Proposition 6. In the equilibrium, the aggregate risk Zt is perfectly shared. Thus, each agent’s exposure

σef,n,t to the productivity shock dZt is simply the constant myopic component:

σx,t = σef,n,t − σ
Q
t − ϕσ = 0.

Corollary 2. In the equilibrium, the loadings of de-trended variables on the productivity shock dZt are all

zero, since the risk Zt is perfectly shared among heterogeneous agents. In particular,

σeξ,t ≡ σhξ,t ≡ σ
Q
t ≡ σ

p
t ≡ σ

q
t ≡ σ~t ≡ 0.

Recursive Markov equilibria.

Definition 2. A Recursive Markov Equilibrium characterized by state variables (xt, νt) is a set of aggregate

functions: marginal values of net worth in value functions ζe, ζh, price functions p, q, w, ~, η, r, and κ(ν,ν′)

and policy functions ĉe, ĉh, g, k̂, ŝ, θ̂e, θ̂h, ϑ̂e,(ν,ν
′), and ϑ̂h,(ν,ν

′), and law of motions for the endogenous state

variable xt such that

(i) the marginal value of net worths ζe and ζh solve the experts’ and households’ HJB equations, and

ĉe, ĉh, g, k̂, ŝ, θ̂e, θ̂h, ϑ̂e,(ν,ν
′), ϑ̂h,(ν,ν

′) are the optimal control variables, taking prices q̃, p̃, w̃, ~̃, r, η, and

κ(ν,ν′) and the law of motion of state variables xt and νt as given;

(ii) the market clearing conditions are satisfied:

ĉeQ̃x+ ĉhQ̃(1− x) = ỹ −$sp̃λΦ̄(ξ/νg) (Consumption Goods)
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g = zι`ι (Investment Goods)

Q̃k̂x = 1 and Q̃xŝ = s (Tangible and Intangible Capitals)

`c + `ι = 1 (Labor Hours)

σenx+ σhn(1− x) = ϕσ (Financial Securities for Zt and σQt ≡ 0)

ς
e,(ν,ν′)
n x+ ς

h,(ν,ν′)
n (1− x) = ςQ,(ν,ν

′) (Financial Securities for N
(ν,ν′)
t )

(iii) the law of motion of endogenous state variable xt is characterized as in (27).

The fixed-point conditions that characterize the Recursive Markov equilibrium can be summarized by a

set of coupled highly-nonlinear ordinary differential equations, whose details can be found in the online

appendix.

4 Quantitative Results

In this section, I first explore whether a real business cycle model with two sources of uncertainty shocks

and imperfect risk sharing can simultaneously match the key moments of macroeconomic variables and

asset returns. This exercise reveals the quantitative importance of two uncertainty shocks, interacting

with endogenous imperfect risk sharing, as drivers of macroeconomic fluctuations and determinants of risk

premia. Then, the calibrated general equilibrium model provides a laboratory allowing me to examine the

quantitative relevance of the key mechanism discovered in this paper. I show that the implications of the

key mechanism are quantitatively significant and coherent within such an empirically-validated framework.

Furthermore, in Section 5, I explore whether the implications of the key mechanism is observed in the data.

4.1 Calibration and Parameter Choices

Table 1 summarizes the parameter choices used in my calibration. The key parameter that characterizes

the risk sharing imperfection is the severity of agency problem, denoted by φ. In the model, the experts

effectively constitute blockholders.32 The blockholders (including the inside blockholders) control the

firm: they can either directly or indirectly intervene in firm’s operations (e.g., Edmans and Manso, 2011;

Holderness, 2003, 2009). Holderness (2009) reports 96% of randomly selected U.S. firms in 1995 have

blockholders, and the average percentage of the voting rights in common stocks held by all blockholders

is 43%. Khan, Dharwadkar and Brandes (2005) show that from 1992 to 1999, the total institutional

ownership increases from 52.6% to 58.8%, and the CEO ownership is ranged from 2.17% and 2.94%, based

on a complete 8-year sample with 224 U.S. public firms. More recent data show that the institutional

32Each expert is a representative agent of the managers and insiders who actively intervene in the management and hold
significant stake of a firm. The degree of blockholding tends to underestimate the concentrated ownership of the experts,
because experts do not only hold stake in the firm through common stocks but also through compensations and rents. On the
other hand, not all blockholders are forced to bear uninsurable idiosyncratic risks of the firm’s equity. Hoping the two forces
cancel out each other, I take the blockholding level as an approximation for the parameter φ.
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blockholders in U.S. equity markets holding over 66% of the total equity.33 I choose φ = 0.5 to provide a

reasonable blockholding in my model.

To illustrate the role of the two uncertainty shocks, I need to choose the evolution rules governing

how the uncertainty fluctuates over time and to choose the uncertainty levels that characterizing the

scale of fluctuations in uncertainty. The transition intensities λ(νg ,ν′g) and λ(νc,ν′c) are estimated based on

the regime-switching dynamics of estimated growth uncertainty and cash-flow uncertainty, respectively.

Specifically, they are estimated based on Table 6 for which the details are in the online appendix. The

uncertainty levels are calibrated such that the interdecile range (IDR) of sales growth rates and the

cross-sectional standard deviation (CSD) of investment rates have means and standard deviations that

reasonably match the moments in the data summarized in Table 4. More precisely, the means of the IDR

of sales growth rates are 53.02% in the model and 49.02% in the data; moreover, its standard deviations

are 16.03% in the model and 12.32% in the data. The means of the CSD of investment rates are 45.12% in

the model versus 40.85% in the data; and, its standard deviations are 13.50% in the model versus 7.25% in

the data.

To calibrate the specification of preferences, I choose a value for EIS ψ = 2 consistent with Bansal

and Yaron (2004); Bansal, Kiku and Yaron (2012), who emphasize that the preference of early resolution

of uncertainty is important to understand uncertainty shock’s impact on asset prices. Consistent with

macroeconomic models of asset prices such as Guvenen (2009), I choose a value for risk aversion no bigger

than 10. Here, I use γ = 6 to provide a comparable capital-to-output ratio to the data as summarized in

Table 3 (196.20% in the model versus 169.24% in the data). The subjective discount factor is chosen to be

δ = 0.0111 to help the model match the average level of risk-free rates as in Table 5 (1.53% in the model

versus 1.31% in the data).

The average lifespan parameter is chosen to be µ = 1/40, which is a standard choice since the average

number of working years in U.S. is about 40. The pledgeability of human capital chosen to be % = 5%

which is consistent with Lustig and Nieuwerburgh (2010). The population of experts is estimated based on

the U.S. income distribution observations provided by U.S. census. A simple linear extrapolation estimates

that, on average, about 2% of U.S. households earn annual salary 30, 000 dollars. Presumably, the experts

make at least 30, 000 dollars a year, so 2% is a reasonable approximation for the population share of experts

in the economy.

Lastly, as for the production and investment of consumption goods firms, the productivity volatility σ

is calibrated in a standard way. I choose σ = 10% to match the standard deviation of output log growth as

summarized in Table 2 (1.92% in the model versus 1.67% in the data). The shares of capital are chosen to

be ϕ = 0.3 and 1− α = 0.1, which help match the relative size of the consumption goods sector and the

investment goods sector (approximately 23% for the investment goods sector in terms of sectoral outputs

in the data), while generating a labor share of output of approximately 75% as in Table 3 (75.25% in the

model versus 75.26% in the data). This is also in line with Papanikolaou (2011). The constant arrival

rate of investment opportunities is chosen at λ = 3.33 and the fixed adjustment cost rate is chosen at

33See, e.g., Carolyn K. Brancato and Stephan Rabimov, “The 2008 Institutonal Investment Report: Trends in Institutional
Investor Assets and Equity Ownership of U.S. Corporations” (The Conference Board, 2008).
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$ = 0.83% to match the average annual positive investment rate (approximately 79% in the data) and the

standard deviation of aggregate investment log growth (Table 2) simultaneously. The standard deviations

of log growth rates of aggregate investment are 55.38% in the model and 36.00% in the data. The average

productivity in the investment goods sector zι = 1.03 and the depreciation rate δ = 15% help match the

average investment-to-output ratio (Table 3: 16.60% in the model versus 16.47% in the data) and the

average payout-to-consumption ratio (Table 3: 6.30% in the model versus 5.46% in the data).

4.2 Model Implications

Macroeconomic moments. I report the model-implied moments of the growth rates of log consumption,

log investment, and log output in Panel B of Table 2; for comparison, I also report their empirical

counterparts in Panel A of the same table. Columns (1) – (3) of the table report means, standard

deviations, and autocorrelations for each growth variable; Columns (4) – (6) report the correlations among

the three growth variables. For the simulated data in panel B, the table shows the average values across

independent simulations, along with the 5th and 95th percentiles reported in brackets. For the moments

in the data, the table reports the point estimates and the corresponding confidence intervals in brackets

estimated by stationary block bootstrap methods.

The moments in blue and bold are those used for calibration. For most of the moments of interest

in Table 2, the data and the model are close statistically. However, the model fails to produce the right

pattern of comovement between investment and consumption growth (−0.44 in the model versus 0.83 in

the data). The main reason is that the growth uncertainty resembles the investment shock, especially

when the risk sharing condition is good. This can be seen from (14) and (17). The implied investment

shock generates opposite responses in investment and consumption. The negative correlation arises for

two reasons. First, the high value of EIS implies that consumption does fall heavily in response to an

implied positive investment shock. It generates exceedingly negative correlation between consumption and

investment. Second, the aggregate productivity shock dZt moves investment and consumption in the same

direction. However, when EIS is large, the effect of implied investment shocks dominates, generating a

negative correlation between investment and consumption. This is a well-known issue for real business cycle

models with investment shocks. In general, labor market frictions can help restore the positive correlation.

For a macroeconomic growth model, the valid quantitative analysis requires the key macroeconomic

ratios characterizing the steady state along the balanced growth path to be replicated by the model with

reasonably small errors. Basically, the calibration of the model should be able to generate the steady-state

ratios consistent with the data. Table 3 compares the empirical moments of investment-to-output ratios,

net-payout-to-consumption ratios, wage-income-to-output ratios, and capital-to-output ratios with their

correspondences in the simulated data generated from the model. The moments in blue and bold are used

for calibration. It shows that the data and the model are statistically close for most of the moments of

interest. However, the model fails to generate a high enough standard deviation of wage-income-to-output

ratio (2.04% in the model versus 4.02% in the data); moreover, their confidence intervals are not even

overlapped. The main reason is that the asymmetric and volatile fluctuations in unemployment is hard to
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be captured by a model without frictions in labor markets (e.g., Petrosky-Nadeau and Zhang, 2013). In the

model with frictionless labor markets, agents can efficiently smooth out the labor income shocks over time.

Table 4 compares the empirical moments of cross-sectional dispersions to the simulated ones from the

model. Panel A shows that the sales growth dispersion is countercyclical (the correlation with log output

growth is −17.32%), while the investment rate dispersion is procyclical in the data (the correlation with log

output growth is 43.28%). It is consistent with the findings in Bachmann and Bayer (2014) who emphasize

that the uncertainty-driving real business cycle models need to reconcile the two prominent patterns.

Column (4) of Panel B shows that the model generates countercyclical sales growth dispersions (the

correlation with log output growth is −27.66%) and procyclical investment rate dispersion (the correlation

with log output growth is 23.82%) simultaneously. In the model, the sales growth dispersion is mainly

driven by cash-flow uncertainty shocks (as shown in (42)), which decrease the output and investment due

to the imperfect risk sharing; the investment rate dispersion is mainly driven by growth uncertainty shocks,

which has asymmetrically stronger effect when risk sharing is less limited. The asymmetric effect of growth

uncertainty shocks on the investment rate dispersion implies procyclical dispersion in equilibrium.

Table 5 compares the asset pricing moments in the data to the simulated moments from the model. In

particular, the sizable equity premium (4.95% in the model versus 4.47% in the data) is main a result of

the market incompleteness and the amplification effect of financial frictions on the uncertainty shocks. The

model also reproduces the sizable value premium (7.57% in the model versus 5.05% in the data). The large

average value spread is mainly due to the cash-flow uncertainty shock which carries a negative market

price of risk and decreases the value of assets in place relative to growth options.

Figure 2 and Figure 3 show the key results of this paper. In Figure 2, while the market price of risk for

the cash-flow uncertainty shock is always negative, the market price of risk for the growth uncertainty

shock changes from negative to positive as the risk sharing condition gets better. In Figure 3, while the

exposure of value spreads to cash-flow uncertainty shocks is always negative, their exposure to the growth

uncertainty shock changes from positive to negative as the risk sharing condition improves.

4.3 Basic Mechanisms

Stochastic discount factors and idiosyncratic risk premia There is a full menu of short-term contingent

claims on both aggregate shocks and idiosyncratic shocks available to the agents. However, the moral

hazard makes the enforcement of some contingent claim contracts on idiosyncratic shocks imperfect.

I denote by Me
f,t the utility gradients of the expert f at her optimal consumption policy. According to

Duffie and Skiadas (1994, Theorem 2), the utility gradient of expert f has the following expression:

Me
f,t = exp

[∫ t

0
fU (ce

f,t′ , U
e
f,t′)dt

′
]

fc(c
e
f,t, U

e
f,t).
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Thus, the instantaneous intertemporal marginal rate of substitution (IMRS) of expert f is

dMe
f,t

Me
f,t

= −µe
t − ηe

tdZt −
∑
ν′g 6=νg

κe,(νg ,ν′g)
[
dN

(νg ,ν′g)
t − λ(νg ,ν′g)dt

]
− γσe

f,n,W,tdWf,t − γσe
f,n,N,tdNf,t, (28)

where the drift µe
t and the coefficients of aggregate shocks ηe

t and κ
e,(νg ,ν′g)
t only depend on aggregate state

variables in equilibrium. The coefficients of idiosyncratic shocks σe
f,n,W,t and σe

f,n,N,t also only depend on

aggregate state with the following expressions:

σe
f,n,W,t ≡ νc,t

φ

xt
zk(xt, νt) and σe

f,n,N,t =
1

γ

[
1− (1 + ςe

f,n,N,t)
−γ] .

Effectively, the term γσf,n,W,t is the market price of the idiosyncratic cash flow risk dWf,t required by

the expert f , while the term γσe
f,n,N,t is the market price of the idiosyncratic growth risk dNf,t required by

the expert f . The term σf,n,W,t is simply the loading of idiosyncratic cash flow risks. The term σe
f,n,N,t is

approximately equal to ςe
f,n,N,t when the latter is small according to the Taylor expansion.

In an economy with complete and frictionless financial market, there is a unique stochastic discount

factor which is equal to every agent’s utility gradient. In an incomplete market, for any particular set

of assets, according to the intertemporal Euler equations, the non-arbitrage condition implies that the

stochastic discount factor is equal to the highest utility gradient across all agents who have access to the

particular set of assets. In fact, for the unconstrained agent in some state, her utility gradient must equal

to the stochastic discount factor in that state. This is the similar idea in Chien and Lustig (2010) and

Alvarez and Jermann (2001) for asset pricing in an incomplete market.

Because all experts can freely access all financial assets whose payoffs are contingent on the aggregate

shocks, the cross-sectional average of these individual experts’ IMRS is a valid SPD for those financial

in all states. Thus, the following results can be derived readily. For those financial assets whose payoffs

depend only on aggregate states, one SPD that prices their returns is provided by the average IMRS of

experts. More precisely, it is the SPD Λt such that

dΛt
Λt
≡ 1

κ

∫
f∈F

[
dMe

f,t

Me
f,t

]
df = −rtdt− ηtdZt −

∑
ν 6=νt

κ
(νt,ν)
t

[
dN

(νt,ν)
t − λ(νt,ν)dt

]
, (29)

Here rt ≡ µe
t is the risk-free interest rate, ηt ≡ ηe

t is the market price of aggregate cash flow risk Zt, and

κ
(νt,ν)
t ≡ κe,(νt,ν)

t is the market price of uncertainty risk N
(νt,ν)
t − λ(νt,ν)t for each ν ∈ V. All market prices

ηt, κ
(νt,ν) for all ν ∈ V and interest rate rt are determined endogenously in equilibrium. Households agree

on the market prices of risk. It is straightforward to derive that the market price of risk ηt is constant

η ≡ γϕσ, because all agents (experts and households) perfectly share the aggregate risk of productivity

shock dZt by holding constant risk exposure ϕσ.

However, experts are the only agents who can trade firm’s assets freely. For each firm-specific asset,
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the following Euler equations hold. More precisely, for each f ∈ F, it holds that

Et
[
dRk

t

]
/dt− rt = −Et

[
dMe

f,t

Me
f,t

×
df,tdt− (1− φ)qtkf,tνc,tdWf,t + d (qtkf,t)

qtkf,t

]
for all f ∈ F,

and

Et [dRs
t ] /dt− rt = −Et

[
dMe

f,t

Me
f,t

×
φptsf,tdNf,t + d (ptsf,t)

ptsf,t

]
for all f ∈ F.

Here, df,tdt − (1 − φ)qtkf,tνc,tdWf,t is the effective consumption goods net payout of assets in place to

expert f since she can dump the amount (1− φ)qtkf,tνc,tdWf,t of the idiosyncratic cash flow exposure for

free. And, φπf,tptsdNf,t is the effective pecuniary net payout of growth options to expert f since she can

dump the amount (1− φ)πf,tptsdNf,t of idiosyncratic growth exposure for free.

The relations of (28) – (31) leads to the following beta pricing rules for assets in place and growth

options. The expected return from holding assets in place (i.e. assets in place) in excess of the risk-free

rate equals

Et
[
dRk

t

]
/dt− rt︸ ︷︷ ︸

risk premium of holding kt

=

Et
[
dR̃k

t

]
/dt− rt︷ ︸︸ ︷

ϕση +
∑
ν 6=νt

ς
q,(νt,ν)
t κ

(νt,ν)
t λ

(νt,ν)
t︸ ︷︷ ︸

aggregate premium for all agents

+ γ(φνc,t)
2zk(xt, νt)

xt
,︸ ︷︷ ︸

idiosyncratic premium for experts

(30)

where R̃k
t is the equity return on assets in place and zk(xt, νt) ≡ qtkt/Qt is the assets-in-place share in the

total net worth Qt.

And, the expected return from holding growth options (i.e. growth options) in excess of the risk-free

rate equals

Et [dRs
t ] /dt− rt︸ ︷︷ ︸

risk premium of holding st

=

Et
[
dR̃s

t

]
/dt− rt︷ ︸︸ ︷

ϕση +
∑
ν 6=νt

ς
p,(νt,ν)
t κ

(νt,ν)
t λ

(νt,ν)
t︸ ︷︷ ︸

aggregate premium for all agents

+ λφEεt
{[

1−
(
1 + ςe

f,n,N,t

)−γ]
πf,t

}
,︸ ︷︷ ︸

idiosyncratic premium for experts

(31)

where R̃s
t is the equity return on growth options and zs(xt, νt) ≡ ptst/Qt is the growth-options share in

the total net worth Qt.

Alternatively, the beta pricing rules (30) – (31) can also be derived using the first-order conditions of

experts’ Hamilton-Jacobi-Bellman (HJB) equations, together with their dynamic budget constraints.

Using the Taylor-expansion approximation, the idiosyncratic risk premium on growth options can be

approximated by

λφEεt
{[

1−
(
1 + ςe

f,n,N,t

)−γ]
πf,t

}
≈ λφγEεt

[
πf,tς

e
f,n,N,t

]
= γ [Iα(νg,t/ξt)]

2 zs(xt, νt)

xt
× φ2

λ
.
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Figure 4 illustrates the idiosyncratic risk premia under the calibration summarized in Table 1. The

uncertainty shocks increase the risk premia on the idiosyncratic risks. There are several additional

observations that worth mentioning. First, the effect of uncertainty shocks on the idiosyncratic risk premia

increases nonlinearly as the risk sharing becomes more limited (i.e., xt decreases). The reason is that

the expert’s net worth has larger exposure to the idiosyncratic shocks when xt is lower. Second, the risk

premium on the idiosyncratic cash-flow shock is mainly affected by the cash-flow uncertainty shock, while

the risk premium on the idiosyncratic investment shock is mainly affected by the growth uncertainty shock.

These heterogeneous impacts are due to the distinct nature of the two uncertainty shocks. Third, while the

cash-flow uncertainty always has significant positive impact on the idiosyncratic cash flow risk premium,

the growth uncertainty has almost no effect on idiosyncratic risk premia when the risk sharing condition is

good. The reason is that the investment shock effect dominates when the risk sharing condition is good.

Amplification: uncertainty shocks compromise risk sharing conditions. In the model, the risk sharing

condition is endogenously affected by the two uncertainty shocks. To establish the link between uncertainty

shocks and the risk sharing condition, I consider two different types of measures of how much risk sharing

is limited. The first type of measure is based on the idea that the covariance between an agent’s net worth

and idiosyncratic risks is always zero when the market is complete (i.e., risk sharing is perfect). When

experts have a larger exposure to idiosyncratic shocks in their net worth, there is a larger cross-sectional

dispersion in growth rates of individual consumption shares. So, the cross-sectional dispersion in growth

rates of individual consumption shares provides a reasonable measure for the risk sharing imperfectness.

The second type of measure is based on the idea that the marginal value of net worth should be identical

across all agents when the market is complete. Therefore, the discrepancy between agents’ marginal value

of net worth serves as another natural measure of risk sharing imperfectness.34

Consumption dispersion. In equilibrium, the household’s net worth is independent of all idiosyncratic

risks, while the incentive constraints force each expert f to expose his own net worth to the particular

idiosyncratic risk dWf,t. Importantly, the expert’s idiosyncratic risk exposure is endogenous and hence

time varying.

But, it only depends on the aggregate states in the economy. For each expert f , the conditional

instantaneous covariance of net worth growth with the idiosyncratic shock dWf,t is

Covt

(
dne

f,t

ne
f,t

, dWf,t

)
/dt = νc,t × φ×

1

xt
×zk(xt, νt),

where zk(xt, νt) ≡ qt/Qt is the value share of asset in place in total financial wealth. Moreover, the

conditional instantaneous covariance of net worth growth with the idiosyncratic standardized shock dÑf,t,

34The detailed derivations in this section can be found in the online appendix.
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which is normalized by aggregate profit rate of growth options πt, is

Covt

(
dne

f,t

ne
f,t

, dÑf,t

)
/dt = Iα(νg,t/ξt)× φ×

1

xt
×zs(xt, νt),

where zs(xt, νt) ≡ pts/Qt is the value share of growth options in total financial wealth, and Iα (·) is a

deterministic function which is strictly increasing.

It can be seen that the severity of agency problems characterized by φ, the expert’s wealth share xt,

and the uncertainties νc,t and νg,t have direct monotonic impact on the risk sharing capacity measures, up

to some general equilibrium valuation effects zk(xt, νt) and zs(xt, νt). The severity of agency problem,

the wealth share and the uncertainties can also affect the risk sharing capacity indirectly, which can be

summarized by the general equilibrium effects zk(xt, νt) and zs(xt, νt).

For each expert f , the consumption share is defined as Se
f,t ≡ ce

f,t/c
e
t . I use the cross-sectional standard

deviation (CSD) of consumption share growth rates to capture the dispersion. The cross-sectional dispersion

of consumption growth depends on the idiosyncratic risk exposures. The instantaneous cross-sectional

variance of consumption share growth rates has the following analytical expression

vart

(
dSe

f,t

Se
f,t

)
/dt =

[
νc,t

φ

xt
zk(xt, νt)

]2

+

[
Iα(νg,t/ξt)

φ

xt
zs(xt, νt)

]2

.

The basic idea of the proof is that each individual expert’s consumption share is equal to his net worth

share in the equilibrium. That is, ce
f,t/c

e
t = ne

f,t/n
e
t . Therefore, the cross-sectional instantaneous variance

of the growth rates of consumption shares is equal to the instantaneous idiosyncratic variance of individual

consumption growth.

Therefore, the instantaneous cross-sectional variance of the experts’ consumption share growth rates is

linked to their exposures of idiosyncratic risks in the following way:

vart

(
dSe

f,t

Se
f,t

)
/dt =

[
Covt

(
dne

f,t

ne
f,t

,dWf,t

)
/dt

]2

+

[
Covt

(
dne

f,t

ne
f,t

,dÑf,t

)
/dt

]2

.

The instantaneous cross-sectional standard deviation of
dSe

f,t

Se
f,t

across all experts is defined as a measure

for the risk sharing imperfection (i.e. the inverse of risk sharing condition). More precisely, I define

Ξt ≡

√√√√vart

(
dSe

f,t

Se
f,t

)
=

√[
νc,t

φ

xt
zk(xt, νt)

]2

+

[
Iα(νg,t/ξt)

φ

xt
zs(xt, νt)

]2

.

Marginal value gap. In complete market, the marginal value of wealth for agents should be identical.

Thus, the gap between two marginal values of wealth can serve as a index for risk sharing imperfection (i.e.
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the inverse of risk sharing condition). I define

Θt ≡ log(ζe
t )− log(ζh

t ). (32)

The quantity is called marginal value gap. It is obvious that Θt in always nonnegative in the equilibrium.

This is because experts have the access to investing in assets in place and growth options in the spot

capital market, whereas households are excluded from such investment opportunities. As a result, experts

always get more utility per unit of net worth than households. Thus, in equilibrium, it holds that

Θt ≡ log(ζe
t )− log(ζh

t ) ≥ 0.

Figure 5 illustrates the consumption dispersion and marginal value gap under the calibration summarized

in Table 1. The uncertainty shocks deteriorate the risk sharing condition by increasing the consumption

dispersion and the marginal value gap. The effect of uncertainty shocks on the consumption dispersion

increases nonlinearly as the risk sharing becomes more limited (i.e., xt decreases). The reason is that the

expert’s net worth has larger exposure to the idiosyncratic shocks when xt is lower. This is particularly

true for growth uncertainty shocks’ impact on consumption dispersions.

Imperfect risk sharing on uncertainty shocks: from an optimal portfolio perspective. When uncertainty

rises, the idiosyncratic risk premia go up. However, experts are the only ones who can take advantage

of the higher idiosyncratic risk premia by investing more in real assets. As a result, experts’ investment

environment deteriorates relative to households. Therefore, the risk sharing between experts and households

is endogenously imperfect due to the incomplete market faced by experts. The imperfect risk sharing on

uncertainty shocks can be seen from the optimal portfolio holdings of households, which deviate from the

market portfolio by significant hedging components. More precisely, each household’s portfolio holding

can be characterized by
(
ϕσ, ς

h,(νg,t,νg)
n,t , ς

h,(νc,t,νc)
n,t

)
. The risk sharing on Zt is perfect and thus the optimal

holding is the market portfolio or the myopic component. However, the optimal exposure to uncertainty

shocks features significant hedging components with the following analytical expressions:

ς
h,(νt,ν)
n,t = ς

Q,(νt,ν)
t︸ ︷︷ ︸

market portfolio

+ xt
γ − 1

γ
ς

Θ,(νt,ν)
t ,︸ ︷︷ ︸

hedging for relative environment

where ς
Θ,(νt,ν)
t is the effect of uncertainty shocks on the marginal value gap Θt. Under the benchmark

calibration, it holds that ς
Θ,(νLg ,ν

H
g )

t > 0 and ς
Θ,(νLc ,ν

H
c )

t > 0. It means that higher growth uncertainty

or cash-flow uncertainty compromises the relative investment environment of households. If γ > 1

(intra-temporal wealth effect dominates), households have hedging motives to rising uncertainty; that is,

xt
γ − 1
γ ς

Θ,(νLg ,ν
H
g )

t > 0 and xt
γ − 1
γ ς

Θ,(νLc ,ν
H
c )

t > 0.

There are three points that are worth mentioning. First, when xt is large and thus the risk sharing is

high, the hedging components for the relative investment environment are almost gone because ς
Θ,(νt,ν)
t ≈ 0

for all νt, ν. Thus, the optimal holdings go back to the market portfolio ς
Q,(νt,ν)
t . In the extreme where the

risk sharing is perfect, households only hold the market portfolio. Second, hedging motives mirrored in the
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framework of inter-temporal capital asset pricing (ICAPM) models (e.g. Merton, 1973a; Campbell, 1993),

the equity risk premium and the value premium are theoretically and quantitatively accounted by the

covariance between stock returns and relative investment environment of experts Θt which is negatively

driven by uncertainty shocks. Third, the market portfolio ς
Q,(νt,ν)
t does not only contain the myopic

component but also hedging component, since uncertainty shocks affect the overall investment environment.

Displacement risks: why growth uncertainty can be so fearful? Compared to cash-flow uncertainty

shocks, higher growth uncertainty causes an additional risk to experts, the risk of increasing inequality in

the distribution of innovation benefits from growth options. The skewness in the distribution of innovation

benefits matters when the risk sharing on idiosyncratic investment shocks is limited. Thus, this risk

becomes particularly devastating when risk sharing condition is poor. The intuition can be seen clearly

from the impulse-response analysis illustrated in Figure 6. Panel A shows the growth uncertainty shock

that hits the economy. It is a temporal shock with half life 1.6 years. Panels B, C, and D show the

responses of experts’ aggregate consumption, experts’ consumption dispersion, and the median of the

cross-section of experts’ consumption shares, respectively. The blue solid curve is the response when the

risk sharing condition is good, while the red dashed curve is the response when the risk sharing condition

is poor. In Panel A, it is clear that the growth uncertainty shock works as an investment shock which

transfer current consumption to future with a larger amount when the risk sharing is not limited; the

growth uncertainty shock destroys consumption and it takes a long time to recover when the risk sharing

is seriously limited. In Panel C, the variance of the cross-section of experts’ consumption shares increases

dramatically with the growth uncertainty shock when risk sharing is limited; they are almost not affected

when risk sharing is not limited. Panel D shows that the cross-sectional distribution of experts becomes

permanently more skewed, though the conditional cross-sectional variance of consumption share growth

comes back to the original level quickly. The distribution is extremely skewed when the risk sharing is

limited. However, the distribution does not matter for the equilibrium. It is a manifestation of the skewed

wealth transfer among experts. The reason for the skewed wealth transfer is that when risk sharing is

limited, experts cannot efficiently insure the idiosyncratic risks in investment opportunities. Thus, most of

the benefits from innovation accrue to a small fraction of experts, while the majority of experts bear the

cost of creative destruction since they need to pay for the new assets in place. Essentially, the wealth is

reallocated from those who do not invest to those who receive high-quality investment opportunities. This

reallocation becomes more skewed when growth uncertainty is high, because of asymmetric benefits of

growth options. In other words, each expert faces a more skewed idiosyncratic investment risk. Because

experts are risk-averse, the higher skewness of idiosyncratic risk decreases the expert’s certainty-equivalent

wealth. The displacement risk interacting with financial constraints is amplified.

5 Empirical Evidence

In this section, I analyze the model’s key predictions on the asset pricing implications of uncertainty

shocks in the data, using empirical measures of growth uncertainty shocks and cash-flow uncertainty
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shocks. In Section 5.1, I empirically construct both growth uncertainty and cash-flow uncertainty based

on idiosyncratic stock return volatilities in a panel of U.S. public firms. In Section 5.2, I provide an

alternative measurement of growth uncertainty and cash-flow uncertainty based on the time-varying

cross-sectional dispersion of fundamental cash flows and investments, respectively. I show that the two

alternative approaches produce coherent measurements of uncertainty, as predicted by the model. In

Section 5.3, I examine the role of risk sharing condition for determining the securities’ exposures to two

kinds of uncertainty shocks. I explore whether time-varying cross-sectional heterogeneous risk exposures

to growth uncertainty shocks and cash-flow uncertainty shocks can rationale the observed differences in

average returns between value and growth firms.

5.1 Measuring Uncertainty Based on Idiosyncratic Stock Returns

The idiosyncratic return volatility on assets in place. I denote dR̃k
f,t as the instantaneous return on the

equity of assets in place. The return is exposed to all three aggregate shocks in the economy with the risk

loadings determined in equilibrium. Its conditional expected return Et
[
dR̃k

f,t

]
is determined by these risk

loadings and market price of risk for the aggregate shocks according to the beta pricing rule in Equations

(30) and (31). The equity return exposes to the idiosyncratic cash flow shock dWf,t. In the model, the

idiosyncratic equity return is captured by the term νc,tdWf,t. The instantaneous equity return on assets in

place is characterized as follows:

dR̃k
f,t = Et

[
dR̃k

f,t

]
︸ ︷︷ ︸

expected return

+ϕσdZt +
∑

ν 6=νt
ςq,(νt,ν)

(
dN

(νt,ν)
t − λ(νt,ν)dt

)
︸ ︷︷ ︸

aggregate return risk

+ νc,tdWf,t.︸ ︷︷ ︸
idiosyncratic return risk

It is obvious that the idiosyncratic volatility of dR̃k
f,t is simply νc,t. That is, if I denote, by σk,t, the

idiosyncratic volatility of equity return on assets in place, the following relationship holds

σk,t ≡ ivolt

(
dR̃k

f,t

)
= νc,t. (33)

The relation in (33) shows that the cash-flow uncertainty νc,t can be identified and measured by the

idiosyncratic volatility of equity return on assets in place σk,t.

The idiosyncratic return volatility on growth options. I denote dR̃s
f,t as the instantaneous return on the

equity of growth options. The return is exposed to all three aggregate shocks in the economy with the risk

loadings determined in equilibrium. Its conditional expected return Et
[
dR̃s

f,t

]
is determined by these risk

loadings and market price of risk for the aggregate shocks according to the beta pricing rule in Equations

(30) and (31). The equity return exposes to the idiosyncratic investment shock πf,tdNt−Eε(πf,t)λdt which

compounds the idiosyncratic investment opportunity shock dNf,t with the idiosyncratic IST shock εf,t. In
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the model, the instantaneous equity return on growth options is

dR̃s
f,t = Et

[
dR̃s

f,t

]
︸ ︷︷ ︸

expected return

+ϕσdZt +
∑

ν 6=νt
ςp,(νt,ν

′)
(

dN
(νt,ν)
t − λ(ν,ν)dt

)
︸ ︷︷ ︸

aggregate return risk

+ (πf,tdNf,t − Eε(πf,t)λdt) .︸ ︷︷ ︸
idiosyncratic return risk

Denote, by σs,t, the idiosyncratic equity return volatility of growth options. It is defined as follows:

σ2
s,t ≡ ivolt

(
dR̃s

f,t

)2
= vart [πf,tdNf,t − Eε(πf,t)λdt] /dt, (34)

where vart [πf,tdNt − Eε(πf,t)λdt] is the variance of πf,tdNt − Eε(πf,t)λdt. In fact, under the model’s

assumptions, the idiosyncratic volatility can be expressed in terms of economically meaningful variables. I

summarize this result in Proposition 7.

Proposition 7 (Identification of Growth Uncertainty). Suppose α ∈ (0, 1). Then, the idiosyncratic

volatility of equity returns on growth options can be expressed in the following form:

σs,t = Iα(νg,t/ξt), (35)

where Iα(·) is a deterministic function which is strictly increasing.

The shock in the growth uncertainty νg,t can be captured by

∆ log(νg,t) = ∆ log
[
I−1
α (σs,t)

]
+ ∆ log(ξt). (36)

According to (6), the second term on the right hand of (36) can be expressed as follows

∆ log(ξt) = (1− α)∆ log(q̂t/p̂t) + α∆ log(τ̂t/q̂t). (37)

The variables in (36) and (37) can all be approximated empirically. The volatility of ∆ log(ξt) is smaller

than that of ∆ log
[
I−1
α (σs,t)

]
by an order of magnitude in the data.35 Thus, approximately, the growth

uncertainty shocks can be constructed based only on the idiosyncratic equity return volatility σs,t:

∆ log(νg,t) ≈ ∆ log
[
I−1
α (σs,t)

]
. (38)

Methodology. Guided by the implications of the model above, I construct two sources of uncertainty

shocks using the cross section of asset returns. The model suggests that the cash-flow uncertainty and

the growth uncertainty are identified by the idiosyncratic volatilities of equity returns on assets in place

35I approximate σs,t by using the lowest 10% U.S. public firms according to their book-to-market ratios. Their annual
returns are available from Ken French’s web site and the annual idiosyncratic return volatility can be constructed as in (39).
The valuation ratio between assets in place and growth options q̂t/p̂t can be approximated by using annual Compustat data.
More precisely, I follow Fazzari, Hubbard and Petersen (1988) and Kaplan and Zingales (1997). The relative price of investment
goods is measured by the relative price of new equipments as in Greenwood, Hercowitz and Krusell (1997, 2000), Cummins
and Violante (2002), and Papanikolaou (2011). Specifically, I follow the method adopted by Israelsen (2010) to extend the
quality-adjusted relative price of investment goods proposed by Gordon (1990) and Cummins and Violante (2002) to 2014.
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(Equation (33)) and on growth options (Equation (38)), respectively. However, there is no equivalent to

an equity on pure growth options or an equity on pure assets in place in the data. So, I appeal to stock

returns of firms with low and high book-to-market ratios to approximate the equity returns on growth

options and assets in place, respectively. An advantage of these measures is that they are available at high

frequencies since they are based on financial data.

To be more precise, I sort firms into 10 portfolios on the basis of book-to-market ratios.36 The basic

idea is to use a firm’s book-to-market ratio as an inverse measure of growth opportunities held by the firm.

This idea follows the conventional wisdom that the market value of growth options is accounted in the

market value of the firm, but not in the book value of assets. As a result, a firm’s book-to-market ratio

should be negatively associated with the firm’s value of growth options relative to its total value. In a

recent paper by Kogan and Papanikolaou (2014), the authors empirically validate the book-to-market ratio

by comparing it with an alternative empirical measure of growth opportunities based on return sensitivity

to investment-specific technology shocks. The break points for sorting firms are based on New York Stock

Exchange deciles of book-to-market ratios, provided on Ken French’s web site.

I first extract the idiosyncratic component of log returns. For each firm, the idiosyncratic component is

constructed for every month. More precisely, to obtain the idiosyncratic component of firm f within the

month tm,37 I appeal to the following factor model

rf,td − rtd = af,tm + βTf,tmFtd + εf,td , (39)

where Ftd denotes the vector of factors and td denotes a daily observation in the past Lm months indexed

by tm, tm−1, · · · , tm−Lm+1. The idiosyncratic component of the log return is estimated by the regression

residual εf,td in (39). In the benchmark case, I choose Lm = 3.38 Also, I use Fama and French (1993) three

factors for the factor structure, following the standard in literature. Robustness check shows that the main

results are not altered if using market returns, four factors in Carhart (1997), or principal components

similar to Herskovic et al. (2014).

The idiosyncratic volatility of firm f ’s stock return in month tm is then calculated as the standard

deviation of residuals εf,td within that month, not including residuals in months tm − Lm + 1, · · · , tm − 1.

However, the standard deviation of εf,td is the idiosyncratic volatility of leveraged stock returns instead of

all-equity returns as in the model; in other words, it is an amplified volatility by firm’s financial leverage.

More precisely, the underlying idiosyncratic shock to the value of firm’s assets is amplified by a factor of the

leverage ratio and pass through to the idiosyncratic equity returns. So the idiosyncratic volatility of stock

returns is amplified by a factor of the leverage ratio. The leverage ratio is constructed by the sum of the

36The book-to-market ratio is computed using book equity and market capitalization constructed from Compustat items. I
strictly following Fama and French’s methodology.

37A firm-month return observation is included if (i) the stock has CRSP share code 10 or 11, and (ii) the firm has at least
17 return observations within the month, and (iii) the firm has no missing returns for the past 36 months.

38The empirical results are robust to alternative choices Lm = 1, 2, 4, 6. The way I constructed idiosyncratic returns are
similar to the approach used in Herskovic et al. (2014) except several divergences. First, we have different frequencies. I focus
on monthly idiosyncratic volatilities, whereas they construct annually idiosyncratic volatilities. Second, my factor regressions
have overlapping rolling windows, while theirs rolling windows for factor regressions do not overlap.
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book value of debt and the market value of equity divided by the market value of equity, similar to Welch

(2004).39 To construct the idiosyncratic volatility of the all-equity firm’s returns, I need to adjust std(εf )

by the leverage ratio. As a result, a panel of firm-month idiosyncratic volatility estimates for all-equity

firms are obtained. Building on this firm-month panel, I construct two monthly time series, denoted by

σk,tm and σs,tm .

For constructing the series σk,tm , I use the equal-weighted average of the idiosyncratic volatilities of

those firms whose book-to-market ratios lie in the top 30% quantiles.40 On the other hand, for the series

σs,tm , I use the idiosyncratic volatilities of those firms whose book-to-market ratios lie within the bottom

three deciles. I first compute the average idiosyncratic volatilities within each category. I then regress each

of the three series of logged average idiosyncratic volatilities onto the series log(σk,tm). The first principle

component of the three residual series accounts for over 76% of their total variation. I use the first principle

component to construct log (σs,tm).

Eventually, I construct an index tracking time-variation of the cash-flow uncertainty νc,tm by the series

log(σk,tm) with the constant level and linear trend taken out.41 An index of tracking the growth uncertainty

νg,tm can be constructed by using log (σs,tm) with the constant level and linear trend taken out. It is

quite intuitive why we need to take out the effect of cash-flow uncertainty from the average idiosyncratic

volatility of low book-to-market firm stock returns. It is simply because their idiosyncratic volatilities are

inevitably affected by cash-flow uncertainty shocks.

Results. The quarterly uncertainty indices, denoted by νg,tq and νc,tq , and annually uncertainty indices,

denoted by νg,ty and νc,ty , are simply defined as the average of monthly uncertainty indices within each

quarter and each year, respectively. Figure 7 illustrates the time variation of the cash-flow uncertainty annual

index and the growth uncertainty annual index. The segments represent estimated high/medium/low

regimes of uncertainties. The levels of the segments in the plots are the estimated average levels of

uncertainty within each regime. The regimes and levels are estimated using regime-switching models

(e.g., Hamilton, 1989, 1994; Timmermann, 2000).42 Here, I employ the simplest regime-switching model

specification for the cash-flow uncertainty:

νc,ty = a(ωc,ty) + εc,ty (40)

where ωc,ty is a latent state variable that follows a Markov chain jumping over time and the constant

a(ωc,ty) characterizes the average uncertainty level within each regime. The residual εc,ty is assumed to be

39If the leverage ratio is missing from Compustat, I use the overall average leverage ratio in the same category as an
approximation.

40I also use the first principle component of the three average idiosyncratic volatilities for the firms with the highest 10%,
with the second highest 10%, and with the third highest 10% book-to-market ratios. The first principle component accounts
for over 73% of the total variation. It leads to almost the same result for the approximation of νc,t.

41In order to focus on business-cycle behaviors, it is important to get rid of the long-run increasing trend in firm-level
idiosyncratic volatilities of stock returns. There are indeed significant long-run increasing trends in both σg,tm and σc,tm ,
consistent with empirical results in Campbell et al. (2001).

42The regime-switching model has not only proved its success in macroeconomics, but also been widely adopted in asset
pricing and financial portfolio research (e.g., Ang and Bekaert, 2002; Dai, Singleton and Yang, 2007).
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uncorrelated with the latent state variable ωc,ty . This simplest regime-switching model basically provides a

time-series clustering analysis, in which a particular year is classified as a high/medium/low regime when

its likelihood of being in that regime is larger than 50%. This simple clustering analysis helps us with a

better understanding of the uncertainty dynamics. The estimated regimes and their transition probabilities

are useful in calibrating of the model’s transition matrices of the Markov chains of uncertainty levels. The

regime-switching model is estimated using the EM algorithm which maximizes the marginal likelihood

of observable variables. For the growth uncertainty, its regime shifts are estimated similarly as in the

specification (40). The point estimation of Markov transition probabilities are summarized in Table 6.

It is observed from Table 6 that the high growth uncertainty regime is more persistent compared

with the high regime of cash-flow uncertainty. The conditional probability of staying in high state is

81.9% for the growth uncertainty and is 67.5% for the cash-flow uncertainty. Also, in the long run, the

growth uncertainty stays in the high state much more often than the cash-flow uncertainty (47.6% versus

24.9%). The growth uncertainty on average lasts longer in the high state, because it is usually associated

with political unstable periods, technological revolutions, and energy supply shifts; the resolution of the

uncertainty about those events typically takes a long period.43 Table 6 provides targets for the calibrations

of Qc and Qg in Table 1.44

5.2 Over-identifications of Uncertainty: Idiosyncratic Dispersions

Because the idiosyncratic volatilities of value firm returns and growth firm returns proposed above are new

measures for the cash-flow uncertainty and the growth uncertainty, it is important to first establish the

validity of these measures. Specifically, by the definitions of two kinds of uncertainties, I derive more direct

measures for the two kinds of uncertainties based on the cross-sectional distribution of idiosyncratic shocks

in firm-level sales and capital expenditures. Particularly, the idiosyncratic dispersion in log sales growth

rates should provide an ideal measure for the cash-flow uncertainty, while the idiosyncratic dispersion in log

investment rates should provide an ideal measure for the growth uncertainty. The two measures based on

the idiosyncratic dispersions strictly follow the formal definitions of the two sources of uncertainties; they

are also consistent with the model’s implications. However, the idiosyncratic-dispersion-based measures

43The episodes of high growth uncertainty in the 1950s are mainly due to the fact that the 1950s was the first decade of
post-war era and the starting decade of the Cold War. The international and domestic political uncertainty stayed very high
for U.S. over the period. The episode of high growth uncertainty around 1970 is due to a major technological revolution in
history (e.g., Perez, 2002). As the time approached the end of the 1960s, the old industries of oil, automobiles and mass
production became matured, and new industries of information technology and telecommunications began to take the place
from 1971. The episode of high growth uncertainty starting from the end of 1970s and lasting until the mid-1980s is mainly
due to the long-lasting high oil price volatility (e.g., Peter Ferderer, 1996; Jo, 2012). The high oil price volatility was triggered
by Iranian revolution from late 1978 to 1979. The Iranian Revolution, which began in late 1978, resulted in a drop of 3.9
million barrels per day of crude oil production from Iran and a large drop of oil supply from OPEC from 1978 to 1981. In
early 1981, the U.S. Government responded to the oil crisis by removing price and allocation controls on the oil industry,
which made oil prices more volatile. The episode of high growth uncertainty in the late 1990s is the result of the internet
revolution. In the mid-1990s, the civilian Internet was transformed from a military safety net. At that time, the enormous
potential of the internet to change all other industries and businesses aroused great growth uncertainty.

44The details for the calibration of Qc and Qg based on the estimated transition probabilities of uncertainty states can be
found in the online appendix.
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are only available at low frequencies (annual or quarterly) for a period of fifty years.45 Now, I statistically

verify whether the shocks constructed using the idiosyncratic volatility of stock returns validly serve as

proxies for the uncertainty shocks from two different origins.

Idiosyncratic dispersions of sales growth rates. The sales intensity of firm f over [t, t + dt) is yf,t.

According to Proposition 1, the sales is linear in firm’s assets in place: yf,t = y(wt)kf,t. Because the

equilibrium wage wt only depends on the aggregate state variables, it readily leads to the dynamics of log

sales growth rates:

d log(yf,t) = d log (y(wt))− δdt+ σdZt︸ ︷︷ ︸
only depending on aggregate shocks

+ νc,tdWf,t.︸ ︷︷ ︸
idiosyncratic shocks

(41)

The only source of the cross-sectional heterogeneity comes from the idiosyncratic shocks νc,tdWf,t. Thus,

the interdecile range (IDR) in the cross section of log sales growth rates implied by the model is

IDR [d log(yf,t)] = ℵνc,t, (42)

where ℵ is a universal constant that is approximately ℵ ≈ 2.5633. Therefore, the cross-sectional dispersion

in sales growth rates naturally identifies the cash-flow uncertainty, which basically justifies the name of

such kind of uncertainty.

Idiosyncratic dispersions of investment rates. The firm-level investment rate, normalized by the aggre-

gate investment rate, has the following expression in the model:

τtgf,t
qtkf,t

/
τtgt
qtkt

= λ−1Γα(ξt/νg,t)
−1

(
εf,t
νg,t

) 1
1−α

1(εf,t≥ξt),

where
τtgf,t
qtkf,t

is the firm-level capital expenditure normalized by tangible capital stock (the firm-level

investment rate) and
τtgt
qtkt

is the aggregate investment rate. The source of the cross-sectional heterogeneity

comes from the idiosyncratic IST shock εf,t. The cross-sectional standard deviation (CSD) of idiosyncratic

shocks in investment rates is characterized by a strictly increasing function of νg,t/ξt. This is formally

summarized in the following proposition with proofs given in the online appendix.

Proposition 8 (Growth Uncertainty versus Dispersions of Investment Rates). In equilibrium, the dispersion

of idiosyncratic shocks in investment rates depends on νg,t positively. That is,

CSD

[
τtgf,t
qtkf,t

/
τtgt
qtkt

]
= λ−1Jα(νg,t/ξt),

where Jα(·) is a deterministic strictly increasing function.

45I construct them from Compustat datasets. For quarterly frequency idiosyncratic dispersions, the time series are only
available as early as 1984 which gives about 30 year data.
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Similarly, the exercising boundary ξt is relatively much stable compared to νg,t. As a result, the

cross-sectional standard deviation CSD

[
τtgf,t
qtkf,t

/
τtgt
qtkt

]
also provides an (approximate) identification for the

growth uncertainty νg,t.

Methodology. Now, I extract idiosyncratic shocks in sales growth rates and in investment rates. Once

that is done, I compute their dispersions in the cross section of firms. In this empirical exercise of extracting

the idiosyncratic unexpected component, I adopt the method similar to Purnanandam and Rajan (2014) in

which the predictable component, the aggregate unexpected component, and the idiosyncratic unexpected

component are statistically separated and estimated by using dynamic panel regression models (e.g.,

Holtz-Eakin, Newey and Rosen, 1988; Arellano and Bond, 1991).

I first measure the idiosyncratic unexpected component of firm’s investment rates. For each firm f , the

investment rate of year ty, denoted by IoKf,ty , is computed as the capital expenditure CapExf,ty deflated

by capital stock of tangible assets Kf,ty−1 in the previous year, and then normalized by the aggregate

investment-to-capital ratio IoKty−1.46 That is,

IoKf,ty ≡
(
CapExf,ty/Kf,ty−1

)
/IoKty−1.

Here, the capital expenditure of firm f within year ty is measured by the Compustat item capx, and the

capital stock of tangible assets is measured by the Compustat item ppent. In this empirical exercise, I use

the following regression model to extract the idiosyncratic shock in IoKf,ty :

IoKf,ty = λcapx,ty︸ ︷︷ ︸
agg. component

+ acapx,f + βcapx,1IoKf,ty−1 + βcapx,2CoKf,ty−1 + βcapx,3MoBf,ty−1︸ ︷︷ ︸
firm-level expected component

+ εcapx,f,ty︸ ︷︷ ︸
idio. shock

,

where acapx,f is the fixed effect capturing the firm-level predictability, λcapx,ty is the year effect capturing

aggregate time-varying effect (can be caused by some latent aggregate factors) and captures the aggregate

shock, CoKf,ty is the cash flow deflated by capital stock of tangible assets in the previous year, and MoBf,ty

is the market-to-book ratio of assets capturing the investment opportunity of firm f in year ty. The

variables CoKf,ty and MoBf,ty are needed, particularly because the literature of the cash-flow-sensitivity of

investment argues that cash flows can have impact on investment decisions. Though there are different ways

to measure CoKf,ty and MoBf,ty in the data, my measures follow the cash-flow-sensitivity of investment

literature (e.g., Fazzari, Hubbard and Petersen, 1988; Kaplan and Zingales, 1997).47

46In order to extract the idiosyncratic volatility of investment rates that only caused by the growth uncertainty νg,t (i.e. the
idiosyncratic volatility), I need to remove the scaling effect time-varying volatility of aggregate investment rates. More precisely,
the regression needs to make sure that the heteroskedasticity in the aggregate volatility of investment rate shocks does not
alter the idiosyncratic shock εcapx,f,ty specified in the econometric model. Bachmann, Caballero and Engel (2006) show that
the volatility in the aggregate investment rate (IoK) is high when the past aggregate investment rate is high. So, I normalize
the firm-level investment rate by the aggregate one; it serves as the simplest way to guarantee the idiosyncratic shock εcapx,f,ty
not to be affected by the past aggregate investment rates through current aggregate volatility. This normalization is also
consistent with the implications of the model in Proposition 8. I follow Bachmann, Caballero and Engel (2006) and Favilukis
and Lin (2013) to construct the aggregate investment rate using nominal annual private fixed nonresidential investment and
the annual private nonresidential capital stock at year-end prices from the Bureau of Economic Analysis (BEA).

47More precisely, to construct CoKf,ty , the cash flow is measured by the sum of income before extraordinary items
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The residuals εcapx,f,ty in the regression model above capture the idiosyncratic shock in investment

rates. The result of this procedure is a firm-year panel of idiosyncratic shocks εcapx,f,ty . I estimate the

dynamic panel regression model using the GMM estimator proposed by Holtz-Eakin, Newey and Rosen

(1988) and Arellano and Bond (1991), with the first lagged value of capital expenditure rate as a GMM

instrument variable.

Second, I measure the idiosyncratic unexpected component in sales growth rates. Following the literature

(e.g., Bloom, 2009; Bachmann and Bayer, 2014; Herskovic et al., 2014), the sales growth rate is measured

as follows:

GoSf,ty ≡ log
(
Salesf,ty/Salesf,ty−1

)
.

Here, the variable Salesf,ty is the sales of firm f within year ty and I use the Compustat item sale for its

values. I focus on the following regression model to extract the unexpected idiosyncratic component of

GoSf,ty :

GoSf,ty = λsale,ty︸ ︷︷ ︸
agg. component

+ asale,f + βsale,1GoSf,ty−1︸ ︷︷ ︸
firm-level expected component

+ εsale,f,ty︸ ︷︷ ︸
idio. shock

(43)

where asale,f is the fixed effect capturing the firm-level predictability, and λsale,ty is the year effect capturing

the aggregate component (even there are latent factors) which includes the aggregate shock. The residuals

εsale,f,ty captures the idiosyncratic shocks in sales growth rates. The result of this procedure is a firm-year

panel of idiosyncratic shocks. Similarly, I estimate the dynamic panel regression model using the GMM

estimator with the first lagged value of cash flow rate as a GMM instrument variable.

Now, after obtaining these two firm-year panels of idiosyncratic shocks, I construct two annual time

series of cross-sectional dispersions, denoted by σcapx,ty and σsale,ty . The series σcapx,ty are the cross-

sectional standard deviations (CSD) of idiosyncratic shocks in investment rates across all firms within

year ty following Bachmann and Bayer (2014), while the series σsale,ty are the interdecile ranges (IDR)

of idiosyncratic shocks in sales growth rates across all firms within year ty. Like the indices based on

idiosyncratic stock volatilities, I focus on linearly-detrended series. In particular, I denote νcapx,ty and

νsale,ty the annual time series log
(
σcapx,ty

)
and log

(
σsale,ty

)
with linear trends removed, respectively.

Results. Consistent with the predictions of my model (Equations (33) and (38)), the underlying shocks

that drive the idiosyncratic sales dispersions (∆νsale,ty ≡ νsale,ty − νsale,ty−1) are particularly associated

with the cash-flow uncertainty shocks (∆νc,ty ≡ νc,ty − νc,ty−1), but not with the growth uncertainty

shocks (∆νg,ty ≡ νg,ty − νg,ty−1). On the contrary, as predicted by the model (Propositions 7, and 8), the

shocks that drive the idiosyncratic investment dispersions (∆νcapx,ty ≡ νcapx,ty − νcapx,ty−1) are particularly

associated with the growth uncertainty shocks ∆νg,ty , but not the cash-flow uncertainty shocks ∆νc,ty .

More precisely, Panel A of Figure 8 shows that the shocks of the idiosyncratic investments dispersions

(Compustat item ib) and depreciation (Compustat item dp), and the capital stock of tangible assets is measured by net
property, plant and equipment (Compustat item ppent). To construct MoBf,ty , the market value of assets is measured by the
book value of assets (Compustat item at) plus the market value of common stock (Compustat item prccf × Compustat item
csho) less the sum of book value of common stock (Compustat item ceq) and balance sheet deferred taxes (Compustat item
txdb).
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∆νcapx,ty can be statistically explained by the growth uncertainty shocks ∆νg,ty with the estimated slope

1.84 and the t-statistic 2.93. Panel B of Figure 8 shows that the shocks of idiosyncratic sales dispersions

∆νsale,ty cannot be statistically explained by the growth uncertainty shocks ∆νg,ty , because the estimated

slope −0.016 is not statistically different from zero. Its t-statistic is −0.028. Panel C of Figure 8 shows

that the shocks of idiosyncratic investment dispersions ∆νcapx,ty cannot be statistically explained by the

cash-flow uncertainty shocks ∆νc,ty . The slope is estimated to be −0.31 with t-statistic −0.62. Panel D of

Figure 8 shows that the shocks of idiosyncratic sales dispersions ∆νsale,ty can be statistically explained by

the cash-flow uncertainty shocks ∆νc,ty with the slope estimated to be 1.11 and its t-statistic to be 2.75.

Therefore, empirical evidence supports using the idiosyncratic volatilities of equity returns on assets

in place as a measure of the cash-flow uncertainty and on growth options as a measure of the growth

uncertainty. In other words, the uncertainty shocks of different origins, as fundamental macroeconomic

shocks, can be identified and measured using panels of asset returns. Importantly, the asset pricing data

allows for high frequency proxies for these underlying macroeconomic shocks. From the asset pricing

perspective, the results show that the macroeconomic uncertainty shocks can have direct and significant

impacts on the cross-sectional behavior of asset returns.

Discussion: cyclicality of cross-sectional dispersions. The cyclicality of the idiosyncratic investment

dispersion νcapx,ty and the idiosyncratic sales dispersion νsales,ty , as well as the growth uncertainty νg,ty

and the cash-flow uncertainty νc,ty , are reported in Table 7. There, the cyclical component of real GDP

per capita is estimated by using the one-sided HP filter. There are three points which worth mentioning

about the statistics in Table 7. First, consistent with the main findings of Bachmann and Bayer (2014)

as reproduced in Table 4, the cross-sectional dispersion of investment rates is statistically significantly

pro-cyclical. In fact, the results reported here (the Pearson and Kendall correlations are 0.31 and 0.20,

respectively) reinforce theirs. This is because the firm-specific predictable component, the aggregate

predictable component, and the potential scaling effect have been all removed when the idiosyncratic

sale dispersion νsale,ty and the idiosyncratic investment dispersion νcapx,ty are constructed. Second, the

dispersion of idiosyncratic shocks in sales growth rates νsale,ty is countercyclical (the Pearson and Kendall

correlations are −0.16 and −0.10, respectively), though annual estimated correlations are not significant

(the p-values for Pearson and Kendall correlations are 0.26 and 0.32, respectively).48 Third, the growth

uncertainty νg,t is pro-cyclical (the Pearson and Kendall correlations are 0.13 and 0.05, respectively), while

the cash-flow uncertainty νc,t is strongly countercyclical (the Pearson and Kendall correlations are −0.31

and −0.21, respectively).

Importantly, my theoretical and empirical results provide a natural and robust reconciliation for the

so-called investment dispersion puzzle in the macroeconomics literature (e.g., Bachmann and Bayer, 2014).

Basically, I show what has been missing in the macroeconomic models with heterogeneous firms is the

growth uncertainty shocks. It’s been a substantial literature documenting that the cross-sectional dispersion

of micro-level fundamentals vary dramatically over time. In particular, it’s been a consensus that the

underlying shocks driving dispersions of sales have strongly adverse macroeconomic effects (e.g., Bloom,

48The insignificance results can be a result of short sample length and high persistency in the annual level time series.
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2009; Bloom et al., 2013; Herskovic et al., 2014). However, in a recent work by Bachmann and Bayer

(2014), the authors find pro-cyclical dispersion of firm-level investment in Germany, the United States,

and the United Kingdoms. Quantitatively, they examine whether shocks in the dispersion of sales growth

rates can generate pro-cyclical investment dispersions; they build their quantitative exercise upon the

framework of Khan and Thomas (2008), Bloom (2009) and Bachmann, Caballero and Engel (2013). They

show that only very small shocks to sales growth dispersion can generate pro-cyclical investment dispersion,

and shocks with such small scales fail to generate observed business cycles. These empirical patterns

impose additional cross-equation restrictions on the properties of uncertainty shocks used in macroeconomic

models; in particular, they pose quantitative challenges to the uncertainty-driven business cycle models,

such as Bloom et al. (2013).

In my model with growth uncertainty shocks, as suggested theoretically and verified empirically, the

dispersion of investment rates is mainly driven by the growth uncertainty, but not by the cash-flow

uncertainty; on the contrary, the dispersion of sales growth rates is driven by the cash-flow uncertainty,

but not by the growth uncertainty. Therefore, my model naturally reproduces the empirical patterns for

the dynamics of sales dispersions and investment dispersions.

5.3 Inspecting the Mechanism: the Role of Risk Sharing Condition

In this section, I explore the empirical tests of the basic mechanism. The basic mechanism of the model is

that the effects of growth uncertainty shocks on asset prices in the cross section are determined by the risk

sharing condition in the economy. In particular, I focus on testing two most direct implications of the basic

mechanism, which are summarized as follows. The first direct implication (Basic Implication I) is that in

response to a positive growth uncertainty shock, the value of growth options increases relative to assets in

place when the risk sharing condition is good, but decreases otherwise; the cash-flow uncertainty always

tends to suppress the value of assets in place relative to the value of growth options, regardless of the risk

sharing condition. The second direct implication (Basic Implication II) is that the growth uncertainty

shock carries a positive market price of risk when risk sharing condition is good, but carries a negative one

otherwise; the cash-flow uncertainty shock always carries a negative market price.

Testing basic implication I. I use the value spread, high minus low book-to-market portfolio returns, to

approximate the relative value change of assets in place to growth options in the data. To add robustness

of the testing results, I set up three tests using different econometric tools, and I also use three different

measures of risk sharing conditions in the economy.

Regime-switching models. My model implies that the betas of value spreads with respect to growth

uncertainty shocks are informative about the underlying state of risk sharing conditions. More precisely,

when the beta of value spreads to growth uncertainty shocks is negative, the underlying risk sharing

condition is likely to be good; alternatively, the underlying risk sharing condition is likely to be poor. In

order to provide a direct test on this implication, I appeal to the regime-switching econometric model

51



studied by Hamilton (1989, 1994) and Timmermann (2000). In my monthly regime-switching econometric

specification, the underlying risk sharing condition is the latent state variable, denoted by ωx,tm . The latent

state variable ωx,tm is to be uncovered from the data. It is assumed that ωx,tm follows a two-state Markov

chain process; it’s transition probabilities are to be estimated using the observables in the model. The

observables include monthly market excess returns rM,tm − rf,tm , uncertainty shocks ∆νg,tm and ∆νc,tm ,

and monthly value spreads rH,tm − rL,tm with rH,tm and rL,tm to be returns of high and low book-to-market

portfolio, respectively. More precisely, the econometric model is specified as follows:

rH,tm − rL,tm = av,tm + βv,z,tm (rM,tm − rf,tm) + βv,g,tm∆νg,tm + βv,c,tm∆νc,tm + εv,tm (44)

where the coefficients are time-varying and depend on the latent state av,tm ≡ av (ωx,tm) and βv,ι,tm ≡
βv,ι (ωx,tm) for ι ∈ {z, g, c}. The latent state variable ωx,tm takes values in {Good,Bad}. Here, Good (Bad)

stands for the state in which the risk sharing condition is good (bad). The state of risk sharing condition is

unobservable in the econometric model and the identification implied by the theory is that

βv,g (Good) < βv,g (Bad) . (45)

Moreover, statistically, it is assumed that the residual term εv,tm is not only uncorrelated with the input

variables but also independent of the latent state variable ωx,tm .

I estimate the regime-switching model (44) using the EM algorithm that maximizes the marginal

likelihood function of observables. The estimation results of the regime-switching model consist of two

parts: one is the statistical inference about the coefficients which are summarized in Table 8; the other is

the estimated likelihood of the risk sharing condition being Bad for every month. The estimated likelihoods

are displayed in Figure 9.

In Table 8, Column (3) shows that the loadings of value spreads on growth uncertainty shocks change

from negative (βv,g is estimated to be −1.76) to positive (βv,g is estimated to be 6.03) as the underlying

state moves from Good to Bad. The signs are statistically significant at 75% confidence level. In the

econometric analysis, the only restriction used for identifying the Good state is the inequality (45). There

is no restriction imposed on the sign of growth uncertainty beta βv,g in the estimation. As a result, the

sign switching itself empirically supports prediction of the theoretical model. It should be noted that the

significance level of the coefficients tend to be understated compared to the econometric model in which

the risk sharing condition is assumed to be known. This is because a large amount of randomness about

the latent states have to be taken into account when drawing statistical inferences about the regression

coefficients in the regime-switching model. Moreover, Column (4) of Table 8 verifies another prediction

of the theory: the growth options always offer a hedge against the cash-flow uncertainty shock. More

precisely, the coefficient βv,c is estimated to be negative in both states (−13.08 in Bad versus −1.00 in

Good). In particular, the sign is significant at 95% confidence level in Bad and 75% confidence level in

Good. However, it is still unclear whether the state Bad in the model truly corresponds to the state of

poor risk sharing in the data. Thus, I need to compare the estimated Bad state with the measures of risk

sharing conditions in the data.
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In fact, the regime-switching econometric model does not offer an exact answer to the question which

state the economy is in. Instead, it allows one to estimate the likelihood of the economy being in certain

state.49 In Figure 9, the estimated likelihood of being in Bad state is plotted in Panel D and is compared

with three measures of risk sharing conditions in the data. The first empirical measure (in Panel A) is

the Reinhart-Rogoff financial crisis index.50 The second empirical measure (in Panel B) is the financial

condition index based on broker-dealer leverages. The third empirical measure (in Panel C) is the credit

spread index. Gilchrist and Zakrajsek (2012), Krishnamurthy and Muir (2015), and Ivashina and Scharfstein

(2010) show that credit spreads can serve as a crucial gauge of the degree of strains in the financial system.

The basic idea is that fluctuations in credit spreads reflect shifts in the effective supply of funds offered by

financial intermediaries. They found that an adverse shock to the equity valuations of the highly-leveraged

financial intermediaries, relative to the market return, leads to an immediate and persistent increase in

credit spreads.

My estimated likelihood of being in Bad state is plotted in Panel D. To interpret the levels of the time

series in Figure 9, I set zero as the benchmark state in which the risk sharing condition is at its medium

level. According to their definitions, positive index values indicate worse financial conditions than the

medium state; negative index values indicate better financial conditions than the medium state. The three

indices in Panels A–C capture the periods of stressed financial sector. Figure 9 shows that the Bad state

is actually associated with poor financial conditions. Comparing the estimated financial condition (in

Panel D) with the Reinhart-Rogoff financial condition index (in Panel A), the broker-dealer leverage index

(in Panel B), and the credit spread index (in Panel C), the estimation results (in Panel D) are clearly

consistent with the observations in the data (in Panels A, B, and C). More precisely, the four time series

capture the major periods of financial stress in the history of the United States; at the same time, they

also agree with each other upon the major periods of excellent financial conditions for U.S. economy.51

Most importantly, the estimation of financial condition (in Panel D) only depends on stock returns and

the model’s prediction about the cross-sectional impacts of growth uncertainty shocks. In other words,

the estimation has almost zero prior information about financial conditions, which reinforces the power

of the empirical result as a support for my theory. Now, I formally quantify the statistical association

between the empirical measures of risk sharing conditions and the estimated likelihood of Bad state, which

are reported in Table 9. I use both the Pearson correlation and the Kendall rank correlation to quantify

the associations. As reported in Columns (1) and (2) of Table 9, the credit spread index is used as the

benchmark, and it is significantly correlated with both the Reinhart-Rogoff financial condition index, the

49Of course, the state of the economy can be estimated based on the estimated likelihood. In practice, the economy is
labeled by a particular state when the estimated likelihood of being that state is higher than a predetermined threshold. For
example, 50% is used as the threshold, like in Figure 7.

50It is constructed based on U.S. banking/currency crisis, U.S. stock market crashes, U.K. banking/currency crisis, German
banking/currency crisis, and France banking/currency crisis. I use a simplest nonlinear filter to form U.S. investors’ expectation
about financial sector conditions. If there are two or more crisis, investors have a bad outlook for financial conditions; if there
is zero crisis, investors form a promising outlook for financial conditions; otherwise, they form a medium outlook.

51My estimation, together with the three empirical measures, capture the financial crises around 1976, around 1990, around
2003, and around 2008; they also capture the periods of excellent financial conditions including the late 1990s, the periods
around 2005, and the periods after 2014. In the online appendix, I also compare my estimation with other empirical measures
of financial conditions including the financial condition index proposed by Brave and Butters (2011).
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broker-dealer leverage index, and the estimated likelihood of Bad state. In Columns (3) and (4) of Table

9, I also report the corresponding statistical associations of the financial condition indices in my model

based on simulated samples. Because there is no corporate bond in my model, I use the equity premium as

the proxy for credit spread. The risk sharing condition in the simulated data is measured by using Θt in

(32).52 The likelihood of Bad is estimated for the simulated data in the same way as for the real data. The

associations between the simulated indices are comparable to those in the real data.

Uncertainty betas of book-to-market sorted portfolios. I also verify the theoretical implication by

looking into the loadings of book-to-market sorted portfolios on uncertainty shocks ∆νc,tm and ∆νg,tm in

subsamples corresponding to the periods of good or bad financial conditions. I first use the Reinhart-Rogoff

index as the measure of risk sharing condition in the economy to construct subsamples. The betas of the

book-to-market portfolios with respect to the market excess return rM,tm − rtm , the growth uncertainty

shock ∆νg,tm , and the cash-flow uncertainty shock ∆νc,tm are estimated within each of the two subsamples:

one subsample includes the periods of good financial conditions; the other subsample includes periods of

financial stress. The estimated betas are reported in Table 10. Panel A reports the beta estimates when

the risk sharing condition is poor, while Panel B reports the beta estimates when the risk sharing condition

is good. Comparing Columns (2) and (3) with Columns (5) and (6) in Table 10, the empirical results are

almost perfectly in line with the theoretical prediction about the loadings on two sources of uncertainty

shocks. More precisely, the beta on ∆νg,t increases from −3.11 to 0.21 for the stock returns of the firms

with the lowest 10% book-to-market ratios (growth firms) versus those with highest 10% book-to-market

ratios (value firms) when risk sharing condition is bad, as shown in Panel A with the sorting scheme #1;

however, the growth uncertainty beta decreases from 2.40 to −12.66 for growth firms versus value firms

when risk sharing condition is good, as shown in Panel B with the sorting scheme #1. Moreover, according

to the sorting scheme #1, the beta on ∆νc,tm , for the stock returns of growth firms versus value firms,

decreases from 2.56 to −17.85 when the risk sharing condition is bad and decreases from 14.10 to −8.36

when the risk sharing condition is good. Importantly, as shown in Figure 10, the empirical findings are

robust to various sorted book-to-market portfolios (e.g. the sorting schemes #2 and #3).

I then use the financial condition index based on broker-dealer leverages as the measure of risk sharing

condition in the economy. The estimated betas are reported in Table 11. According to the sorting scheme

#1, the beta on ∆νg,tm for growth firms versus value firms increases from −2.81 to 1.10 when the risk

sharing condition is bad (in Panel A), while it decreases from −1.61 to −3.74 when the risk sharing

condition is good (in Panel B). Moreover, under the sorting scheme #1, the beta on ∆νc,tm for growth

firms versus value firms decreases from 6.80 (11.27) to −21.37 (−1.34) when the risk sharing condition is

bad (good). The empirical results are robust across various sorting schemes (#2 and #3). Therefore, the

results in Table 11 show that the empirical findings in Table 10 are quite robust against other measures of

risk sharing conditions.

At last, I use the credit spread index as the measure of risk sharing condition in the economy. I fit the

52I can also use the endogenous state variable xt or the consumption share dispersion Θe
t quantify risk sharing condition in

the simulated data, because they are equally valid as the measure of risk sharing condition in my model.
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credit spread into a simplest three-state regime-switching model like in (40). The estimation results using

50% to be the threshold is to cluster each quarter into three categories: high/median/low credit spread

levels.53 The estimated betas are reported in Table 12. According to the sorting scheme #1, the beta on

∆νg,tm for growth firms versus value firms increases from −2.81 to 8.08 when the risk sharing condition

is bad (in Panel A), while it decreases from 2.37 to −1.34 when the risk sharing condition is good (in

Panel B). Moreover, under the sorting scheme #1, the beta on ∆νc,tm for growth firms versus value firms

decreases from 0.78 (1.61) to −10.13 (−9.45) when the risk sharing condition is bad (good). The empirical

results are robust across various sorting schemes (#2 and #3). Therefore, the results in Table 12 reinforce

that the empirical findings in Table 10 are quite robust against other measures of risk sharing conditions.

However, statistically, it is still unclear how significantly the role of risk sharing conditions in altering the

impact of growth uncertainty on the value of growth options relative to assets in place. To investigate the

statistical significance, I compute the t-statistics for the estimated betas of extreme book-to-market-sorted

portfolios. In Table 13, it shows that the sign changes (Column (1) versus Column (3)) are significant

based on one-sample statistical tests; the statistical result is particularly strong when using the credit

spread index as the measure for risk sharing conditions (in Panel C).

Linear models with interaction terms. Now, I set up a linear regression model in which the dependent

variable is the value spread and the independent variables include the interaction terms between the

uncertainty shocks and the risk sharing condition. The risk sharing condition is measured by the Reinhart-

Rogoff financial condition index (reported in Columns (5) and (6)) or by the financial condition index

based on broker-dealer leverages (reported in Columns (7) and (8)) or by the credit spread index (reported

in Columns (3) and (4)). The regression model with interaction terms is specified as follows:

rH,ty − rL,ty = avi + βvi,z
(
rM,ty − rty

)
+ βvi,g∆νg,ty + βvi,c∆νc,ty + βvi,xregime-xty

+ γvi,g

[
∆νg,ty × regime-xty

]
+ γvi,c

[
∆νc,ty × regime-xty

]
+ εvi,ty (46)

where vi in the subscript of coefficients means that they are coefficients for the value spread regression

with interactions. Here, rM,ty − rty is the market excess return, ∆νg,ty and ∆νc,ty are uncertainty shocks,

and rH,ty − rL,ty is the value spread with rH,ty and rL,ty to be the returns of high and low book-to-market-

portfolio returns, respectively. The variable regime-xty is an aggregate state variable characterizing the

condition of risk sharing in the economy.

The focus of this test has two folds: one is to test whether the coefficient γvi,g in (46) is significantly

positive; the other is to test whether the coefficient βvi,c is significantly negative. The regression (46)

provides a formal statistical framework for testing whether the switching signs between Column (2) and

Column (5) in Tables 10, 11, and 12 are statistically significant. In computing the t-statistics of coefficients,

I appeal to Newey and West (1987, 1994) for the robust covariance matrix estimation with one year lag.

53The periods of low risk sharing condition (i.e. high credit spread) include 1974Q4 – 1976Q3, 1980Q2 – 1983Q3, 1988Q4 –
1992Q2, 2002Q1 – 2003Q4, 2008Q1 – 2009Q4, 2010Q2 – 2010Q4, and 2011Q4 – 2012Q4. On the other hand, the periods of
high risk sharing condition (i.e. low credit spread) include 1973Q1 – 1974Q3, 1977Q3 – 1979Q3, 1987Q3 – 1988Q3, 2000Q1 –
2000Q3, 2004Q4 – 2005Q2, 2004Q4 – 2005Q2, and 2013Q4 – 2014Q3.
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In Table 14, Column (1) shows that the value premium exists; it is about 5.65% and statistically

significant. More importantly, Column (1) shows that the market excess return fails to explain the value

premium, because the intercept term is significantly nonzero and the F−statistic is insignificant. Column

(2) shows that the uncertainty shocks have large explanatory power for value spreads, since the F−statistic

for the regression (2) has significance less than 0.5%. It also shows that the impact of cash-flow uncertainty

on value spreads is significantly negative, which is consistent with the theoretical prediction of my model.

Regression (3) shows that the risk sharing condition helps explain the value spread when it interacts

with growth uncertainty shocks. Perfectly in line with the prediction of the model, the coefficient of the

interaction term ∆νg,ty × regime-xty is significantly positive, with estimate 407.44 and t-statistic 2.61.

Moreover, the adjusted R2 increases from 19.13% to 22.75% from the regression (2), and the intercept term

becomes insignificantly positive. In Column (4), I further add in the interaction term between the risk

sharing condition and the cash-flow uncertainty shock. The regression results of Column (3) are almost

unaffected. The coefficient of the extra interaction term ∆νc,ty × regime-xty is insignificantly positive, with

estimate 66.93 and t-statistic 0.72. The regression results in Columns (5)–(6) and the regression results in

Columns (7)–(8) show the robustness of the regression results in Columns (3) and (4) when the measure

of risk sharing conditions changes to the Reinhart-Rogoff financial condition index and the broker-dealer

leverage index displayed in Figure 9, respectively. Furthermore, as shown in Table 14, the loadings of value

spreads on cash flow shocks, denoted as βvi,c in (46), are significantly negative across all regressions and

different measures for risk sharing conditions.54

Testing basic implication II. To verify the model predictions on stochastic discount factors, I explore

the possibility of the cross section of stock returns. Because the prediction is specifically on the market

price of risk for the growth uncertainty shock and the cash-flow uncertainty shock, I focus on portfolios of

firms’ stocks sorted based on the two uncertainty shocks, separately. As long as the loadings of firm stock

returns on the uncertainty shocks are fairly persistent, the ex ante differential sensitivity to uncertainty

shocks will lead to the ex post differential sensitivity. The differential average returns of sorted portfolios

then are informative about these market price of risk associated with the uncertainty shocks.

In Table 15, the average returns for uncertainty-sorted portfolios are reported for the full sample (in

Columns (5) and (6)) and two subsamples (in Columns (1) – (4)). One subsample corresponds to the

periods of poor risk sharing conditions (reported in Columns (1) and (2)), while the other subsample

corresponds to the periods of good risk sharing conditions (reported in Columns (3) and (4)). In Panel

A, the risk sharing condition is measured by the Reinhart-Rogoff financial condition index; in Panel B,

the risk sharing condition is gauged by the broker-dealer leverage index; in Panel C, the risk sharing

condition is gauged by the credit spread index. Across all columns in Table 15, it shows that the firms

with a higher exposure to the cash-flow uncertainty shock, on average, gain lower returns; it thus implies

that cash-flow uncertainty shocks tend to carry a negative market price of risk, no matter whether the

risk sharing condition is good or bad. In particular, over the whole sample, the valuation spread between

54They are all significant except regressions in Columns (7)–(8) in which the risk sharing condition is measured by the
financial condition index based on broker-dealer leverages.
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the firms with a high exposure to the cash-flow uncertainty shock versus those with a low exposure is

statistically significantly negative; the spread is −5.11% with the t-statistic equal to −3.02.

However, the firms with a higher exposure to the growth uncertainty shock, on average, gain lower

returns when risk sharing is limited (see Columns (1)); in contrast, they gain higher average returns

otherwise (see Columns (3)). More precisely, if the Reinhart-Rogoff financial condition index is used as the

measure for risk sharing conditions (in Panel A), the spread between high versus low νg-sorted portfolios

changes from −2.30 (with t-statistic −1.24) to 1.96 (with t-statistic 0.91) when the risk sharing condition

improves. This empirical pattern is robust against different choices of measures of risk sharing conditions.

Particularly, if the broker-dealer leverage index is used to construct the regimes of risk sharing conditions

(in Panel B), the spread between high versus low νg-sorted portfolios changes from −3.00 (with t-statistic

−2.444) to 3.73 (with t-statistic 3.33) as the risk sharing condition improves; if the credit spread index is

used to construct the regimes of risk sharing conditions (in Panel C), the spread between high versus low

νg-sorted portfolios changes from −5.34 (with t-statistic −1.14) to 4.36 (with t-statistic 0.96) as the risk

sharing condition improves. This suggests that the growth uncertainty shock tends to carry a negative

market price of risk when the risk sharing condition is bad and a positive market price of risk otherwise.

6 Conclusion

I have studied an investment-based general equilibrium model with two sources of uncertainty shocks and

endogenous imperfect risk sharing. The model provides a fundamental mechanism which can help reconcile

seemingly contradictory empirical findings in asset pricing and macroeconomics under a unified framework.

There are two main new insights provided by this paper. First, the source of uncertainty shocks matters,

since they affect the economy through different asset classes. The characteristics of the assets determine

the impact of uncertainty shocks from certain origin on asset prices and investment. In particular, the

growth uncertainty shocks can increase asset prices and investment because of the option feature embedded

in growth options. Second, the risk sharing condition plays a vital role in shaping the impact of uncertainty

shocks. When risk sharing is severely limited, a rise in uncertainty distorts agents’ real investment decisions

and portfolio allocations in an inefficient manner. If agents’ preference over smoothing consumption

across time (governed by the elasticity of intertemporal substitution) is not very strong, even the growth

uncertainty shock can suppress asset prices, decrease investment, deteriorate risk sharing conditions, and

hence carry a negative market price of risk.

This paper, moreover, discovers the linkage between the cross section of asset returns and uncertainty

shocks from different origins. Because different sources of uncertainty shocks do not affect firms symmetri-

cally, then the cross section of asset returns can help identify the source of uncertainty shocks. Financial

data with a larger cross section and a higher frequency can serve well for uncovering the uncertainty shocks

used in macroeconomic models. Moreover, as shown theoretically and empirically, the cross sectional

exposures of asset returns to growth uncertainty shocks are largely driven by the risk sharing condition;

hence the time-varying cross-sectional exposures to the growth uncertainty shock are informative about
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the underlying economy state of risk sharing.
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Figure 1: Impact of Idiosyncratic Volatility

Note: This figure illustrates the dynamics of idiosyncratic volatility of stock returns. It highlights the comovement pattern of the average
idiosyncratic volatility with the cross-sectional spread between value and growth stock returns (i.e., value spreads) and the aggregate
investment. In panel A, the red solid curve characterizes the cyclical dynamic of the average idiosyncratic volatility of U.S. stock returns.
It is the cyclical component of the average idiosyncratic volatility extracted based on the HP filter. The average idiosyncratic volatility
comoves, almost perfectly, with the common component in idiosyncratic volatilities (CIV) proposed by Herskovic et al. (2014). The bars
characterize the spread between value and growth stock annual returns (value spreads) based on Fama-French 10 book-to-market sorted
portfolios. More precisely, the value spread is the highest 10% minus the lowest 10%. In Panel B, the bars characterize the HP-filtered
aggregate investment-to-output ratios constructed using BEA time series. In Panel C, the bars characterize the monthly market volatility
computed based on daily returns on the CRSP value-weighted stock index using all firms listed on NYSE/AMEX/NASDAQ/ARCA.
In Panel D, the curve characterizes the credit sector size (i.e., total corporate credit deflated by total corporate net worth) based on
Flow of Funds data following Longstaff and Wang (2012). Panel E and Panel F display the growth uncertainty index and the cash-flow
uncertainty index, respectively. Their construction are described in Section 5.1. The data sources and construction methods for Panels
A - D are in the appendix.
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Table 1: Baseline Parametrization

Parameter Symbol Value

A. Preferences
Subjective discount rate ρ 0.0111
Relative risk aversion γ 6
EIS coefficient ψ 2

B. Assets in Place in Consumption Goods Sector
Capital share in production function ϕ 0.3
Assets in place depreciation rate δ 15%
Aggregate volatility σ 10%
Cash-flow uncertainty νLc /ν

H
c 10%/50%

Transition of cash-flow uncertainty λ(ν
L
c ,ν

H
c )/λ(ν

H
c ,ν

L
c ) 0.111/0.39

C. Growth Options in Consumption Goods Sector
Investment goods share in production function α 0.9
Growth uncertainty νLg /ν

H
g 10%/49%

Investment opportunity arrival rate λ 3.33

Transition of growth uncertainty λ(ν
L
g ,ν

H
g )/λ(ν

H
g ,ν

L
g ) 0.1/0.44

Fixed adjustment cost rate $ 0.0083
Aggregate growth options s 1

D. Investment Goods Sector
Average productivity level zι 1.03

E. Labor Market
Population share κ 2.04%
Average lifespan µ 1/40

F. Financial Market
Severity of agency problem φ 0.4
Pledgeability of human capital % 5%

Note: This table reports the calibrated parameters of the model. The annualized values are used in the table for the dynamic parameters.
When choosing the values of the parameters, both inside and outside-model data are employed.
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Table 2: Model versus Data: Unconditional Moments of Macroeconomic Cycles

Correlation

Mean Stdev AC(1) ∆ log (ct+1) ∆ log (ct) ∆ log (yt)

(1) (2) (3) (4) (5) (6)

A. Data

∆ log (ct) 1.46 3.77 0.36
[0.98, 1.93] [3.31, 4.17] [-0.13, 0.17]

∆ log (yt) 1.67 5.78 0.28 0.34 0.92
[0.65, 2.63] [3.43, 7.49] [0.00, 0.42] [-0.03, 0.50] [0.89, 0.94]

∆ log (it) 1.35 36.00 0.43 0.38 0.83 0.87
[-2.58, 5.20] [10.92, 49.55] [0.29, 0.56] [0.09, 0.45] [0.78, 0.87] [0.85, 0.93]

B. Model

∆ log (ct) 1.92 3.96 0.32
[0.74, 3.09] [2.96, 4.33] [0.11, 0.50]

∆ log (yt) 1.92 4.01 0.50 0.62 0.52
[0.73, 3.06] [3.35, 4.70] [0.34, 0.65] [0.49, 0.73] [0.33, 0.70]

∆ log (it) 2.36 55.38 0.30 0.23 -0.44 0.30
[-0.47, 5.73] [32.41, 77.63] [-0.00, 0.49] [0.07, 0.39] [-0.26, -0.61] [0.17, 0.43]

Notes: The table compares unconditional moments of the data to their simulated analogies in the model. Panel A reports the mean,
standard deviation, and autocorrelation of U.S. output (y), consumption (c), and net investment (i) log growth rates, as well as their
cross-correlation coefficients. All variables are real (adjusted by CPI) and scaled by U.S. population. The 95% confidence intervals are
reported in brackets; they are obtained by applying stationary block bootstrap method in which the block size is random (see Politis and
Romano, 1994a,b). The average block size is determined by the adaptive block length selection procedure of Politis and White (2004)
and Patton, Politis and White (2009). Data are sampled at the annual frequency. Their sources and construction details are explained
in the appendix. All variables are reported in percentage points, except for the autocorrelation and cross-correlation coefficients. The
moments of the consumption growth and the output growth are from the extended long sample of Barro and Ursúa (2008) with sample
period 1790 – 2014. The sample periods of net payout growth and investment are 1929 – 2014, and the labor supply growth is only
available during 1948 – 2014. Panel B reports simulated moments in the model. I simulate the model at the weekly frequency and
then time-aggregate the simulated data to construct annual observations. In brackets, they are the 5% and 95% quantiles across 1,000
independent simulations, each with a length of 80 years. The net investment is constructed using real private fixed investment plus real
durable consumption minus real depreciation normalized by population.
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Table 3: Model versus Data: Unconditional Moments of Macroeconomic Ratios

A. Data B. Model

Ratios (%) Mean Stdev AC(1) Mean Stdev AC(1)

(1) (2) (3) (4) (5) (6)

Investment
to Output

16.47 5.23 0.90 16.60 6.41 0.70

[13.85, 18.79] [2.84, 6.23] [0.60, 0.87] [14.74, 18.28] [4.83, 7.89] [0.58, 0.83]
Net Payout

to Consumption
5.46 3.07 0.85 6.30 4.03 0.70

[3.93, 7.00] [2.22, 3.42] [0.59, 0.83] [5.03, 7.49] [2.42, 5.28] [0.55, 0.84]
Wage Income

to Output
75.26 4.02 0.96 75.25 2.04 0.71

[72.94, 77.69] [2.71, 4.48] [0.74, 0.94] [74.55, 75.89] [1.55, 2.49] [0.58, 0.83]
Capital

to Output
169.24 46.96 0.90 196.20 48.35 0.71

[144.40, 195.55] [29.85, 53.13] [0.66, 0.89] [186.77, 204.51] [33.96, 65.33] [0.48, 0.82]

Notes: The table compares unconditional moments of the data to their simulated analogies in the model. Panel A reports the
mean, standard deviation, and autocorrelation of U.S. net investment/output ratio, net payout/consumption ratio, wage income/output
ratio, and capital/output ratio. The 95% confidence intervals are reported in brackets; they are obtained by applying stationary block
bootstrap method in which the block size is random (see Politis and Romano, 1994a,b). The average block size is determined by the
adaptive block length selection procedure of Politis and White (2004) and Patton, Politis and White (2009). Data are sampled at the
annual frequency. Their sources and construction details are explained in the appendix. All variables are reported in percentage points,
except for the autocorrelation coefficients. The sample period is 1929 – 2014. Panel B reports simulated moments in the model. I
simulate the model at the weekly frequency and then time-aggregate the simulated data to form annual observations. In brackets, they
are the 5% and 95% quantiles across 1,000 independent simulations, each with a length of 80 years.

Figure 2: Policy Functions: market price of risk
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Notes: This figure illustrates the market price of risk for two uncertainty shocks under the calibration summarized in Table 1. Panel
A shows the market price of risk for growth uncertainty shocks; Panel B is about the market price of risk for cash-flow uncertainty
shocks. The red solid curve corresponds to the normal state of the world where both uncertainties are at low levels; the blue dashed
curve corresponds to state of high growth uncertainty; and, the black dashed-dotted curve corresponds to the state of high cash-flow
uncertainty. The grey distribution in the background is the stationary distribution of the endogenous state variable xt.
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Table 4: Model versus Data: Fundamental Dispersions

A. Data

Dispersions (%) Mean Stdev AC(1) Corr ∆ log(yt)

(1) (2) (3) (4)

IDR Sales Growth 49.02 12.32 0.80 -17.32

[42.20, 55.90] [8.39, 13.71] [0.64, 0.89] [-36.85, 3.80]

CSD Investment Rate 40.85 7.25 0.66 43.28

[37.03, 44.71] [5.22, 7.93] [0.48, 0.77] [30.45, 59.99]

B. Model

IDR Sales Growth 53.02 16.03 0.69 -27.66

[42.20, 61.90] [9.84, 23.19] [0.57, 0.80] [-45.51, -13.83]

CSD Investment Rate 45.12 13.50 0.71 23.82

[39.13, 49.98] [10.31, 16.37] [0.43, 0.79] [1.89, 40.35]

Notes: The table compares unconditional moments of the data to their simulated analogies in the model. Panel A reports, in the data,
the mean, standard deviation, autocorrelation, and cyclicality of Compustat sales dispersion measured by the cross-sectional interdecile
range (IDR) and Compustat capital expenditures dispersion measured by the cross-sectional standard deviation (CSD). The sales are
deflated by the sales in the previous year, and capital expenditure is deflated by capital stock in the previous year. Sales is constructed
using item sales, capital expenditure is constructed using item capx, and capital stock is constructed using item ppent. The 95% confidence
intervals are reported in brackets; they are obtained by applying stationary block bootstrap method in which the block size is random
(see Politis and Romano, 1994a,b). The average block size is determined by the adaptive block length selection procedure of Politis and
White (2004) and Patton, Politis and White (2009). Data are sampled at the annual frequency. Their sources and construction details
are explained in the appendix. All variables are reported in percentage points, except for the autocorrelation coefficients. All variables
have the sample period of 1966 – 2014. Panel B reports simulated moments in the model. I simulate the model at the weekly frequency
and then time-aggregate the simulated data to form annual observations. In brackets, they are the 5% and 95% quantiles across 1,000
independent simulations, each with a length of 80 years.
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Table 5: Model versus Data: Unconditional Asset Pricing Moments

A. Data B. Model

Returns (%) Mean Stdev AC(1) Mean Stdev AC(1)

(1) (2) (3) (4) (5) (6)

Equity
Premium

4.47 20.83 0.03 4.95 19.25 0.12

[0.85, 8.07] [18.08, 22.99] [-0.19, 0.16] [3.17, 6.58] [11.37, 27.91] [-0.10, 0.33]
Interest

Rate
1.31 2.71 0.62 1.53 2.92 0.71

[0.63, 2.13] [2.07, 3.19] [0.39, 0.92] [0.49, 2.66] [2.41, 3.43] [0.58, 0.83]
Net Payout

Yield
2.25 3.60 0.79 3.67 4.14 0.68

[1.78, 2.71] [2.73, 3.91] [0.56, 0.88] [2.34, 4.71] [3.31, 4.92] [0.55, 0.81]
Value

Spread
5.05 25.21 0.11 7.57 16.84 -0.02

[0.57, 9.57] [21.14, 28.54] [-0.16, 0.20] [5.88, 9.57] [12.39, 21.39] [-0.29, 0.26]

Notes: The table compares unconditional moments of the data to their simulated analogies in the model. Panel A reports the mean,
standard deviation, and autocorrelation of U.S. equity premium, the real interest rate, the net payout yield, and the value spread which
is the return spread between two portfolios of firms with the top and bottom decile of book-to-market ratios. The 95% confidence
intervals are reported in brackets; they are obtained by applying stationary block bootstrap method in which the block size is random
(see Politis and Romano, 1994a,b). The average block size is determined by the adaptive block length selection procedure of Politis and
White (2004) and Patton, Politis and White (2009). Data are sampled at the annual frequency. Their sources and construction details
are explained in the appendix. All variables are reported in percentage points, except for the autocorrelation coefficients. All variables
have the sample period of 1929 – 2014. Panel B reports simulated moments in the model. I simulate the model at the weekly frequency
and then time-aggregate the simulated data to form annual observations. In brackets, they are the 2.5% and 97.5% quantiles across
1,000 independent simulations, each with a length of 80 years.

Table 6: Estimated Transition: Uncertainty Regimes

Markov Transition Probabilities (%)

G-Uncert C-Uncert

(states) High Medium Low High Medium Low

High 81.9 16.3 1.8 67.5 20.1 12.4

Medium 21.6 70.5 7.9 13.9 80.5 5.6

Low 6.6 13.3 80.1 8.6 2.7 88.8

Stationary Dist. 47.6 34.4 18.0 24.9 31.7 43.4

Notes: This table reports point estimation of Markov transition probabilities of the latent states for two kinds of uncertainty, respectively.
G-Uncert stands for growth uncertainty, and C-Uncert stands for cash-flow uncertainty. The numbers are estimates of the regime-switching
model in (40) using the EM algorithm. The estimation is based on annual sample from 1953 to 2014.

76



Figure 3: Value Spread’s Uncertainty Exposures
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Notes: This figure illustrates the uncertainty exposure of value spreads under the calibration summarized in Table 1. Panel A shows
the exposure of value spreads to growth uncertainty shocks; Panel B shows the exposure of value spreads to cash-flow uncertainty shocks.
The red solid curve corresponds to the normal state of the world where both uncertainties are at low levels. The grey distribution in the
background is the stationary distribution of the endogenous state variable xt.

Table 7: Cyclicality: Uncertainty and Idiosyncratic Dispersion

Correlations with The Cyclical Component of Output:

A. Dispersion B. Uncertainty

Pearson Kendall Pearson Kendall

(1) (2) (3) (4)

Investment 0.31 0.20 0.13 0.05
(0.03) (0.04) (0.39) (0.62)

Cash Flow −0.16 −0.10 −0.31 −0.21
(0.26) (0.32) (0.03) (0.03)

Notes: This table reports correlations of uncertainty indices and idiosyncratic dispersions with the cyclical component of U.S. real
GDP per capita. The cyclical component is extracted from the log real GDP per capita by using the one-sided Hodrick-Prescott (HP)
filter. Panel A reports the cyclicality of the dispersion of idiosyncratic shocks in sales growth rates νsales,ty (Cash Flow row) and the
idiosyncratic shocks in investment rates νcapx,ty (Investment row). Panel B reports the cyclicality of the cash-flow uncertainty νc,ty
(Cash Flow row) and the growth uncertainty νg,ty (Investment row). Column (1) and Column (3) report the Pearson correlations,
while Column (3) and Column (4) report the Kendall rank correlations. The Kendall rank correlation measures the similarity of the
orderings of the data when ranked by each of the quantities. Thus, it provides a non-parametric measure of the association of two time
series. The validity of the Pearson correlation is more dependent on the parametric gaussian assumption. The p values are reported
inside the parentheses. The sample is annual from 1966 to 2014. The reliable dispersion estimates are only available after 1966 in annual
Compustat fundamentals.
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Figure 4: Idiosyncratic Risk Premia
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Notes: This figure illustrates the idiosyncratic risk premia under the calibration summarized in Table 1. Panel A is about the premium
on the idiosyncratic cash flow risk dWf,t, and Panel B is about the premium on the idiosyncratic investment risk associated with εf,t
and dNf,t. The red solid curve corresponds to the normal state of the world where both uncertainties are at low levels; the blue dashed
curve corresponds to state of high growth uncertainty; and, the black dashed-dotted curve corresponds to the state of high cash-flow
uncertainty. The grey distribution in the background is the stationary distribution of the endogenous state variable xt.

Figure 5: Limited Risk Sharing
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Notes: This figure illustrates the consumption dispersion and marginal value gap under the calibration summarized in Table 1. Panel
A is about the premium on the idiosyncratic cash flow risk dWf,t, and Panel B is about the premium on the idiosyncratic investment
risk associated with εf,t and dNf,t. The red solid curve corresponds to the normal state of the world where both uncertainties are at
low levels; the blue dashed curve corresponds to state of high growth uncertainty; and, the black dashed-dotted curve corresponds to
the state of high cash-flow uncertainty. The grey distribution in the background is the stationary distribution of the endogenous state
variable xt.
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Figure 6: Impulse Responses to Growth Uncertainty Shocks
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Notes: This figure illustrates the impulse-response to a temporary growth uncertainty shock under the calibration summarized in Table
1. Panel A shows the temporal shock as an impulse; Panel B is about the responses of experts’ aggregate consumption; Panel C is
about the responses of conditional cross-sectional variance of consumption share growth, and Panel D is about median of cross-section
of experts’ consumption shares. The blue solid curve corresponds to the states of good risk sharing conditions; the red dashed curve
corresponds to states of high poor risk sharing conditions. The grey distribution in the background is the stationary distribution of the
endogenous state variable xt.
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Figure 7: Annual Uncertainty indices, Estimated Uncertainty Regimes and U.S. Recessions

1960 1970 1980 1990 2000 2010

−
0.

15
0.

00
0.

10

A. Episodes of Cash Flow Uncertainty

Year

C
as

h 
F

lo
w

 U
nc

er
ta

in
ty

 A
nn

ua
l I

nd
ex

1960 1970 1980 1990 2000 2010

−
0.

15
0.

00
0.

10

B. Episodes of Growth Uncertainty

Year

G
ro

w
th

 U
nc

er
ta

in
ty

 A
nn

ua
l I

nd
ex

Notes: This figure plots the annual indices of the cash-flow uncertainty and the growth uncertainty. The annual index is defined as the
average of twelve monthly index values within each year. The monthly indices of uncertainty are constructed as described in Section 5.1.
The horizontal segments represent the episodes of uncertainty conditions of U.S. economy. Their levels are the averages over time within
each regime. The regimes are estimated under the framework of regime-switching models (e.g., Hamilton, 1989, 1994; Timmermann,
2000) by using the EM algorithm which maximizes the marginal likelihood of observable variables. Three regimes are assumed in the
regime-switching model; the threshold for a regime to be taken in certain year is set at the likelihood of 50%. The estimation is based on
annual sample from 1953 to 2014. The shaded areas represent the NBER-dated U.S. recessions. Panel A shows the cash-flow uncertainty
annual index and its estimated high/medium/low episodes. Panel B shows the growth uncertainty annual index and its estimated
high/medium/low episodes.
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Figure 8: Statistical Associations: Uncertainty versus Cross-Section Dispersion
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Notes: This figure plot the annual changes of idiosyncratic sales dispersions and idiosyncratic investment dispersions against annual
changes of uncertainty indices ∆νc,ty and ∆νg,ty . The annual index is defined as the average of twelve monthly index values within
each year. The monthly indices of uncertainty are constructed as described in Section 5.1. The idiosyncratic sales dispersions νsales,ty
and the idiosyncratic investment dispersions νcapx,ty are calculated in Section 5.2. The sample is annual from 1979 to 2014. Although
the Compustat annual fundamental panel starts in 1952, my sample for constructing cross-sectional dispersions starting from 1966. This
is because the number of firms becomes large enough (over 1000 firms) to provide reliable cross-section distribution estimates only
from 1979. The fitted lines are estimated using least-square regression with Grubbs (1950) robustness for outliers. Panel A shows the
scatter plot of changes in idiosyncratic investment dispersions ∆νcapx,ty against growth uncertainty index changes ∆νg,ty . The slope is
estimated to be 1.84 with t-statistic 2.93. Panel B shows the scatter plot of changes in idiosyncratic sales dispersions ∆νsales,ty against
growth uncertainty index changes ∆νg,ty . The slope is estimated to be −0.016 with t statistic −0.028. Panel C shows the scatter plot
of changes in idiosyncratic investment dispersions ∆νcapx,ty against cash-flow uncertainty index changes ∆νc,ty . The estimated slope
is −0.31 with t statistic −0.62. Panel D shows the scatter plot of changes in idiosyncratic sales dispersions ∆νsales,ty against cash-flow
uncertainty index changes ∆νc,ty . The estimated slope is 1.11 with t statistic 2.75.
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Table 8: The Regime-Switching Model: Estimated Coefficients

Estimated Coefficients in the Regime-Switching Model (44):

av βv,z βv,g βv,c

(1) (2) (3) (4)

Bad state 0.47 0.41 6.03 −13.08
95% CI [ 0.09, 1.07] [−0.27, 0.55] [ 0.29, 11.21] [−19.92,−0.16]
75% CI [ 0.28, 0.67] [ 0.27, 0.48] [ 2.60, 6.84] [−13.88,−5.47]

Good state 0.46 −0.41 −1.76 −1.00
95% CI [ 0.11, 1.99] [−0.57, 0.89] [−10.42, 1.07] [−7.44, 0.73]
75% CI [ 0.26, 0.59] [−0.49,−0.26] [−4.19,−0.99] [−5.27,−0.80]

Notes: This table reports the estimation results of the regime-switching model (44). The model is estimated using the EM algorithm
which maximizes the marginal likelihood of observables. The 95% and 75% confidence intervals are reported in brackets; they are
obtained by applying stationary block bootstrap method in which the block size is random (see Politis and Romano, 1994a,b). The
average block size is determined by the adaptive block length selection procedure of Politis and White (2004) and Patton, Politis and
White (2009). Data are sampled at the monthly frequency from January 1953 to December 2014.

Table 9: Statistical Associations: Estimation and Measures of Risk Sharing Conditions

Correlation of Credit Spread Index with:

A. Data B. Model

Pearson Kendall Pearson Kendall

(1) (2) (3) (4)

Estimated Likelihood
of Being in State Bad

0.38 0.23 0.36 0.29

(0.00) (0.00) (0.00) (0.00)
Reinhart-Rogoff

Financial Index
0.52 0.39 0.27 0.18

(0.00) (0.01) (0.00) (0.00)
Broker-Dealer

Leverage Index
0.42 0.29 −− −−

(0.00) (0.07) −− −−

Notes: This table reports the statistical association between the credit spread index, the Reinhart-Rogoff financial index, the Broker-
Dealer leverage index, and the estimated likelihood of being in the Bad state plotted in Figure 9. Panel A shows the Pearson correlation
(in Column (1)) and the Kendall rank correlation (in Column (2)) of the credit spread index with estimated likelihood of Bad state.
At the same time, Panel B reports the corresponding statistical moments in the simulated data based on my model. Because there
is no corporate bond in my model, I use the equity risk premium as the proxy for credit spread. The risk sharing condition in the
simulated data is measured by using Θt in (32). The likelihood of Bad is estimated for the simulated data in the same way as for the real
data. The Kendall rank correlation measures the similarity of the orderings of the data when ranked by each of the quantities. Thus,
it provides a non-parametric measure of the association of two time series. The validity of the Pearson correlation is more dependent
on the parametric gaussian assumption. The p values are reported inside the parentheses. The sample of indices are annual. They are
time-aggregated from monthly or quarterly sample by averaging within each year. The simulated data are monthly and time-aggregated
into quarterly frequency in the same way.
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Figure 9: Measures and Estimation of Risk Sharing Condition of U.S. Economy
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Notes: The figure presents three measures of risk sharing conditions in the data (in Panels A, B, and C) and the estimated likelihood
of being in the Bad state (in Panel D). According to the theory, the periods of Bad states coincide with the periods of poor risk sharing
conditions in the economy. Therefore, the empirical measures of risk sharing conditions should move together with the estimated
likelihood of Bad state. Panel A shows the Reinhart-Rogoff financial crisis chronologies from Reinhart and Rogoff (2009). Panel B shows
the chronologies of poor financial conditions based on the broker-dealer leverage studied by Adrian and Shin (2010) and Adrian, Etula
and Muir (2014). The year is marked as poor financial conditions (+1) if there is a large quarterly drop or are at least three quarterly
drops in broker-dealer leverage; it is marked as good financial conditions (−1) if there is no quarterly drop in broker-dealer leverage; it
is marked as normal financial conditions (0) otherwise. Panel C plots the Baa-minus-Aaa corporate spread with linear trend removed
allowing for a structural change following Andrews (2003) and Andrews and Ploberger (1994). The Baa-minus-Aaa corporate spread is
the spread between yields on Baa- and Aaa-related long-term industrial corporate bonds. The credit spread index is one of the most
widely used proxies for the financial condition in the literature (e.g., Gilchrist and Zakrajsek, 2012; Adrian, Etula and Muir, 2014). In
Panel D, the estimated likelihood of Bad state is plotted. Sample in Panels C and D are quarterly and constructed from average of
monthly sample for each quarter; sample in Panels A and B are annual. The sample is from the first quarter of 1976 to the fourth
quarter of 2014.
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Table 10: Uncertainty Betas: The Reinhart-Rogoff Financial Index

A. Bad Risk Sharing Condition B. Good Risk Sharing Condition

(Reinhart-Rogoff Index is High) (Reinhart-Rogoff Index is Low)

Mkt ex-Ret ∆νg ∆νc Mkt ex-Ret ∆νg ∆νc

Book-to-Market Sort (1) (2) (3) (4) (5) (6)

Sort #1: Six Portfolios

Lowest 10% (Growth) 1.06 −3.11 2.56 1.18 2.40 14.10
10%− 30% 0.96 −0.81 0.91 0.90 −1.85 −7.85
30%− 50% 0.99 0.91 0.68 0.79 −11.21 −15.98
50%− 70% 0.99 2.55 −0.66 0.72 −11.56 −10.97
70%− 90% 0.98 0.77 −4.48 0.62 −12.15 −14.29
Highest 10% (Value) 1.22 0.21 −17.85 0.64 −12.66 −8.36

Sort #2: Five Portfolios

Lowest 20% (Growth) 1.02 −2.79 0.89 1.10 2.55 8.23
20%− 40% 0.98 0.50 2.04 0.87 −8.39 −12.18
40%− 60% 0.97 2.03 −0.46 0.78 −9.80 −14.50
60%− 80% 0.97 1.94 −0.27 0.60 −11.37 −15.55
Highest 20% (Value) 1.05 −0.98 −9.69 0.63 −11.40 −12.74

Sort #3: Three Portfolios

Lowest 30% (Growth) 1.00 −2.39 1.97 1.06 1.91 4.38
30%− 70% 0.99 1.78 0.32 0.76 −11.49 −14.37
Highest 30% (Value) 1.97 0.32 −4.98 0.62 −12.59 −13.49

Notes: The table reports estimated betas of book-to-market sorted portfolios with respect to the market excess return, the growth
uncertainty shock, and the cash-flow uncertainty shock. In particular, it compares the estimation results of two subsamples. One
subsample consists of the periods in which the risk sharing condition is good, while the other subsample consists of the periods in which
the risk sharing condition is poor. The periods of good or poor risk sharing conditions are estimated using the Reinhart-Rogoff index
shown in Panel A of Figure 9. The regression model for estimating the betas is rBM,tm = aBM + βBM,z(rM,t − rf,t) + βBM,g∆νg,tm +
βBM,c∆νc,tm + εBM,tm , where BM stands for a book-to-market portfolio and rBM,tm is the return of the book-to-market portfolio
labeled by BM . The reported estimates are obtained by using the ordinary-least-squares method. To account for the heteroskedasticity
in stock returns, I also use the weighted-least-squares method with inverse market variance to be the weights. The estimation results
are quite similar, because the regressions are totally separated for different subsamples. And, the heteroskedasticity does not show up
dramatically and hence not bias the estimation within each subsample. The data are monthly from January of 1976 to December 2014.
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Table 11: Uncertainty Betas: The Broker-Dealer Leverage Index

A. Bad Risk Sharing Condition B. Good Risk Sharing Condition

(BD Leverage Index is High) (BD Leverage Index is Low)

Mkt ex-Ret ∆νg ∆νc Mkt ex-Ret ∆νg ∆νc

Book-to-Market Sort (1) (2) (3) (4) (5) (6)

Sort #1: Six Portfolios

Lowest 10% (Growth) 1.09 −2.81 6.80 1.03 −1.61 11.27
10%− 30% 0.98 2.41 −0.99 0.97 −2.00 0.98
30%− 50% 0.98 3.82 −3.35 0.91 −5.75 −3.75
50%− 70% 0.89 1.66 −6.59 0.87 −4.79 −3.67
70%− 90% 0.88 1.22 −9.79 0.84 −4.30 −1.40
Highest 10% (Value) 1.03 1.10 −21.37 1.06 −3.74 −1.34

Sort #2: Five Portfolios

Lowest 20% (Growth) 1.05 −1.94 3.81 1.02 −1.35 6.99
20%− 40% 0.98 4.86 −1.52 0.95 −3.49 −0.72
40%− 60% 0.93 2.90 −5.48 0.89 −7.02 −3.67
60%− 80% 0.86 0.78 −6.20 0.79 −3.30 −3.69
Highest 20% (Value) 0.92 0.65 −14.44 0.95 −3.82 −2.83

Sort #3: Three Portfolios

Lowest 30% (Growth) 1.03 −0.77 3.62 1.01 −1.21 5.41
30%− 70% 0.94 2.45 −4.26 0.89 −4.89 −4.30
Highest 30% (Value) 0.91 1.71 −10.30 0.88 −3.86 −1.95

Notes: The table reports estimated betas of book-to-market sorted portfolios with respect to the market excess return, the growth
uncertainty shock, and the cash-flow uncertainty shock. In particular, it compares the estimation results of two subsamples. One
subsample consists of the periods in which the risk sharing condition is good, while the other subsample consists of the periods in
which the risk sharing condition is poor. The periods of good or poor risk sharing conditions are estimated using the Broker-Dealer
Leverage Index shown in Panel B of Figure 9. The regression model for estimating the betas is rBM,tm = aBM + βBM,z(rM,t − rf,t) +
βBM,g∆νg,tm + βBM,c∆νc,tm + εBM,tm , where BM stands for a book-to-market portfolio and rBM,tm is the return of the book-to-
market portfolio labeled by BM . The reported estimates are obtained by using the ordinary-least-squares method. To account for the
heteroskedasticity in stock returns, I also use the weighted-least-squares method with inverse market variance to be the weights. The
estimation results are quite similar, because the regressions are totally separated for different subsamples. And, the heteroskedasticity
does not show up dramatically and hence not bias the estimation within each subsample. The data are monthly from January of 1976
to December 2014.
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Table 12: Uncertainty Betas: The Credit Spread Index

A. Bad Risk Sharing Condition B. Good Risk Sharing Condition

(Credit Spread is High) (Credit Spread is Low)

Mkt ex-Ret ∆νg ∆νc Mkt ex-Ret ∆νg ∆νc

Book-to-Market Sort (1) (2) (3) (4) (5) (6)

Sort #1: Six Portfolios

Lowest 10% (Growth) 1.07 −2.81 0.78 1.03 2.37 1.61
10%− 30% 0.97 0.41 0.24 1.06 0.92 −0.15
30%− 50% 0.98 0.80 0.59 1.00 −3.92 0.27
50%− 70% 0.98 2.56 −3.22 0.86 −2.23 −1.82
70%− 90% 0.98 2.43 0.07 0.86 −4.51 −0.35
Highest 10% (Value) 1.24 8.08 −10.13 0.98 −1.34 −9.45

Sort #2: Five Portfolios

Lowest 20% (Growth) 1.03 −0.97 1.73 1.04 0.56 2.71
20%− 40% 0.96 0.20 −0.67 1.04 0.88 −2.12
40%− 60% 0.97 0.76 −0.92 0.94 −2.13 −2.10
60%− 80% 0.96 2.77 −1.01 0.82 −5.82 −0.67
Highest 20% (Value) 1.06 4.69 −3.81 0.90 −2.00 −0.45

Sort #3: Three Portfolios

Lowest 30% (Growth) 1.01 −1.53 0.53 1.05 1.02 0.96
30%− 70% 0.98 1.26 −0.84 0.93 −2.83 −0.55
Highest 30% (Value) 1.03 3.08 −0.77 0.88 −3.83 −2.96

Notes: The table reports estimated betas of book-to-market sorted portfolios with respect to the market excess return, the growth
uncertainty shock, and the cash-flow uncertainty shock. In particular, it compares the estimation results of two subsamples. One
subsample consists of the periods in which the risk sharing condition is good, while the other subsample consists of the periods in which
the risk sharing condition is bad. The periods of good or bad risk sharing conditions are estimated by using the simplest three-state
regime-switching model of the credit spread index. The periods of bad risk sharing conditions are those estimated to have high credit
spread index level, while the periods of good risk sharing conditions are those estimated to have low credit spread index level. The
regression model for estimating the betas is rBM,tm = aBM + βBM,z(rM,t − rf,t) + βBM,g∆νg,tm + βBM,c∆νc,tm + εBM,tm , where
BM stands for a book-to-market portfolio and rBM,tm is the return of the book-to-market portfolio labeled by BM . The reported
estimates are obtained by using the ordinary-least-squares method. To account for the heteroskedasticity in stock returns, I also use
the weighted-least-squares method with inverse market variance to be the weights. The estimation results are quite similar, because the
regressions are totally separated for different subsamples. The heteroskedasticity does not show up significantly and hence not bias the
estimation within each subsample. The data are monthly from January of 1976 to December 2014.
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Table 13: Model versus Data: Uncertainty Exposures

Low Risk High Risk All

Sharing Condition Sharing Condition

Book-to-Market ∆νg ∆νc ∆νg ∆νc ∆νg ∆νc

Sort (1) (2) (3) (4) (5) (6)

A. Data: Reinhart-Rogoff Index

Low 10% −3.11 2.56 2.40 14.10 −0.47 3.84

(−0.75) (0.85) (0.47) (3.51) (-0.08) (0.62)

High 10% 0.21 −17.85 −12.66 −8.36 3.96 −30.01

(0.04) (−3.35) (−2.42) (−2.53) (0.64) (−3.11)

B. Data: Broker-Dealer Leverage Index

Low 10% −2.81 6.80 −1.61 11.27 −0.47 3.84

(−0.75) (2.21) (−0.34) (3.32) (−0.08) (0.62)

High 10% 1.10 −21.37 −3.74 −1.34 3.96 −30.01

(0.23) (−3.73) (−0.36) (−0.24) (0.64) (−3.11)

C. Data: Credit Spread Index

Low 10% −1.25 3.33 18.82 26.38 −0.47 3.84

(−0.15) (0.37) (2.33) (3.12) (−0.08) (0.62)

High 10% 25.19 −41.17 −7.10 −32.40 3.96 −30.01

(2.05) (−6.78) (−0.90) (−3.36) (0.64) (−3.11)

D. Model

Growth −0.88 1.14 0.31 0.11 −0.09 0.43

(−3.66) (5.42) (1.99) (2.10) (−0.16) (3.03)

Value −0.31 −1.06 −0.37 −0.13 −0.34 −0.47

(−1.91) (−5.13) (−2.34) (−2.22) (−2.01) (−3.49)

Notes: The table compares unconditional moments of the data to their simulated analogies in the model. It reports boot-to-market
sorted portfolios’ uncertainty betas for the whole sample and two subsamples. The t-statistics are reported in the parentheses. In
computing the t-statistics, the standard errors are estimated using Newey and West (1987, 1994) method with one lag. Data are
sampled at the monthly frequency. Their sources and construction details are explained in the appendix. The sample period is 1976 –
2014. The risk sharing regimes are measured by using the Reinhart-Rogoff Index (the Broker-Dealer Leverage Index) in the Panel A
(Panel B), while the risk sharing regimes are measured by using the credit spread index in Panel C. Panel D reports the simulated results
based on the model. I simulate at the weekly frequency and then time-aggregate the simulated data to form monthly observations. In
parentheses, they are t-statistics computed using 1,000 independent simulations, each with a length of 400 years.
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Table 14: Interactions: Risk Sharing Conditions and Uncertainty Shocks

Return Spreads of Highest 10% and Lowest 10%
Book-to-Market Portfolio (Value Spread)
Are Regressed on

(1) (2) (3) (4) (5) (6) (7) (8)

Risks (Input Variables)

Intercept (αvi) 5.65 5.82 6.03 5.72 6.56 6.53 5.54 5.52
(2.45) (2.12) (1.39) (1.27) (2.37) (2.59) (3.95) (6.39)

Mkt ex-Ret (βvi,z) 0.21 0.22 0.18 0.18 0.21 0.22 0.03 0.04
(1.91) (1.60) (1.54) (1.46) (3.06) (2.55) (0.22) (0.89)

∆νg (βvi,g) 59.45 −93.55 −85.98 8.39 4.98 −28.12 −37.90
(1.26) (−1.29) (−1.14) (0.29) (0.20) (−0.74) (−1.61)

∆νc (βvi,c) −183.33 −181.78 −151.40 −212.63 −213.63 −55.35 −19.12
(−2.31) (−3.29) (−3.39) (−4.63) (−3.01) (−1.27) (−0.73)

regime-x (βvi,x) −3.59 −3.15 −2.35 −2.64 −11.40 −11.22
(−0.53) (−0.45) (−0.74) (−1.01) (−3.86) (−7.57)

∆νg × regime-x (γvi,g) 407.44 390.06 90.89 100.56 80.48 88.64
(2.61) (2.38) (2.27) (3.24) (1.82) (6.25)

∆νc × regime-x (γvi,c) 66.39 37.45 63.17
(0.72) (0.67) (2.67)

Adj-R2 (%) 1.50 19.13 22.75 21.66 18.42 17.32 16.63 14.27

F-statistic 1.92 5.73 4.53 3.76 3.66 3.06 3.29 2.75
(0.17) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.04)

Notes: The table reports the results of regressions for value spreads. Column (1) reports the results of regressing value spreads on the
constant term and the excess market return. Column (2) the uncertainty shocks into the regression. In Columns (3) and (4), the risk
sharing condition (regime-xty ) is measured by the credit spread index; in Columns (5) and (6), the risk sharing condition (regime-xty )

is measured by the Reinhart-Rogoff Index; and, in Columns (7) and (8), the risk sharing condition (regime-xty ) is measured based on

the Broker-Dealer Leverage Index. In Columns (3), (5), and (7), an extra independent variable regime-xty and its interaction term with

the growth uncertainty shock ∆νg,ty × regime-xty . In Columns (4), (6), and (8), the interaction terms between the state of risk sharing

condition and the cash-flow uncertainty shock are added on the top of the regression (3), (5) and (7), respectively. The regressions
are annual, because the state variable regime-xty is quite slow moving and monthly returns cause too much unnecessary noise for the

inference about the slow moving state variable. The annual indices are constructed by averaging monthly or quarterly indices within
each year. The coefficients are estimated based on weighted-least-square estimation where weights are inverse market return variance.
The weighted-least-squares method is necessary, since heteroskedasticity shows up largely in this unified regression and it is correlated
with the explanatory state variable regime-xty . The data are from 1953 to 2014 for regressions in (1), (2), (5), and (6); due to restrictions

of availability, the data are from 1976 to 2014 for regressions in (3), (4), (6), and (8).
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Table 15: Model versus Data: Uncertainty-Beta Sorted Portfolios

Bad Risk Good Risk All

Sharing Condition Sharing Condition

Uncertainty-Beta ∆νg ∆νc ∆νg ∆νc ∆νg ∆νc

Sort (1) (2) (3) (4) (5) (6)

A. Data: Reinhart-Rogoff Index

Low 20% 3.77 6.89 13.79 16.79 12.38 17.45

(0.87) (1.11) (3.23) (2.86) (6.49) (8.18)

High 20% 1.46 0.21 15.75 14.11 12.34 12.34

(0.37) (0.03) (3.98) (2.26) (7.98) (6.62)

High − Low −2.30 −6.68 1.96 −2.27 −0.04 −5.11

(−1.24) (−1.69) (0.91) (−0.42) (−0.02) (−3.02)

B. Data: Broker-Dealer Leverage Index

Low 20% 7.99 10.19 12.76 14.91 12.38 17.45

(1.31) (1.69) (4.13) (3.60) (6.49) (8.18)

High 20% 4.98 5.21 16.49 14.12 12.34 12.34

(1.21) (0.81) (5.92) (3.33) (7.98) (6.62)

High − Low −3.00 −4.99 3.73 −0.80 −0.04 −5.11

(−2.44) (−1.19) (3.33) (−0.27) (−0.02) (−3.02)

C. Data: Credit Spread Index

Low 20% 14.32 13.04 13.41 19.09 12.38 17.45

(2.31) (1.64) (2.07) (2.59) (6.49) (8.18)

High 20% 8.98 9.45 17.77 15.37 12.34 12.34

(1.31) (1.16) (2.43) (3.10) (7.98) (6.62)

High − Low −5.34 −3.59 4.36 −3.72 −0.04 −5.11

(−1.13) (−0.60) (0.96) (−1.23) (−0.02) (−3.02)

D. Model

Low 16.97 18.33 11.22 16.03 13.73 16.33

(6.66) (6.84) (4.49) (6.42) (8.11) (9.65)

High 7.79 7.34 15.79 11.39 13.34 11.76

(2.60) (2.76) (6.28) (4.56) (7.88) (6.95)

High − Low −9.18 −10.99 4.57 −4.64 −0.39 −4.57

(−3.06) (−3.98) (1.79) (−1.86) (−0.23) (−2.70)

Notes: The table compares unconditional moments of the data to their simulated correspondences in the model. Within each Panel,
it reports the average returns of uncertainty-beta sorted portfolios for the whole sample and two subsamples. The difference is that
Panel A (Panel B) uses the Reinhart-Rogoff Index (Broker-Dealer Leverage Index) to measure risk sharing conditions, while Panel C
uses the credit spread index to measure risk sharing conditions. The t-statistics are reported in the parentheses. Data are sampled
at the monthly frequency. Their sources and construction details are explained in the online appendix. The sample period is 1976 –
2014. Panel D reports simulated average returns based on uncertainty-beta sorted portfolios in the model. I simulate the model at the
weekly frequency and then time-aggregate the simulated data to form monthly observations. In parentheses, the numbers are t-statistics
computed using 1,000 independent simulations, each with a length of 400 years.
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