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Abstract

This thesis consists of three essays that theoretically and empirically investigate the as-
set pricing and macroeconomic implications of uncertainty shocks, propose new mea-
sures for model robustness, explain the joint dynamics on equity excess returns and 
real exchange rates.

In the first chapter, I show that the effect of uncertainty shocks on asset prices and 
macroeconomic dynamics depends on the degree of risk sharing in the economy and 
the origin of uncertainty. I develop a general equilibrium model with imperfect risk 
sharing and two sources of uncertainty shocks: (i) cash-flow uncertainty shocks, which 
affect the idiosyncratic volatility of firms’ productivity, and (ii) growth uncertainty 
shocks, which affect the idiosyncratic variability of firms’ investment opportunities. 
My model deviates from the neoclassical setting in one respect: firms’ investment poli-
cies are set by the experts who are subject to a moral hazard problem and thus must 
maintain an non-diversified ownership stake in the firm. As a result, risk sharing be-
tween experts and other investors is imperfect. Limited risk sharing distorts equilib-
rium investment choices, firm valuation, and prices of risk in equilibrium relative to 
the frictionless benchmark. In the calibrated model, the risk premium on growth un-
certainty shocks is negative under poor risk sharing conditions and positive otherwise. 
Moreover, the cross-sectional spread in valuations between value and growth stocks 
loads positively on the growth uncertainty shocks under poor risk sharing conditions 
and negatively otherwise. Empirical tests support these predictions of the model.

The second chapter is based on the joint work Chen, Dou, and Kogan (2015), in 
which we propose a new quantitative measure of model fragility, based on the ten-
dency of a model to over-fit the data in sample with poor out-of-sample performance. 
We formally show that structural economic models are fragile when the cross-equation 
restrictions they impose on the baseline statistical model appear excessively informa-
tive about combinations of model parameters that are otherwise difficult to estimate. 
We develop an analytically tractable asymptotic approximation to our fragility mea-
sure which we use to identify the problematic parameter combinations. Using these 
asymptotic results, we diagnose fragility in asset pricing models with rare disasters
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and long-run consumption risk.
The third chapter is based on the joint work Dou and Verdelhan (2015), which

presents a two-good, two-country real model that replicates the basic stylized facts on
equity excess returns and real interest rates. In the model, markets are incomplete. In
each country, workers cannot participate in financial markets whereas investors trade
domestic and foreign stocks, as well as an international bond. The investors’ asset po-
sitions are subject to a borrowing constraint, along with a short-selling constraint on
equity. Foreign and domestic agents differ in their elasticity of inter temporal substi-
tution and in their risk-aversion. A time-varying probability of a global disaster im-
plies time-varying risk premia in asset markets, and therefore large and time-varying
expected valuation effects on international asset positions. The model highlights the
role of market incompleteness and heterogeneity across countries in accounting for the
volatility of equity and debt international capital flows.

Thesis Supervisor: Leonid Kogan
Title: Professor of Finance
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Chapter 1

Introduction

This thesis consists of three main parts. The first one is a theoretical and empirical

study of impact of uncertainty, especially when there are multiple sources of uncer-

tainty and when it is interacted with limited risk sharing. The second part is a method-

ological study in which a measure of model fragility is proposed and justified. The

third part is a quantitative study of international asset pricing, capital flows, and asset

holdings. In this chapter, I introduce the motivation, results, and key mechanism of

each part.

1.1 Embrace or Fear Uncertainty

This chapter is based on Dou (2016). The volatility of idiosyncratic shocks can affect

agents’ economic behaviors when markets are incomplete or technologies contain op-

tionality features. The literature refers to the aggregate shock to the common compo-

nent of idiosyncratic volatilities as an uncertainty shock, since it alters agents’ informa-

tion sets about future economic outcomes altogether.1 Uncertainty shocks have proven

1There has been a fast growing literature studying the aggregate effects of such uncertainty shocks
(e.g., Pástor and Veronesi, 2006, 2009; Bloom, 2009; Arellano, Bai, and Kehoe, 2011; Bloom, Floetotto,
Jaimovich, Saporta-Eksten, and Terry, 2013; Bachmann and Bayer, 2014; Christiano, Motto, and Ros-
tagno, 2010, 2014; Bundick and Basu, 2014; Gilchrist, Sim, and Zakrajsek, 2014; Herskovic, Kelly, Lustig,
and Nieuwerburgh, 2014). Here, the use of the term uncertainty is different from Knightian uncertainty,
which emphasizes the situations where agents cannot know all the information they need to set accurate
odds in the first place (e.g., Knight, 1921; Hansen and Sargent, 2008a). Also, uncertainty here is different
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useful in explaining macroeconomic fluctuations and have been adopted as a standard

feature of dynamic stochastic general equilibrium (DSGE) models for policy analysis.2

Despite substantial advances in understanding the economic impact of uncertainty

shocks, two central and fundamental questions remain unsolved: first, how to rec-

oncile the mixed empirical evidence about the effect of uncertainty shocks on asset

prices and investment in one coherent framework; second, what are the factors under-

pinning the impact of uncertainty shocks. In particular, whether a positive uncertainty

shock benefits or harms growth firms relative to value firms remains debatable, as does

whether a rise in uncertainty boosts or curtails aggregate investment. The stylized facts

are summarized in Figure 1-1.3

To address these questions, I develop a tractable investment-based general equilib-

rium model of asset prices with heterogeneous firms and agents in incomplete markets.

Using the model as a guide, I revisit the link between asset prices and uncertainty with

an explicit emphasis on the interaction with risk sharing conditions in the economy.

The model not only provides a theoretical framework that quantitatively makes sense

of these seemingly contradictory empirical findings; its main contribution is to do so

by providing a fundamental economic mechanism through the explicit modeling of

from aggregate volatility, which has also been extensively studied in the literature (Bansal and Yaron,
2004a; Drechsler and Yaron, 2011; Shaliastovich, 2015; Campbell, Giglio, and Polk, 2013; Campbell,
Giglio, Polk, and Turley, 2015; Fernandez-Villaverde, Guerron-Quintana, Rubio-Ramirez, and Uribe,
2011; Nakamura, Sergeyev, and Steinsson, 2014; Segal, Shaliasovich, and Yaron, 2015; Gourio, Siemer,
and Verdelhan, 2015; Ai and Kiku, 2015).

2Policy authorities, including the Federal Reserve Board and the European Central Bank have
claimed that uncertainty has an adverse effect on economy, and they have built uncertainty shocks into
their core DSGE models as a main driver of the aggregate fluctuations (Christiano, Motto, and Rostagno,
2010, 2014). For example, at the 2013 Causes and Macroeconomic Consequences of Uncertainty confer-
ence, Federal Reserve Bank of Dallas President Richard Fisher gave a formal speech titled “Uncertainty
matters. A lot.” It emphasized that uncertainty could worsen the Great Recession and the ongoing
recovery.

3I use the average idiosyncratic volatility across U.S. public firms’ stock returns as a proxy for the
total uncertainty. In Panels A and B of Figure 1-1, the high uncertainty in the late 1980s occurs with
positive value spreads (i.e., cross-sectional spreads between value and growth stock returns) and high
investment, and the high uncertainty in the late 1990s occurs with negative value spreads and high
investment. However, the high uncertainty in the early 1990s and the late 2000s accompanies negative
value spreads and low investment. Panel C shows that aggregate market volatility is almost perfectly
correlated with total uncertainty over the period 1980 - 2014. The mixed empirical evidence on total
uncertainty’s effects illustrated in Panels A and B are thus linked to the ambiguous impacts of market
volatility on asset prices and macroeconomic dynamics documented by Bansal, Kiku, Shaliastovich, and
Yaron (2014) and Campbell, Giglio, Polk, and Turley (2015), among others.
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endogenous imperfect risk sharing. The model recognizes two key elements shaping

the impact of uncertainty shocks: (i) the risk sharing condition of the economy and (ii)

the sources of uncertainty shocks.

Let me describe the main features of my model, starting with the characteristics

of firms’ technologies then turning to the characteristics of the agents. In the model,

firms produce consumption goods using production units, which are building blocks

of assets in place. The existing assets in place depreciate over time. Firms invest to

create new assets in place using growth options. Growth options are intangible assets

associated with innovations such as blueprints and research and development (R&D)

projects. The investment decision is an option that the firm exercises optimally only

when it receives an investment opportunity. Their investment opportunities arrive

randomly over time and are subject to firm-specific shocks.

Firms’ technologies feature two sources of uncertainty shocks: the cash-flow un-

certainty shock and the growth uncertainty shock. Cash-flow uncertainty captures

the variation in idiosyncratic volatility of assets-in-place productivity; growth uncer-

tainty captures the variation in idiosyncratic volatility of investment-opportunity qual-

ity. Growth uncertainty can have a very different effect than cash-flow uncertainty due

to the optionality embedded in growth options. This optionality arises from the flex-

ibility in the innovation process. Simply put, if the quality of the investment oppor-

tunity turns out to be exceedingly good, the firm has the flexibility to dial up invest-

ment to exploit the beneficial realization of the investment shock; alternatively, the firm

can tune down investment to insure against the adverse realization of the investment

shock. The optionality makes the benefit of growth options a convex function of the

underlying shock. As a result, growth uncertainty increases the value of growth op-

tions and the aggregate investment. Effectively, the growth uncertainty shock affects

the economy in the same way as a simple aggregate investment-specific technological

(IST) shock, which directly alters the economy’s real investment environment.4

4The aggregate investment-specific technological shock has become a standard feature of real busi-
ness cycle models (Greenwood, Hercowitz, and Krusell, 1997, 2000; Fisher, 2006; Justiniano, Primiceri,
and Tambalotti, 2011). Moreover, recent papers show that the aggregate investment-specific technologi-
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By their nature, the two uncertainty shocks cause different impacts in complete

markets; moreover, their effects on the economy can be altered by the interactions be-

tween imperfect risk sharing and uncertainty shocks. To understand the interactions,

I introduce financial frictions that endogenously arise from a standard moral hazard

problem. Specifically, agents in my economy are either experts or households. Each

expert is a representative agent for a team of managers and active insiders, who are

usually financial intermediaries. Within each team, the managers and active insiders

perfectly insure each other’s consumption risks.5 Each expert uses her unique skills to

manage a particular firm’s assets. In other words, the expert is the key talent without

whose efforts the particular firm would cease to perform. To invest, each expert raises

funds from the capital markets by issuing equity. However, experts face a moral haz-

ard problem that imposes a co-investment or skin-in-the-game constraint: each expert

must retain an undiversified ownership stake in the firm as a commitment not to make

managerial decisions that maximize private benefits at the cost of reduced firm value.

This incentive constraint limits an expert’s capacity to insure against idiosyncratic cash

flow and investment risks. On the other hand, households cannot run firms or trade

assets, but they can invest in financial securities and therefore partially share risks with

experts.

My model therefore deviates from the neoclassical setting in one key respect: firms’

investment policies are set by experts who are subject to background risks imposed

by incentive constraints.6 This friction distorts experts’ investment decisions and port-

folio allocation from the first-best benchmark; households provide risk sharing to ex-

cal shock can help explain asset pricing puzzles (Christiano and Fisher, 2003; Papanikolaou, 2011; Kogan
and Papanikolaou, 2013, 2014; Garlappi and Song, 2014; Kogan, Papanikolaou, and Stoffman, 2015).

5This is a simplification assumption widely adopted in the macroeconomic models with financial
sectors (e.g., Gertler and Kiyotaki, 2010; Gertler and Karadi, 2011; Brunnermeier and Sannikov, 2014).
In other words, like mine here, these models focus on the financial frictions between households versus
insiders of the corporate and financial sectors.

6The implications of background risks for asset prices and firms’ financing and investment behavior
have been investigated by Heaton and Lucas (1997, 2000a,b); Miao and Wang (2007); Chen, Miao, and
Wang (2010), among others. In my model, the background risks are endogenously derived from a moral
hazard problem, in an explicit and coherent way, within a general equilibrium macroeconomic frame-
work. I focus on investigating the general equilibrium implications of the endogenous background
risks.
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perts through financial markets trying to mitigate the distortion and smooth their own

consumption. When experts’ balance sheets are well capitalized, they bear a small

amount of implied idiosyncratic wealth risks and thus have a higher capacity to share

risks with households; otherwise, they bear a large amount of implied idiosyncratic

wealth risks and thus have a lower capacity to share risks with households, because

they require more insurance from households to keep up real investment. The the-

oretical concept of the risk sharing condition can be interpreted as the condition of

the financial sector in the data; in reality, the financial sector plays the largest role in

determining the degree of risk sharing in the economy.

Due to experts’ endogenous background risks, the impact of uncertainty shocks on

asset prices and investment depends on the degree of risk sharing. When risk sharing

is limited, positive uncertainty shocks dramatically increase the severity of background

risks to experts, who become implicitly more risk averse. More precisely, in response

to a positive cash-flow uncertainty shock, experts require higher risk premia on assets

in place; for a rise in growth uncertainty, experts require higher risk premia on growth

options. Yet whether the implied higher risk premia eventually increase or curtail ex-

perts’ willingness to invest depends on the specification of preferences. More precisely,

it depends on whether the intertemporal substitution effect dominates the wealth ef-

fect. In general, the intertemporal substitution effect dominates when the elasticity of

intertemporal substitution (EIS) is larger than one.7 In such cases, a rise in uncertainty

induces experts to invest less in firms’ assets today and more in the future, since their

desire for a better investment environment dominates that for consumption smooth-

ing. The interest rate tends to decline due to the fly-to-quality effect, and yet it remains

stable because of the high EIS coefficient. As a result, assets’ prices have to drop to pro-

vide higher risk premia. Specifically, a rise in cash-flow uncertainty always decreases

the prices of assets in place. However, a rise in growth uncertainty can have an am-

biguous impact on growth option’s prices. The net effect of higher growth uncertainty

depends on the competition between the positive force of the optionality and the neg-

7The discussion on the relationship between the EIS coefficient and the dominance of intertemporal
substitution effect can be found in Weil (1990) and Bhamra and Uppal (2006).
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ative force of the precautionary saving motive. In times when risk sharing is limited,

the precautionary saving motive becomes strong enough to dominate the option effect.

Compared to cash-flow uncertainty shocks, higher growth uncertainty causes an

additional risk to experts. It is the risk of increasing inequality in the distribution of in-

novation benefits from growth options. The skewness in the distribution of innovation

benefits matters when the risk sharing of idiosyncratic investment shocks is limited.

Such a high-moment risk thus becomes particularly devastating when the risk sharing

condition is poor. The intuition is further elaborated as follows. Most of the benefits

from innovation accrue to a small fraction of experts, while the majority of experts bear

the cost of creative destruction since they need to pay for the new assets in place to keep

up their production levels. Wealth is reallocated from the experts who do not invest

to those who receive high-quality investment opportunities. This reallocation becomes

more skewed when growth uncertainty becomes higher, since growth-option benefits

are asymmetric. Technically speaking, each expert faces a more skewed idiosyncratic

investment risk.8 For a risk averse expert, the higher skewness in the idiosyncratic risk

leads to lower certainty equivalent wealth. Therefore, the growth uncertainty shock

contributes to an adverse redistribution risk: the displacement risk.9

The risk sharing condition, moreover, is endogenous and affected by uncertainty

shocks. When the intertemporal substitution effect dominates, experts charge higher

risk premia and want to sell assets to reduce their exposure to idiosyncratic risks, in

response to a rise in uncertainty. This leads to a plunge in asset prices. Experts are

atomistic, so they do not take into account the general equilibrium effect of their own

asset sales on asset prices, even though they are aware of the adverse effect of plung-

ing asset prices on their risk sharing conditions. This pecuniary externality arises from

financial constraints, together with competitive asset markets.10 Due to such a pecu-

8In contrast, the idiosyncratic cash flow risk is always symmetric.
9There is more discussion and a literature review on the asset pricing implications of displacement

risks in Section 1.1.1.
10This particular pecuniary externality has been explicitly investigated and highlighted by Lorenzoni

(2008). The models studying financial stability and its macroeconomic implications are mainly built on
this basic mechanism (e.g., Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997; Bernanke, Gertler,
and Gilchrist, 1999; He and Krishnamurthy, 2011, 2013; Brunnermeier and Sannikov, 2014; Di Tella,
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niary externality, the adverse feedback loop between plunging asset prices (soaring

risk premia) and deteriorating risk sharing conditions characterizes the equilibrium.

This fundamental economic mechanism has important asset pricing implications.

To understand them, it is necessary to establish how these shocks affect the marginal in-

vestor’s utility and determine how uncertainty shocks affect the cross section of firms.

The cash-flow uncertainty shock always carries a negative market price of risk,11

because the cash-flow uncertainty decreases experts’ current and future consumption.

However, when growth uncertainty rises, experts face three endogenous risks: the in-

vestment risk, the endogenous financial risk, and the displacement risk. When the EIS

coefficient is sufficiently large, the latter two contribute to a negative market price of

risk for growth uncertainty shocks, whereas the investment risk contributes to a posi-

tive market price of risk. The risk sharing condition determines the net effect between

the two countervailing forces. The positive force of investment risk dominates when

risk sharing is efficient; the negative force of the endogenous financial risk and the

displacement risk dominates otherwise.

Uncertainty shocks do not affect all firms equally in the cross section. The hetero-

geneous impacts are time varying; they depend on risk sharing conditions. A positive

cash-flow uncertainty increases the value of growth options relative to assets in place.

This is because a higher cash-flow uncertainty immediately increases the riskiness of

assets in place. As a result, experts gravitate to safer assets, including growth options.

This portfolio rebalancing tendency increases the price of growth options. Meanwhile,

the price of investment goods decreases, which provides a hedge for growth options

against the drop in the value of assets in place. A rise in growth uncertainty can in-

crease or decrease the value of growth options relative to assets in place; the sign de-

pends on the risk sharing condition. When risk sharing is efficient, the growth uncer-

tainty increases the investment risk attached to the growth options, which increases the

value of growth options relative to assets in place; otherwise, the growth uncertainty

2014).
11Recall that the formal (technical) definition of market price of risk for a shock is the negative con-

temporaneous response of a marginal investor’s marginal utility to a unit increase in such a shock.
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shock increases the endogenous financial risk and the displacement risk attached to

growth options, which pushes experts to safer assets, including assets in place. The

portfolio rebalancing tendency has an increasing effect on the value of assets in place.

In summary, uncertainty shocks affect firms differently depending on whether they

derive most of their value from growth options or assets in place, and depending on

whether the risk sharing condition is good or poor.

Using state-of-the-art techniques, I solve the model globally to capture the non-

linearity of economic dynamics and the endogenous fluctuations of risk sharing con-

ditions. I calibrate the model to match the moments of macroeconomic variables and

check whether the calibrated model can provide reasonable asset pricing moments and

cross-sectional dynamics of firms. In my calibration, the model has a reasonable quan-

titative performance, which is summarized as follows. First, the model reproduces a

sizable equity premium, mainly attributed to the market incompleteness; it also repro-

duces a large value premium, mainly attributed to the heterogeneous effects of cash-

flow uncertainty shocks. Second, in the model as in the data, the sales dispersion is

countercyclical, while the investment dispersion is pro-cyclical. This empirical pattern

is highlighted in Bachmann and Bayer (2014) as an important cross-equation restric-

tion for the macroeconomic models with uncertainty shocks. My model provides a

novel reconciliation for the two dispersion processes within a unified framework. In

this framework, the sales dispersion is driven by the cash-flow uncertainty shock, but

not by the growth uncertainty shock; it is countercyclical because the cash-flow uncer-

tainty leads to economic downturns. On the other hand, the investment dispersion is

driven by the growth uncertainty shock, but not by the cash-flow uncertainty shock;

it is pro-cyclical because the impact of growth uncertainty shocks on the investment

dispersion is asymmetric: the effect is larger when the risk sharing condition is good.

These connections between uncertainty and dispersion are verified in the data using

estimated uncertainty shocks.

I empirically test the model’s main predictions. I first set up a regime-switching

model in which the exposure of value spreads to growth uncertainty shocks is time-
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varying and characterized by a latent Markovian state variable. My theory implies that

the latent state in which the exposure is higher should correspond to the state in which

risk sharing is limited. I use the credit spread (e.g., Gilchrist and Zakrajsek, 2012) and

the chronologies of financial crisis constructed by Reinhart and Rogoff (2009) as prox-

ies for the risk sharing condition in the data. The empirical evidence is consistent with

the model: the estimated likelihood of being in the latent state of higher growth un-

certainty shock exposure is significantly, positively associated with the proxies of risk

sharing conditions. I also provide additional empirical tests verifying this particular

prediction; the results of statistical tests are significant. Then, I verify the predictions

of the market price of risk for uncertainty shocks in the data.

In summary, this paper casts light on the recent debate on the role of uncertainty

shocks in explaining asset pricing phenomena and macroeconomic dynamics, and on

how the cross section of asset returns can identify uncertainty shocks from different

sources. Moreover, the time-varying cross-sectional moments of asset prices, depend-

ing on the degree of risk sharing, impose additional cross-equation restrictions on the

properties of uncertainty shocks used in macroeconomic models and thus can provide

extra insights on the origins of aggregate fluctuations. Further, as both the model and

empirical evidence highlight the importance of sources and risk sharing conditions

for determining how the economy reacts to uncertainty shocks and the endogeneity

of aggregate volatilities driven by different underlying uncertainty shocks, this paper

provides a cautionary note to empirical studies using one aggregate volatility index to

draw conclusions on the economic impact of uncertainty.

1.1.1 Related Literature

The idea that uncertainty shocks affect investment and asset prices dates back at least

to the literature exploring the (implicit) optionality associated with production and

investment technologies (e.g., Oi, 1961; Hartman, 1972; Abel, 1983; Caballero, 1991;

Dixit and Pindyck, 1994; Bar-Ilan and Strange, 1996; Abel, Dixit, Eberly, and Pindyck,

1996). Since then, many different dynamic structural models have been developed
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based on these ideas trying to quantify the relevance of uncertainty shocks in the data.

The technical challenge of analyzing stochastic dynamic general equilibrium mod-

els with structural links between uncertainty shocks and the data is well known. The

existing literature tries to make progress by focusing on a single isolated channel in

each model. One strand of literature investigates the wait-and-see effect by introducing

decreasing-scale-to-return production, sizable adjustment costs, and irreversibility into

the dynamic setting (e.g., Bloom, 2009; Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry, 2013; Bachmann and Bayer, 2014). The asymmetric effect of uncertainty on

benefits and costs of waiting captures the essence of the waiting option effect. This is

referred to as the bad news principle by Bernanke (1983). However, the waiting option

effect can be mitigated or even turned over when some environmental variables shift.

For example, this idea has been demonstrated in Miao and Wang (2007) and Bolton,

Wang, and Yang (2013) under partial equilibrium frameworks. For investors bearing

uninsurable idiosyncratic risks and firms being financially constrained, the uncertainty

shock can have both a positive and a negative effect on investment and financing de-

cisions. My model deliberately brings the idea of financial friction and imperfect risk

sharing into a general equilibrium framework in which the opposite impacts of uncer-

tainty shocks emerge endogenously.

Another strand of literature explores the credit risk premium channel (e.g., Chris-

tiano, Motto, and Rostagno, 2010, 2014; Arellano, Bai, and Kehoe, 2011; Gilchrist, Sim,

and Zakrajsek, 2014). The key idea is that in an economy with corporate debt and

costly default, higher uncertainty lifts the default probability for firms that are already

near default boundaries, and hence the cost of debt financing increases. This in turn

reduces the investment and increases the default probabilities for firms that are origi-

nally not so close to the default boundaries. As a result of the ripple effect, aggregate

hiring decreases, which leads to lower household consumption and thus feeds back

to a higher credit risk premium. This adverse feedback loop reinforces the ripple ef-

fect, dragging the whole economy into recessions and creating high credit spreads. It

is clear that if the financial sector is strong and very few firms are close to financially
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binding constraints, the adverse risk premium effect will be largely dampened.

A third strand of literature investigates the interaction between learning and un-

certainty shocks. One interaction is the learning-by-doing mechanism, which assumes

that investors have imperfect information about the underlying state and that the only

way to achieve extra signals about the true state is through a sequence of real invest-

ments. Naturally, in a high uncertainty environment, investors conduct earlier and

more intensive investment to learn the underlying state (e.g., Roberts and Weitzman,

1981; Pindyck, 1993; Pavlova, 2002). Moreover, in Pástor and Veronesi (2006, 2009), the

authors show that the uncertainty shock increases the value of growth options relative

to assets in place, and this effect is particularly large when uncertainty shocks are con-

volved with Bayesian learning. On the other hand, uncertainty shocks, interacting with

learning, can also depress asset prices and investment. In Van Nieuwerburgh and Veld-

kamp (2006), if acquiring information becomes slower and belief uncertainty becomes

higher during economic downturns, the learning mechanism generates slow recov-

eries and countercyclical asset pricing dynamics. Moreover, Fajgelbaum, Schaal, and

Taschereau-Dumouchel (2013) show that low activity and slower learning can form an

unpleasant feedback loop. The fixed point for this feedback loop is the equilibrium

that displays uncertainty traps: self-reinforcing episodes of high uncertainty and low

activity. The uncertainty trap can substantially worsen recessions and increase their

duration.

A main contribution of this paper is to introduce two sources of uncertainty shocks

into one unified theoretical framework in which the impact of uncertainty shocks varies

endogenously, governed by a macroeconomic condition: the degree of risk sharing in

the economy. Importantly, the theoretical framework is tractable, which allows for ac-

curate global solutions. This model is motivated by several strands of literature. Basi-

cally, I incorporate the models of heterogeneous agents bearing undiversified idiosyn-

cratic risks and the macroeconomic models of financial stability into an investment-

based general equilibrium model for asset prices. Therefore, my paper is also deeply

connected to the following three strands of literature.
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The asset pricing literature on heterogeneous agents with undiversified idiosyn-

cratic risks explores the possibility of solving the equity premium puzzle based on

market incompleteness. This literature goes back to Mankiw (1986) and Constantinides

and Duffie (1996). The key idea is that the time-varying cross-sectional dispersion of

consumption can increase the volatility of the stochastic discount factor (e.g., Constan-

tinides and Duffie, 1996; Storesletten, Telmer, and Yaron, 2007; Herskovic, Kelly, Lustig,

and Nieuwerburgh, 2014; Ghosh and Constantinides, 2015), and the undiversified id-

iosyncratic investment risks increase the correlation between the individual consump-

tion growth and the asset return (e.g., Heaton and Lucas, 1997, 2000a,b). In my model,

both effects arise endogenously from a moral hazard problem. The resulting effects

are further amplified by endogenous financial frictions. Most importantly, a key dif-

ference of my model is that the marginal investors of the aggregate equity have fully

diversified portfolios. Here, the undiversified idiosyncratic shocks affect the economy

initially through the real investment channel; then, the distorted real investment de-

teriorates agents’ risk sharing on aggregate shocks due to the limited market partici-

pation. More broadly, my model is connected to the papers trying to rationalize the

volatile stochastic discount factors through market incompleteness, such as Alvarez

and Jermann (2000, 2001), Chien and Lustig (2010), Chien, Cole, and Lustig (2012), and

Dou and Verdelhan (2015).

The idea of undiversified idiosyncratic risks has also been adopted in dynamic

structural corporate models (or partial equilibrium dynamic macroeconomic models)

to study firm’s investment and financing behavior (e.g., Miao and Wang, 2007; Chen,

Miao, and Wang, 2010; Panousi and Papanikolaou, 2012; Glover and Levine, 2015). My

model incorporates these partial equilibrium mechanisms, together with asset pricing

channels, into a general equilibrium model to study their aggregate implications.

The macroeconomic literature on financial stability builds financial frictions into

otherwise standard neoclassical models. This literature started from Bernanke and

Gertler (1989), Kiyotaki and Moore (1997), and Bernanke, Gertler, and Gilchrist (1999).

Recent advances explore the concentration of aggregate risk and its role in creating
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systemic risks and nonlinear risk premia dynamics through the balance sheet channel

(e.g., Adrian and Boyarchenko, 2012; He and Krishnamurthy, 2013; Brunnermeier and

Sannikov, 2014; Di Tella, 2014; Haddad, 2014; Drechsler, Savov, and Schnabl, 2014).

One contribution of my paper to this literature is to quantitatively examine the asset

pricing implications of financial frictions in the cross section of various types of assets.

My model fits within the literature studying asset prices in investment-based gen-

eral equilibrium models. It is most closely related to the papers explicitly modeling

assets in place and growth options and focusing on the cross section of asset prices.

Gomes, Kogan, and Zhang (2003) study a model in which book-to-market ratios are

positively associated with average returns. But, growth options are riskier than assets

in place in the model. Papanikolaou (2011) presents a model with aggregate invest-

ment shocks, which by nature affect assets in place and growth options differently. In

this calibrated model, the aggregate investment shock benefits growth options relative

to assets in place, and carries a negative market price of risk if the late resolution of un-

certainty is preferred by investors. Pástor and Veronesi (2009) and Gârleanu, Panageas,

and Yu (2012) study the asset pricing dynamics in models with episodes of endogenous

technology adoption. Ai and Kiku (2013) study a model in which the cost of option ex-

ercise is pro-cyclical and thus the assets in place are riskier. Ai, Croce, and Li (2012)

study a model in which the younger vintages of assets in place have lower exposure

to aggregate productivity shocks and thus growth options are less risky. These papers

all assume perfect risk sharing. However, Gârleanu, Kogan, and Panageas (2012) and

Kogan, Papanikolaou, and Stoffman (2015) rationalize the negative price of risk for the

aggregate investment shock by introducing displacement risks that arise from market

incompleteness. Moreover, Opp (2014) explicitly incorporates the venture capital in-

termediation into an otherwise standard dynamic general equilibrium macroeconomic

model of asset prices and focuses on the asset pricing phenomenon of venture capital

cycles. Despite perfect risk sharing, the informational friction causes costly external

financing for new ventures and hence distorts investment; the venture capital firms

alleviate such information frictions in the economy. Also, the displacement risk of
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technological innovations plays an important role in determining the risk premia in

the model. My model studies the unequal effects of uncertainty shocks on asset re-

turns in the cross section and the time variation of these effects driven by endogenous

imperfect risk sharing. In my model, growth uncertainty shocks endogenously cause

displacement risks, especially when the risk sharing condition is poor.

1.2 Measuring the “Dark Matter” in Asset Pricing Mod-

els

This chapter is based on the joint work Chen, Dou, and Kogan (2015). When building

and evaluating a quantitative economic model, we care about how the model performs

out of sample in addition to how well it fits the past data. This dual concern gives rise

to the classic tradeoff between the accuracy of in-sample fit and the tendency of over-

fitting. Too much emphasis on in-sample fit favors complex models, which are prone

to over-fit the data in sample and likely to have poor out-of-sample performance. Pre-

cisely, those complex models over-utilize degrees of freedom of some parameters to ac-

commodate certain functional-form assumptions to obtain accurate in-sample fit. We

refer to such functional forms of models as fragile and such parameters as “dark mat-

ter”. A model, containing such fragile functional-form assumption or “dark matter”,

is also referred to as fragile. Model fragility is a property of a model which captures its

tendency to over-fit the past data, or in other words, captures the unreliability to con-

clude its out-of-sample performance based on the accuracy in-sample fit. Thus, models

with higher fragility should be less favored among a set of candidate models that fit

the past data well.

The above tradeoff is intuitive but not easy to implement in practice. As we build

increasingly sophisticated quantitative models, the need for a systematic way to quan-

tify model fragility also grows. Traditional over-fitting tendency measures, including

the Akaike Information Criterion (AIC) and its various extensions, focus on the num-

ber of free parameters in a model used to accommodate its functional forms. Such
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measures potentially miss the implicit complexity: the effective number of degrees of

freedom in a model depends not only on the number of free parameters, but also on the

sensitivity of the key implications of the model with respect to “reasonable” changes

in the parameter values. If its implications are highly sensitive, a particular functional-

form assumption of the model can always fit the data by choosing specific parameter

values within a “reasonable” range, and thus tends to over-fit the data in sample. In

such case, the accuracy of in-sample fit becomes unreliable for assessing the particular

functional-form assumption and, of course, the full model.

In this paper, we propose a new quantitative measure of model fragility. Our mea-

sure is constructed based on Fisher information matrices, so we refer to it as Fisher

fragility measure. Consider a typical structural model as a combination of functional-

form specifications and parameters implied by economic theories and statistical distri-

butions. The model describes a joint distribution of variables xt and yt. The baseline

model describes the distribution of sample xn ≡ (x1, · · · , xn) using the parameter vec-

tor θ ∈ Θ. The functional form assumed on top of the baseline model is chosen to be

evaluated for its fragility. We are therefore measuring the “dark matter” of parameters

θ of the baseline model. The functional-form assumption, on top of the baseline model,

introduces additional ingredients that establish a joint distribution of (xn, yn).12 In this

setting, we think of the additional functional forms implied by economic theories as

adding cross-equation restrictions to the system of moments based solely on the base-

line model. By definition, our Fisher fragility measure effectively compares the inverse

Fisher information matrices for the baseline model and the full structural model along

the directions associated with these linear subspaces and aggregates the differences.

Our Fisher fragility measure provides a simple decomposition that attributes the

sources of model fragility (i.e. “dark matter”) to a set of 1-dimensional linear subspaces

of the parameter space. This decomposition offers an intuitive sample size interpreta-

tion. Each 1-dimensional linear subspace, indexed by j, corresponds to a particular

12As an example, consider a Lucas economy. There is a representative agent with certain preferences,
and the growth rate of endowment is IID normal. A structural model in this case can be the model for
the joint dynamics of the exogenous endowment (xt) and endogenous return on the endowment claim
(yt), and θ includes the mean and volatility of endowment growth.
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linear combination of model parameters, vjθ. We assume that model parameters are

estimated by GMM, with the fitted parameter vector θ̂, and use the GMM J-distance,

J(θ̂; xn, yn), as the quantitative measure of model’s in-sample fit given observations

(xn, yn). Asymptotically, our measure corresponds to the amount of extra data needed

to lower the asymptotic variance of vjθ̂ under the baseline model to the level of its

variance under the full structural model (with the original data).

It is worth highlighting that when measuring model fragility, the goal is not to

prove a model wrong. It is true that if a model is misspecified, further testable restric-

tions may reveal that. However, as Box (1976) and Hansen (2014) stress, all models are

simplifications of reality that can eventually be rejected with sufficient data. Hansen

(2014) states that “the important criticisms are whether our models are wrong in hav-

ing missed something essential to the questions under consideration.” This is why we

formulate our measure using the GMM framework. Through the selection of moment

conditions, the econometrician has the ability to determine what the essential predic-

tions of the model are.

It is also worth emphasizing that when measuring model fragility, the goal is not to

estimating parameters. This paper is not really proposing new estimation procedures

or drawing statistical inferences of any point estimators. Rather, the main purpose is

to provide a new model fragility measure facilitating structural model selection when

there are multiple candidates that fit a common set of fixed observations well in sam-

ple. Our model fragility measure is in the same spirit of those penalization procedures

based on statistical fragility measures and adopted in statistical model selections such

as AIC, BIC, and LASSO procedures. However, differently, our measure is specifically

constructed for structural economic models. The over-fitting (model fragility) evalua-

tion is opposite to the goodness-of-fit consideration; the latter takes a parametric model

as fixed and focuses on the distribution of possible sample generated from it, whereas

the former takes a sample as given and focuses on the sensitivity of various parametric

models that fit in sample.

How to justify that our measure is indeed a measure of model fragility? To an-
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swer the important question, we extend a popular measure of statistical over-fitting

tendency to our structural setting,13and we establish an asymptotic equivalence result

showing that the over-fitting tendency measure is actually equivalent to our Fisher

fragility measure. Let θ0 denote the parameter value for the true model. The corre-

sponding value of the J-distance, J(θ0; xn, yn) is generally higher than the fitted value

J(θ̂(xn, yn); xn, yn), because the latter is chosen to minimize the J-statistic in sample.

Then, the gap between the J-distance for the true model and the fitted structural model,

d {θ0; xn, yn} = J(θ0; xn, yn)− J(θ̂(xn, yn); xn, yn), measures the degree of over-fitting

by the estimated model. Not knowing what the true model is, we follow the com-

mon approach and average the degree of over-fitting over a set of possible true mod-

els,
∫

θ∈Θ ξ(θ)d{θ; xn, yn} dθ, where ξ(θ) assigns relative weights to alternative models.

There is no broadly accepted choice of how to weigh the alternative models, and the

exact specification depends on the context. We first specify the baseline model for xt.

We then use the posterior distribution for θ implied by the baseline model, π(θ|xn), as

the distribution over the alternative models ξ(θ). With this definition, we are assuming

that inference based on the baseline model is reliable. We are therefore measuring the

fragility of the full structural model relative to the baseline model.

Our measure of the average degree of over-fitting is fundamentally connected to

model complexity. In addition, as we show, it is closely linked to model sensitivity to

parameter perturbations.

Sensitivity analysis is a common technique for assessing model robustness. Intu-

itively, a model is considered robust if its key implications are not excessively sensitive

to small perturbations of model parameters. In practical applications, one must specify

the relevant perturbations and quantify “excessive sensitivity.” As a result, it is diffi-

13Spiegelhalter, Best, Carlin, and van der Linde (2002) measures over-fitting in a similar way, but
using the log-likelihood instead of the J-distance. Also, they use arbitrary prior for generating the “rea-
sonable” alternative models to assess a statistical model’s over-fitting tendency; however, we argue it’s
crucial to choose a baseline model and a self-coherent posterior for generating the “reasonable” alter-
native functional-form specifications in economic modeling evaluation. This procedure allows for more
economic-meaningful model assessment, beyond pure statistical considerations. Using this procedure,
economists can focus on the fragility of certain functional forms implied by economic theories and the
“dark matter” of certain parameter space, not necessarily the whole model and all its parameters.
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cult to generalize the traditional sensitivity analysis to multivariate settings. Model

fragility may not be fully revealed by perturbing individual parameters – one must

contemplate all possible multivariate perturbations, making the common approach im-

practical for high-dimensional problems.

Our methodology is not subject to such limitations. We use the posterior associated

with the baseline model to weigh the relevant perturbations, and use the variance of

the moments in the structural model to judge the degree of sensitivity of the moments.

This eliminates the need for ad hoc choices associated with traditional sensitivity anal-

ysis. In addition, the asymptotic measure helps diagnose the sources of model fragility.

Knowing the relative importance of each subspace for the overall fragility of the model

effectively reduces the dimensionality of the multivariate sensitivity analysis. For ex-

ample, if a single 1-dimensional subspace is dominant in terms of its contribution to

overall model fragility, one only needs to examine the sensitivity of various moments

to the perturbation of parameters in this particular subspace to quantify the main as-

pects of model fragility.

We also provide an information-theoretic interpretation for our model fragility mea-

sure. It answers the other fundamental question: what information is really captured

by our Fisher fragility measure, and in what economic sense? We argue that our

fragility measure is connected to the informativeness of the economic restrictions on

the model parameters. To introduce the concept of informativeness, consider an ex-

ample of a model that links the observations of the stock price P to the parameter

θ describing the distribution of cash flows through a restriction: E[P] = P̄(θ). An

econometrician starts with a baseline statistical model for cash flows and forms an

(unconstrained) posterior belief about θ based on the observed cash-flow data and the

baseline model, which is depicted in the left panel of Figure 1-2. The flatness of this

posterior distribution indicates that there is nontrivial uncertainty about the true value

of θ according to the baseline model.

The middle panel plots the model-implied price function P̄(θ). Due to the high

sensitivity of P̄ to θ (the derivative ∂P̄/∂θ is large), there is only a narrow set of values of
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θ (highlighted by the shaded region) for which the observed price data are statistically

close to the model-implied prices. This has two implications. First, by imposing the

economic model, the econometrician obtains a posterior for θ (see the right panel) that

is much more concentrated than the posterior distribution under the baseline model.

In this case, we say that the economic restriction E[P] = P̄(θ) is highly informative

about θ.

Second, for values of θ away from the shaded region in the middle panel but still

in the range of values considered highly likely under the unconstrained posterior, the

fit between the model and the observed price data deteriorates drastically, which is

a sign of model fragility. Thus, high informativeness of the economic restrictions is

closely linked to model fragility. Economic parameter restrictions are highly infor-

mative when they can significantly influence inference about certain combinations of

model parameters that are relatively difficult to estimate statistically without such re-

strictions. Such parameter combinations are where the “dark matter” concentrates in

the parameter space.

We formalize the above notion of informativeness of economic restrictions in an

information-theoretic framework with an intuitive effective sample size interpretation.

The informativeness of cross-equation restrictions relative to the baseline model is also

reflected in the effect of the former on the posterior distribution of model parameters.

We quantify the discrepancy between the posteriors of model parameters under the

baseline model and under the model with further economic restrictions using rela-

tive entropy. We then define an effective sample size measure of informativeness of

cross-equation restrictions as the average amount of extra data that, under the base-

line model, generates the same magnitude of the shift in the posterior distribution. In

other words, we equate the information content of the economic restrictions with the

information content of additional data under the baseline statistical model. We show

that the resulting measure of informativeness of cross-equation restrictions is related

asymptotically to our measure of model fragility.

An important class of applications of our measure is to structural models that in-

35



volve agents’ beliefs. One prevalent approach to discipline beliefs is by imposing the

rational expectations (RE) assumption. The RE assumption ties down the beliefs of

economic agents by endowing them with precise knowledge of the probability law im-

plied by an economic model. A common example of a RE model is a setting in which

the agents know the true parameter value θ0. The assumption of such precise knowl-

edge is usually justified as a limiting approximation to the beliefs formed by learning

from a sufficiently long history of data (see Hansen, 2007). If the posterior distribu-

tion of θ given xn under the baseline model serves to describe the outcome of such

learning, then high fragility of the economic model means that the model moments are

highly sensitive to the exact choice among the likely values of the model parameter

vector. In that case, assuming that the agents know the true parameter vector may be a

poor approximation to a broader class of models in which agents maintain nontrivial

uncertainty about the probability law of the model.

We apply the fragility measure to two examples from the asset pricing literature.

The first example is a rare-disaster model. In this model, parameters describing the

likelihood and the magnitude of economic disasters are relatively difficult to estimate

from the data unless one uses information in asset prices.14 We describe the fragility

measure in this example analytically. We also illustrate how to incorporate uncer-

tainty about the structural parameters (preference parameters in this context) when

computing model fragility. The second example is a long-run risk model with a six-

dimensional parameter space. We use this example to illustrate how to systematically

diagnose the sources of fragility in a complex model.

1.2.1 Related Literature

The idea that model fragility is connected to complexity dates back at least to Fisher

(1922). Model complexity is traditionally measured by the number of parameters in

14A few papers have pointed out the challenges in testing disaster risk models. Zin (2002) shows
that certain specifications of higher-order moments in the endowment growth distribution can help
the model fit the empirical evidence while being difficult to reject in the data. In his 2008 Princeton
Finance Lectures, John Campbell suggests that variable risk of rare disasters might be the “dark matter
for economists.”
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the model, because of the coincidence of the two quantities in Gaussian-linear models

(see, e.g. Ye, 1998; Efron, 2004). Numerous statistical model selection procedures are

based on this idea.15

The limitations of using the number of parameters to measure model complexity

are well known. Extant literature covers several alternative approaches to measuring

the “implicit model complexity.” Ye (1998), Shen and Ye (2002), and Efron (2004) pro-

pose to measure complexity (or “generalized degrees of freedom” in their terminol-

ogy) for Gaussian-linear models using the sensitivity of fitted values with respect to

the observed data. Gentzkow and Shapiro (2013) apply a similar idea to examine iden-

tification issues in complex structural models. Spiegelhalter, Best, Carlin, and van der

Linde (2002), Ando (2007) and Gelman, Hwang, and Vehtari (2013), among others, pro-

pose a Bayesian complexity measure they call “the effective number of parameters,”

which is based on out-of-sample model performance. These methods measure the

sensitivity of model implications to parameter perturbations. The important common

feature of these proposals is that they rely on the model being evaluated to determine

the magnitude of necessary parameter perturbations. This is potentially problematic

when evaluating economic models that are fragile according to our definition. For

such models, the posterior distribution over the parameters is highly concentrated as a

result of excessive model sensitivity to its parameters. Relying on this posterior to gen-

erate parameter perturbations can under-represent the true extent of model fragility.

In contrast, we propose to use the baseline model to determine the distribution ξ(θ)

over the potential alternative models.

Hansen (2007) discusses extensively concerns about the informational burden that

rational expectations models place on the agents, which is one of the key motivations

for research in Bayesian learning, model ambiguity, and robustness.16 In particular, the

literature on robustness in macroeconomic models (see Hansen and Sargent, 2008b; Ep-

15Examples include the Akaike Information Criterion (AIC) (Akaike, 1973), the Bayesian Information
Criterion (BIC) (Schwarz, 1978), the Risk Inflation Criterion (RIC) (Foster and George, 1994), and the
Covariance Inflation Criterion (CIC) (Tibshirani and Knight, 1999).

16See Gilboa and Schmeidler (1989), Epstein and Schneider (2003), Hansen and Sargent (2001, 2008b),
and Klibanoff, Marinacci, and Mukerji (2005), among others.
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stein and Schneider, 2010, for recent surveys) recognizes that the traditional assump-

tion of agents’ precise knowledge of the relevant probability distributions is not rea-

sonable in certain contexts. This literature explicitly incorporates robustness consid-

erations into agents’ decision problems. Our approach is complementary to this line

of research in that we propose a general methodology for measuring and detecting

fragility of economic models, thus identifying situations in which parameter uncer-

tainty and robustness could be particularly important.

Our work is connected to the literature in rational expectations econometrics, where

economic assumptions (the cross-equation restrictions) have been used extensively to

gain efficiency in estimating the structural parameters.17 When imposing such as-

sumptions results in a fragile model, standard inference may result in excessively small

confidence regions for the parameters, with low coverage probability under reasonable

parameter perturbations. Related, fragile models tend to generate excessively high

quality of in-sample fit, which biases model selection in their favor. The combination

of these two effects makes common practice of post-selection inference misleading in

the presence of “dark matter”.

1.3 The Volatility of International Capital Flows and For-

eign Assets

This chapter is based on Dou and Verdelhan (2015). After decades of financial liber-

alization, foreign assets represent now a large fraction of aggregate wealth. For the

U.S., the gross foreign equity and bond holdings amount to 83% of GDP in 2010 (Lane

and Milesi-Ferretti, 2007, updated). Foreign holdings are volatile because their unit

value changes, through valuation effects, and their quantities changes, through inter-

national capital flows. During the recent Great Recession for example, the value of the

net U.S. foreign equity and bond holdings decreased by 51%, while at the same time,

17For classic examples, see Saracoglu and Sargent (1978), Hansen and Sargent (1980), Campbell and
Shiller (1988a), among others, and textbook treatments by Lucas and Sargent (1981), Hansen and Sargent
(1991).
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international capital flows dried up. From the perspective of the benchmark models in

international economics, such large valuation changes and such volatile capital flows

are puzzling. In this paper, we propose a two-good, two-country model that is con-

sistent with the basic stylized facts in equity and interest rate markets. With a model

consistent with asset prices in hand, we turn to the macroeconomic quantities: we use

the model to assess the volatility of international capital flows and foreign assets.

Our model has four main characteristics: a rich endowment process, general re-

cursive preferences with heterogenous agents, limited market participation, and short-

selling and borrowing constraints.

The total endowment process has a global and a country-specific component. Both

components are described by Markov processes. The growth rate of the global com-

ponent is subject to disaster risk: with a small, time-varying probability, the world

growth rate may fall. The country-specific endowment is persistent, but only subject

to Gaussian risk. The total endowment is levered and divided into a labor income

stream and a dividend stream. The leverage is also time-varying: as in the data, in

bad times, leverage is large (Longstaff and Piazzesi, 2004a). With these features and

risk-averse agents, the model delivers large and time-varying risk premia in line with

the empirical evidence on equity and bond markets.

The agents are characterized by Epstein and Zin (1989b) preferences, which disen-

tangle risk-aversion from the inter-temporal elasticity of substitution. The domestic

(i.e. U.S.) agent is less risk-averse than her foreign (i.e. rest-of-the-world, denoted

ROW) counterpart, but has a higher inter-temporal elasticity of substitution. The dif-

ferences across agents lead to large gross foreign asset positions. As in the data, the

U.S. tends to borrow from the ROW and invests in the foreign stock market, there-

fore providing insurance to the ROW. International trade is frictionless and each agent

consumes both domestic and foreign goods.

In each country, some agents participate in international financial markets, while

others do not. The workers, who do not participate, consume all of their labor income

each period. The investors, who do participate, choose optimally the quantity of do-
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mestic and foreign stocks as well as their net borrowing or lending positions. Their

investment decisions are subject to two constraints: they cannot short stocks and their

borrowing is limited by the amount they can reimburse the next period in the worst

state of the world. These constraints rule out defaults and ensure that the equilibrium

solution of the model is stationary even if agents with Epstein and Zin (1989b) prefer-

ences differ in their risk-aversion and inter-temporal elasticity of substitution. These

constraints would not be necessary if agents would share the same preference param-

eters or if agents were characterized by constant relative risk-aversion preferences, but

they are necessary in our model to obtain a stationary equilibrium.

In the model, markets are incomplete, even for the agents who participate in finan-

cial markets. There are five different endowment shocks (the global Gaussian growth

rate, the global disaster state, the disaster probability shock, and two country-specific

endowment shocks), but there are only three assets traded (two stocks and one bond).

Moreover, borrowing and short-selling constraints sometimes, but not always, bind.

Market incompleteness is a key feature of our model. While investors can choose

optimally their portfolio positions to mitigate the impact of market incompleteness,

workers can not work around their participation constraint.

Such a rich model has never been simulated before. Building on the results of

Kubler and Schmedders (2003) and Duffie, Geanakoplos, Mas-Colell, and McLennan

(1994), we show that the model has a wealth-recursive Markov solution. The proof

extends previous results on heterogenous agent models to the case of Epstein and Zin

(1989b) preferences and stochastic growth. Knowing that a wealth-recursive Markov

solution exists, the model is simulated at the quarterly frequency. Our solution method

relies on three ingredients: a time-shift, as proposed by Dumas and Lyasoff (2012), a

wealth-recursive equilibrium, and a finite-period approximation of the infinite-horizon

problem. The simulated moments are then compared to their empirical counterparts.

The data sample focuses on the U.S. and an aggregate of the other G10 countries to

build the ROW. The sample period is 1973.IV–2010.IV.

In the simulation, the model matches the characteristics of the U.S. and ROW GDP
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and aggregate consumption, as well the equity and risk-free bond returns. The endow-

ment process matches the mean, standard deviation, and autocorrelation of the growth

rates and H.P-filtered series of U.S. GDP, as well as its cross-country correlation with

the ROW GDP. The model produces equity excess returns that are large and volatile

in both countries. Equity excess returns are also predictable, using the price-dividend

ratio and the wealth-consumption ratio, as in the data. The mean and the volatility of

the risk-free rates are also in line with their empirical counterpart. The exchange rate is

slightly less volatile than in the data, but the average return on the currency carry trade

is in line with the data. The exchange rate change exhibits a low, negative correlation

with relative consumption growth. The next exports, as a fraction of GDP, however, is

less volatile in the model than in the data.

The model is used to assess the magnitude and volatility of international capital

flows and foreign holdings. The model features not only unexpected valuation changes

but also expected returns on foreign investments; the model can thus shed light on

the current debate on the size of expected valuation effects and their importance in

assessing the sustainability of the U.S. current account.

In the simulation, the U.S. invests in ROW equity and the ROW invests in U.S.

equity. But the magnitudes of these gross positions differ: the U.S. holds more foreign

equity assets than foreign equity liabilities. The reverse is true for bonds, and the U.S.

in a net borrower. Overall the U.S. borrows from the ROW and invests in the ROW

equity. The U.S. gross equity positions are even more volatile in the model than in

the data, reflecting both the expected and unexpected valuation shocks. The bonds

positions, to the contrary, are not volatile, in line with their empirical counterpart. The

changes in expected excess returns lead to changes in optimal portfolio holdings and

thus international capital flows. In our calibration, the gross equity flows are more

volatile than in the data, although the volatility of the net equity positions is close to

the one in the data. In comparison, the net debt flows are as smooth in the model as in

the data.

The model thus highlights the key role of expected returns, i.e. expected valua-

41



tion changes, in the volatility of international capital flows. The volatility of expected

and unexpected equity returns seems to account, to a first order, for the volatility of

international capital positions and flows in the data.

A study of the volatility of equity and bond assets and flows requires four features:

(i) the markets must be incomplete such that equity and bond gross asset positions and

flows can be defined separately in a meaningful way; (ii) portfolio holdings must be

time-varying such that capital flows exist; (iii) expected returns must be large and time-

varying for the model to be consistent with the prices of the underlying assets; and

(iv) the model must be solved globally. A very large literature studies international

holdings and capital flows, but few papers satisfy the four conditions above. Let us

rapidly review the most relevant strands of the literature.

A large literature studies the equity home bias — a statement about the puzzlingly

low amount of international diversification in the data compared to the one implied

by standard neoclassical models. Important contributions include Baxter and Jermann

(1997), Lewis (1999), Coeurdacier (2009), Nieuwerburgh and Veldkamp (2009), Coeur-

dacier and Gourinchas (2011) and Heathcote and Perri (2013). This literature is too

large to be summarized here — the database Scopus returns more than 230 published

articles over the last 25 years with the expressions “home bias” and “international” in

the title or abstract; we refer the reader to the recent and excellent survey proposed

by Coeurdacier and Rey (2013). Few papers in this literature feature large and time-

varying risk premia: exceptions are Stathopoulos (2012), who considers habit prefer-

ences, and Benigno and Nisticò (2012), who introduce model uncertainty and long run

consumption risk. Colacito, Croce, Ho, and Howard (2014) study international capital

flows in a production economy in the spirit of Backus, Kehoe, and Kydland (1992).

Another large literature studies the sustainability of the current account imbalances

and the size of potential valuation effects on foreign holdings. In a seminal paper,

Gourinchas and Rey (2007) find a higher return on US external assets than on its ex-

ternal liabilities. Curcuru, Dvorak, and Warnock (2010) offer alternative estimates.

Ahmed, Curcuru, Warnock, and Zlate (2015) describe the different components of in-
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ternational portfolio flows. Important contributions on the current account imbalances

include Kraay and Ventura (2000), Ventura (2001), Caballero, Farhi, and Gourinchas

(2008), and Devereux and Sutherland (2010).

Finally, a recent literature studies the impact of market incompleteness on the cap-

ital flows and exchange rate puzzles, notably the Backus and Smith (1993) puzzle (see

Backus and Smith, 1993) and the forward premium puzzle. The Backus and Smith

(1993) puzzle refers to the perfect correlation between exchange rate changes and rel-

ative consumption in a complete market model with CRRA preferences. In the data,

the correlation is small and negative. The forward premium puzzle refers to the de-

viations from the uncovered interest rate parity and the large currency carry trade

excess returns (see Fama, 1984; Tryon, 1979) Notable contributions in this literature

include the work by Alvarez, Atkeson, and Kehoe (2002), Chari, Kehoe, and McGrat-

tan (2002), Bacchetta and Wincoop (2006), Corsetti, Dedola, and Leduc (2008), Alvarez,

Atkeson, and Kehoe (2009), Pavlova and Rigobon (2010), Pavlova and Rigobon (2012),

Bruno and Shin (2014), Maggiori (2015), and Favilukis, Garlappi, and Neamati (2015).

Solving optimal portfolio problems in incomplete markets is challenging. Earlier solu-

tions in the context of closed economies with specific preferences (e.g., log utility) or

endowment processes include Dumas (1989), Wang (1996), Cochrane, Longstaff, and

Santa-Clara (2008), Longstaff and Wang (2012), and Martin (2013). Our model, exis-

tence theorem, and solution method can be used in the context of closed economies

with heterogenous agents.

Recent attempts have been made to improve the solution method. Devereux and

Sutherland (2011) and Tille and van Wincoop (2010) propose a second-order approxi-

mation method, subsequently used in several papers. In a key contribution, Rabitsch,

Stepanchuk, and Tsyrennikov (2015) however, show that this solution method is inac-

curate in the presence of heteroscedasticity and nonlinearities, which are key features

of our model. Our solution method therefore is global and does not require any second-

order approximation. Evans and Hnatkovska (2005) suggest a different approximation

based on a constant wealth ratio, which is not applicable in our case.
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The papers closer to ours are Gourinchas, Rey, and Govillot (2010), Stepanchuk and

Tsyrennikov (2015), Dumas, Lewis, and Osambela (2014), Maggiori (2015), and Chien,

Lustig, and Naknoi (2015): the first two consider differences in risk-aversion across

countries when markets are, respectively, complete or incomplete; the third one studies

differences of opinion in complete markets; the last two papers feature incomplete

markets to study respectively the impact of differences in financial development or

the Backus and Smith puzzle (1993) puzzle. These authors only consider constant risk

premia. Our work builds on these papers to deliver an incomplete market model with

time-varying risk premia. The time-variation in expected return is key, as changes

in expected returns translate into changes in optimal portfolio holdings and therefore

capital flows.

44



Figure 1-1: Impact of Idiosyncratic Volatility

This figure illustrates the dynamics of idiosyncratic volatility of stock returns. It highlights the comove-
ment pattern of the average idiosyncratic volatility with the cross-sectional spread between value and
growth stock returns (i.e., value spreads) and the aggregate investment.
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Figure 1-2: An example of an “informative” economic restriction on the parameters.

The left panel plots the unconstrained posterior about θ based on cash-flow data. The middle panel
plots the price function P̄(θ). The dashed lines represent the confidence band for the mean of price
observations. The right panel plots the constrained posterior about θ based on both cash-flow and price
data.
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Chapter 2

Embrace or Fear Uncertainty: Growth

Options, Limited Risk Sharing, and

Asset Prices

2.1 Model

In this section, I develop a continuous-time general equilibrium model with two sec-

tors: the consumption goods sector and the investment goods sector. I summarize the

model’s features as follows. First, there are two types of agents in the economy: ex-

perts and households. Experts with population κ indexed by f ∈ F ≡ [−κ, 0] are

the only ones who can manage and trade firm’s assets; households with population

1 indexed by h ∈ H ≡ [0, 1] provide labor. Second, firms hold two classes of as-

sets: assets in place generate consumption goods; growth options create new assets in

place. Although assets are irreversible at the aggregate level, they can be continuously

traded among firms. Third, outputs are affected by firm-specific idiosyncratic shocks,

which are unobservable to agents except the expert who literally manages the assets.

The information asymmetry makes it possible for the expert to take hidden actions

such as shirking efforts or stealing for the private benefit at the expense of diffused

shareholders. To deal with the agency problem, the expert is restricted to become a
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blockholder who owns a significant fraction of the firm’s equity. Fourth, the volatili-

ties of idiosyncratic shocks are time varying and driven by aggregate shocks. These are

the uncertainty shocks. Experts respond optimally to the uncertainty shocks in mak-

ing decisions on investment and hiring for the firm. Fifth, all agents can trade financial

contracts in capital markets where a full set of Arrow-Debreu securities are available.

Sixth, I deliberately cast the model in continuous time, because the continuous-time

formation allows me to characterize the key equilibrium relationships by cleaner ex-

pressions and conveniently summarize the equilibrium conditions by a set of coupled

ordinary differential equations.

2.1.1 Firms and Technologies

There is a continuum of infinitely-lived firms in the consumption goods sector. Each

firm is managed by an expert and indexed by f ∈ F. Existing assets in place depreciate

with a constant rate δ, and new assets in place are built based on a combination of ex-

isting growth options and investment goods newly produced in the investment goods

sector. Growth options can be used to create new assets in place when investment

opportunities arrive.

Consumption goods firms. Each firm’s assets consist of assets in place and

growth options. The equity of the firm f is freely traded, and it is the claim on the

dividends generated by the assets in place and the value added by the creation of new

assets in place from growth options.

Assets in place. Denote by kt the aggregate amount of assets in place in the econ-

omy and by k f ,t the amount of assets in place held by the individual firm f , where

t ∈ [0, ∞) is the time index. Assets in place k f ,t held by the firm f generates output at

rate y f ,t, over the period [t, t + dt],

y f ,t = kϕ
f ,t`

1−ϕ
f ,c,t , (2.1)
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where ϕ ∈ (0, 1) captures the capital share in production and ` f ,c,t represents the labor

input for production. When held by the expert f , the existing assets in place evolves

according to
dk f ,t

k f ,t
= −δdt + σdZt + dA f ,t,

where δ is the constant depreciation rate, Zt is a Brownian motion describing an aggre-

gate shock in the economy, and A f ,t is a cumulative firm-specific process describing

the idiosyncratic cash flows. The shocks dZt and dA f ,t can be interpreted as the aggre-

gate and the idiosyncratic (short-term) cash flow shocks, respectively.1 The cash-flow

uncertainty is defined as the volatility of the idiosyncratic shock dA f ,t:

νc,t ≡ vol
(
dA f ,t

)
.

The exposure to the aggregate shock is constant σ; however, the exposure to the id-

iosyncratic shock, denoted by νc,t, is stochastic. The idiosyncratic volatility νc,t repre-

sents an aggregate economic condition because the prospects of short-term cash flows

become blurred when νc,t increases.

Growth options, investment opportunities, and new assets in place. Growth op-

tions allow the firm to create new assets in place when investment opportunities arrive.

Specifically, the growth options are intangible assets associated with ideas of techno-

logical innovations such as R&D projects, blueprints, and patents; however, these in-

novative ideas are necessary but not alone sufficient to realize the final commercial

benefits. The investment opportunities are business opportunities or ideas to commer-

cialize the technological innovations and turn them into commercial benefits through

making real investment. The arrivals of investment opportunities are firm-specific, so

the model has the feature that investment is lumpy at the firm level but smooth at

the aggregate level, which is consistent with the data. This modeling feature is cru-

1This way of modeling capital accumulation and production is actually equivalent to the conven-
tional TFP shock method, where the adjustment cost function is not only homogeneous with respect to
capital stock kt but also the TFP shock at, i.e., the adjustment cost, is ι(gt)atkt, if there is an adjustment
cost function.
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cial since it allows me to study the time-series properties of cross-sectional investment

dispersions.2

I denote it by s f ,t the amount of growth options held by the firm f and denote it by

pt the unit price of growth options. Although the aggregate amount of growth options

is assume to be constant st = s,3 the firms can freely trade growth options with each

other at the price pt. The existing stock of growth options stay constant over period

[t, t + dt]; that is, ds f ,t = 0.

Let M f ,t be the firm-specific point process that describes the number of investment

opportunities obtained by firm f up to time t. Upon the reception of a new investment

opportunity at time t (i.e., dM f ,t = 1), the firm f decides whether to invest or not. This

is similar to Khan and Thomas (2008), which explicitly accounts for the micro-level

investment spikes and the fluctuation of the extensive margin of investments. The

firm can undertake an investment only upon payment of its fixed adjustment cost v,

specifically by forfeiting vpts f ,t of current consumption goods. The fixed adjustment

cost denominated in the units of growth options captures the essence of the real-option

model of investment in Jovanovic (2009) and Ai and Kiku (2013), among others.4 De-

note by u f ,t the variable characterizing whether the firm f undertakes an investment

or not. If it is undertaken, u f ,t = 1; otherwise, u f ,t = 0. Upon u f ,t = 1, the firm creates

new assets in place knew
f ,t using the technology:

knew
f ,t = ε f ,t︸︷︷︸

idio. IST shock

× m
(
s f ,t, g f ,t

)
kt︸ ︷︷ ︸

inputs and scaling

, (2.2)

2This follows the standard modeling in the literature on the implications of lumpy investment for
aggregate macroeconomic dynamics, such as Khan and Thomas (2008).

3The exogenous stationarity in the relative-growth option scale is standard in the asset pricing lit-
erature and growth literature (e.g., Gomes, Kogan, and Zhang, 2003; Ai and Kiku, 2013). In order to
avoid tracking an extra endogenous state variable, models either assume constant growth options or
assume that the growth options grow proportionally to the total assets in place. In my model, the value
of growth options is linear in kt. Then, the relative growth option scale is ptst/(qtkt) = sp̂t/q̂t, where pt
and qt are prices of growth options and assets in place, respectively. In equilibrium, sp̂t/q̂t is a stationary
process.

4In Jovanovic (2009) and Ai and Kiku (2013), the growth options fully depreciate after being used for
investment. In macroeconomic models studying the role of micro-level nonconvex costs of investment
adjustment in generating nonlinear aggregate investment dynamics, the fixed adjustment costs are usu-
ally denominated by profits (e.g., Bloom, 2009) or denominated by labor (e.g., Khan and Thomas, 2008).
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where ε f ,t is the idiosyncratic investment-specific (IST) shock to capture the idiosyn-

cratic shock on the quality of investment opportunities, s f ,t is the amount of existing

growth options, and g f ,t is the input of investment goods. To create new assets in place

with the amount of ε f ,tm(s f ,t, g f ,t)kt, the capital stock of growth options s f ,t is prefixed

(i.e., not adjustable at time t after the realization of ε f ,t); however, the firm can choose

the investment goods input g f ,t optimally conditional on the realization of ε f ,t. The cost

of purchasing investment goods is τtg f ,t, where τt is the equilibrium market price of in-

vestment goods.5 The production function m(s, g) is a constant-elasticity-of-substitute

(CES) function. In particular, I assume that m(s, g) has the Cobb-Douglas functional

form with the share of capital to be α; that is, m(s, g) ≡ s1−αgα.6

Once the firm f receives an investment opportunity at time t (i.e. dM f ,t = 1) and

implements it (i.e. u f ,t = 1), the new assets in place knew
f ,t are created from the growth

options with the rate:

i f ,t ≡ knew
f ,t /kt = ε f ,tm

(
s f ,t, g f ,t

)
.

Growth uncertainty. The idiosyncratic IST shock ε f ,t in (2.2) is assumed to be in-

dependently distributed over time and across firms, to avoid having to keep track of

the distribution of ε f ,t as an infinitely-dimensional state variable. The assumption of

idiosyncratic investment risks have been adopted by the macroeconomics literature

(e.g., Khan and Thomas, 2008; Bachmann and Bayer, 2014), and by the asset pricing

5It should be noted that, similar to Gomes, Kogan, and Zhang (2003), although the tangible assets is
complementary to the intangible assets investment at the aggregate level, each individual expert cannot
really internalize the aggregate impact of their tangible asset holdings, and hence in the decentralized
economy the assets in place investment has zero complementarity for the R&D investments. Therefore,
there is an externality in the economy, which makes the allocations in a competitive equilibrium not
necessarily identical to those solved by the social planner’s problem.

6Similar to Gomes, Kogan, and Zhang (2003), I assume that the scale of new assets in place created
from growth options is linear in the aggregate assets in place. This guarantees that the ratios of the
aggregate new to the aggregate existing assets in place and of the aggregate value of growth options to
the aggregate value of assets in place are both stationary over time. Other examples include Ai, Croce,
and Li (2012) where the aggregate investment is assumed to be a deterministic function of the aggregate
investment goods by restricting the cross-sectional distribution of idiosyncratic investment shocks, and
Ai and Kiku (2013) where the aggregate assets in place and the aggregate growth options are assumed
to follow an exogenous common stochastic trend which is the arrival intensity of new growth options.
Other general equilibrium asset pricing models with growth options, such as Papanikolaou (2011) and
Kogan, Papanikolaou, and Stoffman (2015), have aggregate assets in place to follow a mean-reverting
stationary process in equilibrium, so the stationary ratios are guaranteed endogenously.
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literature (e.g., Gomes, Kogan, and Zhang, 2003; Ai, Croce, and Li, 2012). However,

a key difference in this model is that the variance of the distribution of idiosyncratic

growth opportunity quality shocks is time varying. More precisely, I assume that ε f ,t

has a symmetric distribution ε f ,t ∼ N
(

0, ν2
g,t

)
. The growth uncertainty is the standard

deviation of the IST shock

νg,t ≡ std
(
ε f ,t
)

where the growth uncertainty νg,t evolves randomly over time. The idiosyncratic

volatility νg,t represents an aggregate economic condition because the prospects of in-

vestment opportunities become blurred when νg,t increases.

Optimal investment. Here, I describe the investment decision of an expert when

an investment opportunity arrives. Because experts can choose the variable utilization

rate of growth options u f ,t, the optimal investment decision-making can be decom-

posed into two steps. First, conditioning on the full utilization (i.e., u f ,t = 1), the

expert maximizes the net present value Π f ,t by choosing investment goods input g f ,t.

Given the price of assets in place, denoted by qt, and the price of investment goods τt,

the optimization problem and the net present value Π f ,t can be expressed as

max
g f ,t

Π f ,t ≡ qtknew
f ,t − τtg f ,t, with knew

f ,t ≡ i f ,tkt and i f ,t ≡ ε f ,ts1−α
f ,t gα

f ,t. (2.3)

In other words, the net present value Π f ,t is the market value of the new assets in place

knew
t minus its investment cost τtg f ,t. The optimal input of investment goods is strictly

convex in the idiosyncratic investment shock ε f ,t and is linear in the stock of existing

growth options s f ,t:

g f ,t = ogs f ,tε
1

1−α

f ,t

(
qtkt

τt

) 1
1−α

, with constant og ≡ α
1

1−α . (2.4)

This is the result of a simple intratemporal optimization based on (2.3). The optimal

investment condition (2.4) is similar to the standard q-theory of investment developed
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by Hayashi (1982) where the optimal investment is directly linked to the marginal q

of assets in place (qtkt
τt

), denominated by the investment goods. Yet there is one key

difference. Because 0 < α < 1, the optimal investment goods demand g f ,t is a convex

function of marginal q instead of a concave function, which is a direct result of the Oi-

Hartman-Abel-Caballero channel. Given the price of growth options, denoted by pt,

the optimal present value of newly created assets in place can be expressed as Π f ,t ≡

π f ,ts f ,t pt where the optimal net present value rate π f ,t has the analytical expression:

π f ,t = oπε
1

1−α

f ,t

(
qtkt

p1−α
t τα

t

) 1
1−α

, where oπ ≡ (1− α)og is a constant. (2.5)

And the optimal investment rate is i f ,t = oιε
1

1−α

f ,t

(
qtkt
τt

) α
1−α

s f ,t, where oι = oα
g is a

constant. In the second step, the expert chooses the utilization rate u f ,t ∈ {0, 1} to

maximize the profits from creating new assets in place. It is clear that a firm will ab-

sorb its fixed cost vpts f ,t to undertake the investment opportunity if the investment

profit rate π f ,t is at least v. It follows immediately that a firm will undertake the in-

vestment opportunity if its idiosyncratic IST shock ε f ,t lies at or above some threshold

values. Because all agents face the same option-exercising problem, the threshold value

only depends on the aggregate state variables. I denote the exercising boundary by ξt,

which is characterized as follows:

ε f ,t ≥ ξt if and only if π f ,t = oπε
1

1−α

f ,t

(
qtkt

p1−α
t τα

t

) 1
1−α

≥ v.

From (2.5), it leads the analytical expression for the exercising threshold ξt:

ξt = oξv1−α

(
qtkt

p1−α
t τα

t

)−1

, where oξ ≡ oα−1
π is a constant. (2.6)
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Thus, the profit rate of growth options for the firm f is

π f ,t = (π f ,t −v)1{ε f ,t≥ξt}.

Investment goods firms. There is a representative firm in the investment goods sec-

tor. It uses the labor of households to produce the investment goods needed to create

new assets in place in the consumption goods sector. More precisely, the production

function for the investment goods output rate over the infinitesimal interval [t, t + dt)

is

gt = zι`ι,t, (2.7)

where zι is the average total productivity factor in the investment goods sector and `ι,t

is the total labor demand to produce investment goods gt. I assume constant return to

scale for labor input for simplification.7

Spot markets. The outputs (consumption goods and investment goods) and the

firm’s assets (assets in place and growth options) are traded in perfectly competitive

spot markets. There is one spot price in each market, and this spot price is only deter-

mined by the aggregate state of the economy, even though the participants are hetero-

geneous. The spot prices are market-clearing prices for which each single participant

is a price taker.

2.1.2 Uncertainty Shocks

The cash-flow uncertainty νc,t and the growth uncertainty νg,t move stochastically. The

uncertainty shocks are large shocks driving the state variable νt, which has a one-to-

one correspondence to the 2-tuple (νg,t, νc,t). I assume that the growth uncertainty νg,t

7Similar to Papanikolaou (2011) and Kogan, Papanikolaou, and Stoffman (2015), the production func-
tion of the investment goods only works with fixed amount of capital input. But, to guarantee profits
on the capital input and thereby generate meaningful share prices of investment goods firms, Papaniko-
laou (2011) assumes decreasing returns to scale for the labor input. Like Kogan, Papanikolaou, and
Stoffman (2015), my focus is not to link investment-minus-consumption (IMC) portfolio returns to ag-
gregate shocks in the economy. So, I also assume constant return to scale for the labor input.
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follows a 2-state homogeneous continuous-time Markov chain taking values in the set

𝒱g ≡
{

νL
g , νH

g

}
, where νL

g < νH
g . Similarly, I assume that the cash-flow uncertainty νc,t

follows a 2-state homogeneous continuous-time Markov chain taking values in the set

𝒱c ≡
{

νL
c , νH

c
}

where νL
c < νH

c . For simplicity, the growth uncertainty process and the

cash-flow uncertainty process are assumed to move independently with the transition

rate matrices Qg and Qc, respectively,

Qg ≡

 λ(νL
g ,νH

g ) −λ(νL
g ,νH

g )

−λ(νH
g ,νL

g ) λ(νH
g ,νL

g )

 and Qc ≡

 λ(νL
c ,νH

c ) −λ(νL
c ,νH

c )

−λ(νH
c ,νL

c ) λ(νH
c ,νL

c )

 .

The transition intensity for νt is denoted as λ(νt,ν′) which only depends on Qg and Qc.

2.1.3 Preferences

Both experts and households have stochastic differential utility of Duffie and Epstein

(1992a,b). This preference is a continuous-time version of the recursive preferences

proposed by Kreps and Porteus (1978b), Epstein and Zin (1989c), and Weil (1990). The

Epstein-Zin-Weil recursive preference has become a standard preference in asset pric-

ing and macro literature to capture the reasonable joint behavior of asset prices and

macroeconomic quantities. More precisely, the utility is defined recursively as follows:

U0 = E0

[∫ ∞

0
f(ct, Ut)dt

]
,

where

f(ct, Ut) ≡ ρ

[
u(ct)

((1− γ)Ut)
θ−1−1

− θUt

]
, with θ ≡ 1− γ

1− ψ−1

and the felicity function f(ct, Ut) is an aggregator over current consumption rate ct and

future utility level Ut. The coefficient ρ is the rate parameter of time preference, γ is

the risk-aversion parameter for one-period consumption, and ψ is the parameter of

elasticity of intertemporal substitution (EIS) for deterministic consumption paths. The

55



period utility function has the form:

u(ct) =
c1−ψ−1

t
1− ψ−1 .

The preference between consumption and leisure can be viewed as a special case

of the KPR preference (King, Plosser, and Rebelo, 1988, 2002) and the GHH preference

(Greenwood, Hercowitz, and Huffman, 1988), where leisure is not appreciated or work

is not undervalued. Thus, the labor supply is inelastic.8

To ensure stationarity between experts and households, I assume that agents die

independently of each other according to a Poisson process with constant intensity µ.

New agents are born at the same rate µ with a fraction κ
1 +κ as experts and 1

1 +κ
as households, so the measure of households and the measure of experts both remain

constant. The wealth of agents who die is bestowed on the newly born on a per-capita

basis. The subjective discount factor ρ captures the effective time preference because I

make it include the adjustment for the likelihood of death for each agent (see Gârleanu

and Panageas, 2015).

2.1.4 Labor Markets

The aggregate labor supply is one since each household inelastically supplies their

labor-hours endowment. On the demand side, the labor choices are endogenous in

both the consumption goods sector and the investment goods sector. Driven by the ag-

8The inelastic labor supply is adopted for several reasons: (1) this is a useful benchmark that allows a
direct comparison to the existing literature on production-based asset pricing and investment in incom-
plete markets where inelastic labor supply is the most common assumption (e.g., Danthine and Donald-
son, 2002; Angeletos, 2007; Guvenen, 2009; Kogan, Papanikolaou, and Stoffman, 2015); (2) this allows us
to focus on illustrating our key mechanism that results from the financial friction; (3) in the literature,
it is shown that this assumption together with limited risk sharing can provide reasonable asset pricing
implications; and (4) this is actually a not-far-off approximation to the reality. Wages have risen in the
U.S. over long periods of time, but the proportion of time spent working has not changed very much.
This old stylized fact has recently been reconfirmed by Ramey and Francis (2009). I can investigate the
extent to which labor supply choice can be endogenized without compromising the performance on the
asset pricing side, and study how frictions in labor markets can help improve the quantitative perfor-
mance of our model. These are definitely important questions to understand but out of the scope of this
paper. I leave them as the future research agenda.
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gregate shocks in the economy, the share of aggregate labor supply allocated between

the two sectors is time-varying. The labor demand in the investment goods sector is

straightforward. It is determined by the aggregate investment goods demand. Accord-

ing to (2.7), it holds that the aggregate labor demand in the investment goods sector

is

`ι,t = z−1
ι gt.

The optimal labor demand of each firm is a static (i.e., state-by-state) optimiza-

tion problem. This is because the firm’s employment ` f ,c,t affects only the profits rate

y f ,t − wt` f ,c,t at time t. As a result, the optimal labor demand maximizes profits state-

by-state at time t. As a result, given wages, the optimal labor demand can be solved

only based on the intratemporal Euler equation, which is independent of the intertem-

poral optimizations. They are summarized by Proposition 1. All the detailed proofs of

propositions and corollaries can be found in the online appendix.

Proposition 1 (Optimal Labor Demand and Output). Given wt and k f ,t, labor demand

and output are linear in k f ,t and decreasing in wt: `c, f ,t = `(wt)k f ,t and y f ,t = y(wt)k f ,t,

where `(wt) ≡
[
(1− ϕ)

wt

]1/ϕ

and y(wt) ≡
[
(1− ϕ)

wt

] 1−ϕ
ϕ

.

From Proposition 1, the aggregate labor demand and the aggregate output, by the

Law of Large Numbers, are

`c,t ≡
∫

f∈F
`c, f ,td f = `(wt)kt and yt ≡

∫
f∈F

y f ,td f = y(wt)kt, respectively.

The endogenous labor reallocation between the consumption goods sector (`c,t) and

the investment goods sector (`ι,t) play a crucial role in understanding the cross-section

of stock returns.

2.1.5 Firms’ Payouts and Assets’ Holding Returns

Because firms face no financing frictions, the irrelevance theorems (see Modigliani and

Miller, 1958; Miller and Modigliani, 1961) hold for firms’ capital structures and payout
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policies. Similar to most macroeconomic and asset pricing models, I assume that the

firms are all-equity firms and pay out earnings. So, for each firm f , its payout is equal

to the profits from assets in place ϕy(wt)k f ,tdt plus value added by growth options

π f ,ts f ,t ptdM f ,t minus expenditures for assets in place qtitk f ,tdt:

dD f ,t = ϕy(wt)k f ,tdt + π f ,ts f ,t ptdM f ,t︸ ︷︷ ︸
total profits

− qtitk f ,tdt.︸ ︷︷ ︸
expenditure for new assets in place

Here, D f ,t is the cumulative payout of firm f and the incremental payout dD f ,t can

theoretically be negative in the model. Because I do not particularly specify the exter-

nal financing frictions of the firm, the negative payout can be interpreted as issuing

new equity by the firm. In fact, numerically, under my baseline calibration, the payout

turns out to be negative only in the extreme ranges of the state space which are visited

by the economy very rarely in simulations.

The total payout of a firm can be decomposed into two components. One is due to

the capital stock of assets in place and the other is due to the capital stock of growth

options. They are relevant for the valuation of assets in place and growth options,

respectively. More precisely, the decomposition based on the accounting for assets in

place and growth options is as follows:

dD f ,t =
[
ϕy(wt)k f ,t − qtitk f ,t

]
dt︸ ︷︷ ︸

payout due to assets in place

+ π f ,t pts f ,tdM f ,t.︸ ︷︷ ︸
payout due to growth options

Moreover, the instantaneous holding returns of assets in place and growth options

for experts are, respectively,

dRk
f ,t = µk

f ,tdt + (σ
q
t + ϕσ)dZt + ∑

ν ̸=νt

ς
q,(νt,ν)
t dN(νt,ν)

t + dA f ,t, (2.8)

and

dRs
f ,t = µs

f ,tdt + (σ
p
t + ϕσ)dZt + ∑

ν ̸=νt

ς
p,(νt,ν)
t dN(νt,ν)

t + π f ,tdM f ,t, (2.9)
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where the drift terms µk
f ,t and µs

f ,t can be found in the online appendix and the dif-

fusion terms σ
p
t and σ

q
t and the jump size terms ς

q,(νt,ν)
t and ς

p,(νt,ν)
t are defined in the

beginning of Section 4.3.

2.1.6 Financial Markets

There is a full set of short-term financial contracts available to all agents. Each finan-

cial contract has zero net supply. And their prices are always normalized at one. All

agents trade those short-term contracts in a perfectly competitive capital market. The

contracts are traded continuously at time t with the payoffs realized at the end of the

infinitesimal interval [t, t + dt]. Among the financial contracts, one is the short-term

risk-free bond with payoff 1 + rtdt, one is traded on the aggregate Zt shock with a

contingent payoff 1 + rZ
t dt + dZt, one is traded on the growth uncertainty shock with

a contingent payoff 1 + rνg
t dt +

[
dN

(νg,t,ν′g)
t − λ(νg,t,ν′g)dt

]
, one is traded on the cash-

flow uncertainty shock with a contingent payoff 1 + rνc
t dt +

[
dN(νc,t,ν′c)

t − λ(νc,t,ν′c)dt
]
, a

continuum of short-term contracts are traded on idiosyncratic cash flow shocks W f ,t

with payoffs 1 + rW
f ,tdt + dW f ,t for all f ∈ F, and a continuum of short-term con-

tracts are traded on idiosyncratic investment shocks ε f ,tdN f ,t with payoffs 1 + rN
f ,tdt +[

ε f ,tdN f ,t −E(ε f ,t)λdt
]

for all f ∈ F. In sum, the financial market is complete.

The expected payoffs rt, rZ
t , rνg

t , rνc
t , rW

f ,t, and rN
f ,t are endogenously determined by

the market clearing conditions. Importantly, later I shall show that the expected rate of

returns are time varying, driven by the cash-flow uncertainty shocks and the growth

uncertainty. Moreover, each firm’s equity can be freely traded. However, because a full

set of contingent claims are already available to all agents, the equities of firms become

redundant in terms of spanning the contingent space. Without loss of generality, I

assume that a firm’s equity on its assets in place and equity on its growth options can

be traded separately.

Although a full set of contingent claims are available, the market can be endoge-

nously incomplete due to lack of commitments. Later I show that due to zero com-

mitment in long-term contracts and a moral hazard problem, experts face portfolio
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constraints including limited access to short-term financial contracts on particular id-

iosyncratic risks.

2.1.7 Moral Hazard

I now introduce an agency conflict induced by the separation of ownership and con-

trol. The diffused investors fund the firm controlled by the expert. In contrast to the

neoclassical model in which the firm-specific cash flow process A f ,t and the investment

opportunity process M f ,t are exogenously specified, those processes in my model are

affected by expert’s unobservable actions. Specifically, the expert is able to secretly di-

vert cash flows and investment opportunities from the firm under her control, which I

describe explicitly as follows.

Hidden actions in cash flows. The expert f ’s hidden action aA
f ,t ∈

[
0, aA

]
determines

the expected rate of idiosyncratic cash flow shock dA f ,t, so that

dA f ,t = −aA
f ,tdt + νc,tdW f ,t,

where W f ,t is a Brownian motion capturing the firm f ’s underlying (short-term) id-

iosyncratic cash flows. The expert controls the drift, but not the idiosyncratic volatility

of the process A f ,t.9 When the expert takes the action aA
f ,t, she enjoys a flow of pecu-

niary private benefits with intensity aA
f ,tφqtk f ,t over [t, t + dt]. Here, 0 ≤ φ < 1, which

means that the stealing is inefficient. More precisely, the variable aA
f ,t can be interpreted

9A common setting is that there is a menu of projects whose risk characteristics are common knowl-
edge and yet experts can choose which to be undertaken (e.g., Cadenillas, Cvitanic, and Zapatero, 2007).
My model can be extended to allow the expert to choose among multiple projects and the main mecha-
nism is not altered. Moreover, the expert can also affect the volatility by secretly injecting funds from her
own hidden saving accounts. This is not the focus on this paper. To rule out the possibility of altering the
idiosyncratic volatility secretly through injecting cash flows from the hidden saving account, I assume
that the expert cannot affect the idiosyncratic volatility of (short-term) cash flows and that her net worth
is observable, which is without loss of generality due to the Revelation-Principle type of results (e.g.,
DeMarzo and Fishman, 2007). The similar assumptions are also adopted in DeMarzo, Fishman, He, and
Wang (2012), among others. In particular, DeMarzo and Sannikov (2006) restrict the stealing process to
be Lipschitz continuous. And, it is well known that all sample paths of a standard Brownian motion
have infinite total variation. Thus, idiosyncratic volatility cannot be secretly altered in their model.
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as the fraction of cash flows that the expert diverts for her pecuniary private benefits

and the parameter φ captures the expert’s net pecuniary benefits per dollar diverted.

Given the linearity, this framework of stealing is effectively equivalent to the binary

setup in which the expert can steal (i.e., aA
f ,t = aA) or not steal (i.e., aA

f ,t = 0).

Hidden actions in growth options. Similarly, I assume that the investment opportu-

nity M f ,t is affected by the expert’s unobserved action in the following way,

dM f ,t = (1− aM
f ,t)dN f ,t, (2.10)

where N f ,t is a Poisson count process that describes the number of investment oppor-

tunities of firm f that arrive up to time t. The intensity of the underlying Poisson

process N f ,t is λ. The action aM
f ,t is binary.10 In particular, the expert does not steal

when aM
f ,t = 0 and steals when aM

f ,t = 1. When the expert takes the action aM
f ,t = 0, she

obtains zero pecuniary private benefit. By contrast, when the action of aM
f ,t = 1 is taken

by the expert, she steals the investment opportunity from the firm to launch new ven-

tures in her own private account.11 The lumpy pecuniary benefit is φπ f ,t pts f ,t, where

the coefficient φ equals to the expert’s net pecuniary benefits per dollar diverted.

Severity of agency problem. Here, 1− φ can be interpreted as the deadweight loss

rate of stealing incurred by the expert. Thus, φ represents the severity of the agency

problem and, as I show later, captures the minimum levels of incentives required to

prevent the expert from stealing.

Formulating the optimal contracting problem. The history paths in

Ht ≡ σ
(
{Zt′ , νg,t′ , νc,t′ , A f ,t′ , M f ,t′ : 0 ≤ t′ ≤ t, f ∈ F}, {ε f ,t′ : 0 ≤ t′ < t, f ∈ F}

)
10As in the free cash flow case, the binary-action setting is equivalent to the continuous-action set-

ting when pecuniary private benefit is linear in actions. However, the binary-action setting has a more
natural interpretation for the diversion of investment opportunities.

11The investment opportunity is non-replicable; otherwise, the value of growth options is infinity,
which is pathological.
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are observable and contractable. Denote Ht to be a particular history path in Ht. Sim-

ilar to He and Krishnamurthy (2011), Brunnermeier and Sannikov (2014) and Di Tella

(2014), I take the approach of short-term contracts: the relation only lasts from t to

t + dt; at time t + dt, the contract (relation) ends. In fact, the optimal contract can

be implemented by a sequence of short-term contracts even when long-term contracts

are available in my setting, if experts are assumed to have zero commitment to long-

term contracts and to be able to modify the older contracts and offer new contracts at

any time in a costless manner. The intuition is that the participation constraint for the

diffused investors is always binding in each short period [t, t + dt], which simply is

the capital market non-arbitrage condition, and the incentive compatibility of the con-

tracts in each short period [t, t + dt] is not affected by the history; hence the current

contract is always subject to being replaced by new contracts and hence recontracting

continuously is optimal.12

Right after the realization of the history Ht, the expert and her diffused investors

meet up and enter contracts for [t, t + dt]. The expert f offers contracts to her diffused

investors (the principals in the contracting relation), which specifies the upfront lumpy

payment Pf ,t collected from the diffused investors and the cash payment Pf ,t + dFf ,t

paid from the expert to her diffused investors over [t, t + dt]. Here, dFf ,t is the net cash

payment by the expert over [t, t+dt]. The cumulative net payment process Ff ,t and the

upfront payment Pf ,t are required to be adapted to the filtration Ht. Thus, a short-term

contract consists of a pair of functions (Pf ,t, dFf ,t) specifying the investors’ upfront

payment to the expert at t and the net cash payment of the expert to the investors over

[t, t + dt]. Let C f ,t ≡ C f (H
t) ≡ (Pf ,t, dFf ,t) represent the contract offered by the expert.

12There three important points here. First, it is worth pointing out that this result is very different from
the equivalence results of long- and short-term contracts such as Fudenberg, Holmstrom, and Milgrom
(1990). Those papers investigate sufficient conditions under which a sequence of short-term contracts
can achieve the same efficiency level for long-term contracts where commitment is nonzero. Second, if
I assume the expert is committed to long-term contracts, like in DeMarzo and Sannikov (2006), Biais,
Mariotti, Plantin, and Rochet (2007), DeMarzo and Fishman (2007), and DeMarzo, Fishman, He, and
Wang (2012), the tractability will be worsened with the main mechanism remaining unchanged. Third,
the short-term contracting problem I focus on in this paper is analogous to the contracting problem in a
one-period principal-agent problem (e.g., Holmstrom and Tirole, 1997).
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The participation constraint for the diffused investors is

0 = Ea
t

[
dFf ,t +

(
Pf ,t + dFf ,t

) dΛt

Λt

]
, (2.11)

where Λt is the stochastic discount factor of households and is determined in the Wal-

rasian equilibrium with details illustrated in Section 2.3.3 and Ea is the expectation op-

erator under the probability measure that is induced by the hidden action processes.

The participation constraint for the expert is endogenously mingled with her occupa-

tional choice: she endogenously decides whether to become a household by selling

off all productive assets (assets in place and growth options). That is, by choosing

k f ,t = s f ,t = 0, the expert f endogenously becomes a household. However, in the

equilibrium, the expert never converts herself to a household; the expert is always of-

fered a high enough risk premia for holding the productive assets. This is a result of

the limited market participation assumption that households cannot choose to become

experts due to the lack of the specialized knowledge or skills.13

Given any sequence of contracts characterized by C f ≡
{
C f ,t : t ≥ 0

}
, the expert

will choose an optimal sequence of strategies S f ≡
{
S f ,t : t ≥ 0

}
that specifies the

hidden actions, the consumption, and investment choices

S f ,t ≡
(

aA
f ,t, aM

f ,t, ce
f ,t, k f ,t, s f ,t, g f ,t

)
.

More precisely, for a sequence of contracts C f , the expert f ’s net worth follows the law

13This is different from the limited market participation of certain financial markets for risky finan-
cial securities (e.g., Mankiw and Zeldes, 1991; Allen and Gale, 1994; Basak and Cuoco, 1998; Vissing-
Jorgensen, 2002a; Guvenen, 2009) in two folds: first, households cannot invest or manage firms’ assets
and thus the economy stops functioning without experts; second, households can freely trade all finan-
cial securities in capital markets.
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of motion,

dne
f ,t =− ce

f ,tdt + qtk f ,tdRk
f ,t + ptkts f ,tdRs

f ,t︸ ︷︷ ︸
gains from assets holdings

− dFf ,t︸︷︷︸
contract pay

(2.12)

+ aA
f ,tφqtk f ,tdt + aM

f ,tφπ f ,t pts f ,tdN f ,t︸ ︷︷ ︸
privite benefits from shirking

,

where the instantaneous returns from holding the assets can be found in Equation (2.8).

Further, given prices and wages, the expert f chooses the strategies S f to solve

U
(

H0, ne
f ,0;C f

)
= max

S f
Ea

0

[∫ ∞

0
f
[
ce

f ,t′ , U(Ht′ , ne
f ,t′ ;C f )

]
dt′
]

,

where the net worth process
{

ne
f ,t′ : t′ ≥ 0

}
includes the potential private benefits from

taking a sequence of actions
{

aA
f ,t, aM

f ,t : t′ ≥ 0
}

and the gain from the holding of firms’

assets by taking choosing
{

k f ,t′ , s f ,t′ , g f ,t′ : t′ ≥ 0
}

.

The contract-strategy pair (C f , S f ) is feasible if it satisfies the solvency constraint

ne
f ,t ≥ 0 for all history paths Ht ∈ Ht. A feasible contract-strategy pair (C f , S f ) is

optimal if there is no other pair that provides the same payoff to the diffused investors

and a higher expected utility to the expert. And, a feasible pair (C f , S f ) is incentive

compatible if the optimal strategy S f implements the efficient actions aA
f ,t = aM

f ,t = 0 all

the time given the contracts C f . To characterize an optimal contract-strategy pair, I start

with a Revelation-Principle type result as in the context of mechanism design: given

any contract-strategy pair (C f , S f ) for the expert, there exits an incentive-compatible

contract-strategy pair (C*f , S*f ) with the same payoff to diffused investors and a weakly

higher expected utility for the expert. It allows me to focus on the incentive-compatible

contract-strategy pairs for finding optimal contracts. The intuition is straightforward

(e.g., DeMarzo and Fishman, 2007) and the rigorous proof is in the online appendix. I

denote E to be the expectation operator under the probability measure induced by the

efficient actions.

More precisely, an incentive-compatible contract-strategy pair (C f , S f ) is optimal if
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it maximizes the value function of the expert f , given prices and wages,

U
(

Ht, ne
f ,t

)
= max

C f
U
(

Ht, ne
f ,t;C f

)
(2.13)

subject to the participation constraint of diffused investors in (2.11), where the value

function U
(

Ht, ne
f ,t;C f

)
is the optimal utility achieved by the optimal strategy S f given

the contracts C f with

U
(

Ht, ne
f ,t;C f

)
= Et

[∫ ∞

t
f
[
ce

f ,t′ , Ue(Ht′ , ne
f ,t′ ;C f )

]
dt′
]

.

In summary, I incorporate the optimal contracting problem into a dynamic general

equilibrium framework, and thus the optimal contracts are part of the fixed point so-

lution for a (Walrasian) general equilibrium. More precisely, at the decentralized level,

optimal contracts are derived as if agents take the aggregate price and wage dynam-

ics as given; in turn, the aggregate level, the demand and supply formed from the

aggregation of decentralized optimal contracts need to match so that the markets are

cleared. To finally solve the optimal contracts and the general equilibrium, it is useful

to first provide a characterization (i.e., a necessary condition for the optimal contracts)

and an implementation mechanism for the optimal contracts. After incorporating the

characterization and the implementation, the general equilibrium framework with op-

timal contracting becomes a rather standard model for asset pricing and risk sharing

in incomplete markets.

2.1.8 Concentrated Risk: the Optimal Contracts and Implementations

Characterization of optimal contracts. Because the cumulative payment process

Ff ,t is adapted to Ht, the net cash payment specified by the contract can be formulated
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as follows14

dFf ,t = µF
f ,tdt + (1− βA

f ,t)qtk f ,tdA f ,t +
[
π f ,t − βM

f ,t(ε f ,t)
]

pts f ,tdM f ,t︸ ︷︷ ︸
contingent payments on idiosyncratic shocks

+ βZ
f ,tσdZt + ∑

ν ̸=νt

β
V,(νt,ν)
f ,t dN(νt,ν)

t ,︸ ︷︷ ︸
contingent payments on aggregate shocks

where the (functional) processes µF
f ,t, βA

f ,t, βM
f ,t(·), βZ

f ,t, and β
V,(νt,ν)
f ,t are adaptive to the

filtration Ht. Particularly, the function βM
f ,t(·) can be nonlinear. Plugging the expression

of dFf ,t above into (2.12), the dynamics of the net worth of expert f can be rewritten as

follows

dne
f ,t = (φ− βA

f ,t)qtk f ,taA
f ,tdt +

[
φπ f ,t − βM

f ,t(ε f ,t)
]

pts f ,taM
f ,tdN f ,t︸ ︷︷ ︸

terms altered by aA
f ,t and aM

f ,t

+
[
terms independent of aA

f ,t or aM
f ,t

]
.

Thus, for any incentive-compatible contracts (i.e., satisfying aA
f ,t = aM

f ,t = 0), it must

satisfy the following two conditions:

βA
f ,t ≥ φ and βM

f ,t(ε) ≥ φπ f ,t(ε) for all ε.

It is straightforward that the optimal contracts must satisfy that βA
f ,t ≡ φ and βM

f ,t ≡

φπ f ,t for all f and t. This is because the expert is risk averse and hence wishes to dump

all the idiosyncratic risks dW f ,t and dN f ,t − λdt, while at the same time households

14The net payment dFf ,t does not depend on the idiosyncratic shocks not associated with the firm f ,
because all agents are risk averse and avoid unnecessary idiosyncratic risk exposures. Another impor-
tant feature is that jumps with random sizes affect the payoff process (e.g., Sung, 1997; Biais, Mariotti,
Rochet, and Villeneuve, 2010; Hoffmann and Pfeil, 2010). In general, it leads to nonlinear optimal con-
tracts. However, the linearity of optimal contracts in this setting is due to two main reasons: first, it
follows the timing convention of taking hidden actions after the realization of shocks (e.g., DeMarzo
and Fishman, 2007; Edmans and Gabaix, 2011; Edmans, Gabaix, Sadzik, and Sannikov, 2012); second,
the private pecuniary benefit is contingent and proportional to the payoff.

66



can buy it for free due to their capacity to fully diversify any idiosyncratic risks.

Implementation of optimal contracts. I now characterize the optimal contracts in

terms of an optimal mechanism. In particular, I consider the implementation of optimal

contracts based on simple financial contracts, including firms’ stock shares, options,

risk free bond, and indices tracking aggregate states. Specifically, the expert f achieves

her optimal incentive-compatible contracting results in the following ways: (1) she

buys and manages assets in place k f ,t and growth options s f ,t; (2) she sells 1−φ fraction

of the firm’s equity to her diffused shareholders; and (3) she trades indices in perfect

financial markets. In summary, this implementation features blockholding and active

trading on indices.15 Rather than attempting to describe all possible implementations,

I shall focus on this simple yet empirically relevant mechanism.

The following proposition describes the detailed specifications of the implementa-

tions and establishes their optimality.

Proposition 2 (Blockholding and Indexation). For each f ∈ F, suppose the expert f has

initial net worth n f ,0. She gets infinite penalty unless the solvency condition nj,t ≥ 0 holds. The

expert f is required to hold φ share of the firm f ’s equity. The expert f is not allowed to diversify

or hedge away the idiosyncratic risks of firm f as a blockholder. She can trade a risk-free bond

and financial indices tracking aggregate shocks. Under the capital market configuration, it is

optimal for each expert f to choose actions aA
f ,t = aM

f ,t = 0.

15An alternative theory that generates the same results is that the experts bargain with diffused share-
holders’ for the rents, subject to some capital market constraints. Rents can be efficient. For example,
Myers (2000) and Lambrecht and Myers (2007, 2008, 2012) show how rents can align managers’ and
shareholders’ interests if the managers maximize the present value of rents subject to a capital mar-
ket constraint. Also, Eisfeldt and Papanikolaou (2013) develop a model in which the outside option of
the key talent determines the share of firm cash flows that accrue to shareholders. This outside option
varies systematically and renders firms depending more on the key talents riskier from shareholders’
perspective.
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2.1.9 Aggregation: Investments and Productions

In this section, I discuss the aggregation results on the production and investment side

of the economy.16 An important feature of our model is that, the evolution of the

aggregate assets in place follows the standard process as in the neoclassical growth

model, though heterogeneous firms make decentralized investment decisions in my

economy.

More precisely, under incentive-compatible optimal contracts, the law of motion

for the aggregate capital stock of assets in place kt =
∫

f∈F
k f ,td f is not affected by any

particular idiosyncratic shocks; it can be characterized as follows:

dkt = (it − δ)ktdt + σktdZt.

Here it ≡
∫

f∈F
i f ,t1{ε f ,t>ξt}dN f ,t is the aggregate investment rate with the analytical

formula:

it =

↑ in νg,t︷ ︸︸ ︷
𝒢α

(
νg,t; ξt

)︸ ︷︷ ︸
marginal efficiency of investment

×

↑ in qt/τt︷ ︸︸ ︷
oι

(
qtkt

τt

) α
1−α

.︸ ︷︷ ︸
conventional q theory

(2.14)

The term 𝒢α(νg,t; ξt) acts as the endogenous marginal efficiency of investment and the

shocks that drive its fluctuations are endogenous aggregate investment shocks. As

shown in Proposition 3, the endogenous investment shock 𝒢α(νg,t; ξt) is increasing in

νg,t and decreasing in ξt. In fact, it has the following analytical expression

𝒢α(νg,t; ξt) ≡ λ× ν
1

1−α
g,t × Γ̄α

(
ξt/νg,t

)
, (2.15)

and the function Γ̄α(·) is defined as

Γ̄α(ξt/νg,t) ≡ oα × Γ̄
(

1
2
(
ξt/νg,t

)2 ,
2− α

2− 2α

)
(2.16)

where Γ̄(·, ·) is the standard upper incomplete gamma function and oα is a universal
16The detailed derivations in this section can be found in the online appendix.
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constant.17

The function 𝒢α(νg,t; ξt) is the key to understand how growth uncertainty can in-

crease aggregate investment. More precisely, I decompose the function into a multi-

plication of two terms that capture the complementary effect and the option effect of

growth uncertainty on the aggregate investment

𝒢α(νg,t; ξt)︸ ︷︷ ︸
marginal efficiency of investment

= ν
α

1−α
g,t︸︷︷︸

complementary effect

(2.17)

×

intensive margin︷︸︸︷
νg,t ×

extensive margin︷ ︸︸ ︷
Γ̄α(ξt/νg,t)× λ

 .

︸ ︷︷ ︸
option effect

The first term ν
α

1−α
g,t captures the exogenous positive effect of growth uncertainty on ag-

gregate investment. It is similar to the Oi-Hartman-Abel-Caballero effect: the flexible

inputs, which can be adjusted after productivity shocks are realized and are comple-

mentary to the productivity of the capital, create optionality in the capital. In my case,

when α = 0, investment goods are not needed in creating new assets in place (i.e. zero

complementarity). As a result, the Oi-Hartman-Abel-Caballero effect disappears. The

second term νg,t × Γ̄α(ξt/νg,t)× λ captures the option effect of exercising investment

opportunities. The variable νg,t captures the intensive margin effect caused by growth

uncertainty shocks: the high-quality investment opportunities are likely to be more

profitable when growth uncertainty increases. Moreover, the function Γ̄α(ξt/νg,t) cap-

tures the extensive margin effect caused by growth uncertainty shocks: more experts

endogenously choose to make investment for fixed exercising boundary ξt. However,

the exercising boundary is endogenously adjusted in the economy, which can partly

offset the exogenous effect of increasing growth uncertainty; this is called wait-and-

see effect (e.g., Miao and Wang, 2007; Bloom, 2009).

17The upper incomplete gamma function is defined as Γ̄(x1, a1) =
∫ ∞

x1
xa1−1e−xdx and oα ≡

2(2α−1)/(2−2α)π−1/2 where π is the mathematical constant but not the profit rate of growth options
π.
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Another important feature of our model is that, the aggregate output is Cobb-

Douglas with diminishing return to scale in the aggregate assets in place as in a stan-

dard neoclassical growth model, though each firm’s optimal output is linear in terms

of its own assets in place. More precisely, the aggregate output of the consumption

goods sector is

yt = kϕ
t `

1−ϕ
c,t ,

and under incentive-compatible optimal contracts, the aggregate output of the invest-

ment goods sector is

gt = 𝒢α(νg,t; ξt)× og

(
qtkt

τt

) 1
1−α

.

Intuitively, the aggregate investment goods demand gt is affected by the growth uncer-

tainty νg,t similarly to the aggregate investment rate it through the function 𝒢α(νg,t; ξt).

The aggregate payout from assets in place and the aggregate profit from growth

options are summarized as follows. Particularly, the analytical formula of aggregate

profit from growth options provides intuitions that help understand how growth un-

certainty shocks affect the value of growth options. More precisely, under incentive-

compatible optimal contracts, the aggregate net payout due to assets in place is

dt = ϕyt − qtitkt

and the aggregate profit of growth options is Πt ≡ πt pts where

πt

λ
= v

(
νg,t

ξt

) 1
1−α

︸ ︷︷ ︸
effective payoff

× Γ̄α(ξt/νg,t)︸ ︷︷ ︸
adj. prob. of exercising

− v︸︷︷︸
strike price

× Φ̄(ξt/νg,t),︸ ︷︷ ︸
prob. of exercising

(2.18)

where the function Γ̄α(·) is defined in (2.16), and the function Φ̄(·) is the complemen-

tary cumulative distribution function (CCDF) of a standard normal variable. The net

profit rate of growth options derived in (2.18) resembles the well-known Black-Scholes-

Merton option pricing formula (Black and Scholes, 1973; Merton, 1973b). In the follow-
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ing decomposition, the term v
(νg,t

ξt

) 1
1−α can be viewed as the effective payoff when the

option is exercised, the term Γ̄α(ξt/νg,t) can be interpreted as the adjusted likelihood

of exercising the option (ε f ,t > ξt), the term v is strike price, and the term Φ̄(ξt/νg,t) is

the actual probability of exercising the growth option (ε f ,t > ξt).

Thus, keeping the exercising boundary ξt fixed, the profit rate of growth options is

monotonically increasing in growth uncertainty. This is summarized in the following

proposition.

Proposition 3 (Optionality). Under incentive-compatible optimal contracts, the aggregate

profit rate of growth options (πt) is strictly increasing in growth uncertainty (νg,t) and strictly

decreasing in the exercising boundary ξt fixed. At the same time, the endogenous investment

efficiency That is, the partial derivatives always hold the following signs: ∂πt/∂νg,t > 0,

∂πt/∂ξt < 0, ∂𝒢α/∂νg,t > 0, and ∂𝒢α/∂ξt < 0.

2.2 Equilibrium

I denote ηt to be the market price of risk for the aggregate shock zt, and denote κ
(νt,ν)
t

to be the market price of risk for the uncertainty shock N(νt,ν)
t . The market prices of the

aggregate shocks depend only upon the aggregate state variables, though the economy

is full of idiosyncratic shocks. I define the de-trended asset prices and human capital

after taking out the economy’s balanced growth path as follows: p̃t ≡ pt/kϕ
t , q̃t ≡

qt/kϕ−1
t , and ˜̄ht ≡ h̄t/kϕ

t . I conjecture that the prices q̃t, p̃t, and the human capital ˜̄ht

follow the Ito processes with jumps

dq̃t

q̃t
= µ

q
t dt + σ

q
t dZt + ∑ν ̸=νt

ςq,(νt,ν)dN(νt,ν)
t ,

and
dp̃t

p̃t
= µ

p
t dt + σ

p
t dZt + ∑ν ̸=νt

ςp,(νt,ν)dN(νt,ν)
t ,
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and
d˜̄ht
˜̄ht

= µh̄
t dt + σh̄

t dZt + ∑ν ̸=νt
ςh̄,(νt,ν)dN(νt,ν)

t .

Here, the coefficient functions µ
p
t , µ

q
t , µh̄

t , σ
p
t , σ

q
t , σh̄

t , ςp,(νt,ν), ςq,(νt,ν), and ςh̄,(νt,ν) are en-

dogenously determined in equilibrium. In equilibrium, the prices and human capital

are driven by the aggregate shocks Zt and N(νt,ν)
t , but not by the idiosyncratic shocks{

W f ,t
}

f∈F
,
{

N f ,t
}

f∈F
, or

{
ε f ,t
}

f∈F
. Later, I shall show that the productivity shock dZt

does not affect the fluctuations of the de-trended prices (see Corollary 2). So, it holds

that σ
q
t ≡ σ

p
t ≡ σh̄

t ≡ 0.

2.2.1 Households’ Optimization Problem

Given prices and wages, households face a standard portfolio problem with labor

income. Although they cannot manage or trade firm assets, they can freely access

to a complete financial market. Taking the processes of market price of risk ηt and{
κ(νt,ν) : νt, ν ∈ 𝒱

}
and the prices pt, qt, τt and the wages wt as given, they solve the

following utility maximization problem

Uh
h,0 = max{

ch
h,t,ϑ̂

h
h,t,ϑ̂

h,(νt ,ν)
h,t

}
t≥0

E0

[∫ ∞

0
f(ch

h,t, Uh
h,t)dt

]
(2.19)

subject to the solvency constraint nh
h,t ≥ 0 the dynamic budget constraint

dnh
h,t

nh
h,t

=
[
µh

h,n,t − ĉh
h,t

]
dt + σh

h,n,tdZt + ∑
ν ̸=νt

ς
h,(νt,ν)
h,n,t

[
dN(νt,ν)

t − λ(νt,ν)dt
]

,︸ ︷︷ ︸
only aggregate risk expsoures

(2.20)

where the expected growth rate on net worth (pre consumption) is µh
h,n,t and the ag-

gregate risk exposures are

σh
h,n,t = ϑ̂h

h,t︸︷︷︸
indices

+ (1− φ)
qtkt

nh
t
(σ

q
t + ϕσ) + (1− φ)

pts
nh

t
(σ

p
t + ϕσ)︸ ︷︷ ︸

diversified equity holdings

+ $
h̄t

nh
t
(σh̄

t + ϕσ),︸ ︷︷ ︸
human capital

72



and

ς
h,(νt,ν)
h,n,t = ϑ̂

h,(νt,ν)
h,t︸ ︷︷ ︸

indices

+ (1− φ)
qtkt

nh
t

ς
q,(νt,ν)
t + (1− φ)

pts
nh

t
ς

p,(νt,ν)
t︸ ︷︷ ︸

diversified equity holdings

+ $
h̄t

nh
t

ς
h̄,(νt,ν)
t .︸ ︷︷ ︸

pledgeable human capital

Here, the shares ϑ̂h
h,t ≡ ϑh

h,t/nh
h,t and ϑ̂

h,(νt,ν)
h,t ≡ ϑ

h,(νt,ν)
h,t /nh

h,t characterize the house-

hold’s positions in risky assets. Here, the hatted consumption rate ĉh
h,t denotes the

consumption rate normalized by the household h’s net worth, i.e. ĉh
h,t ≡ ch

h,t/nh
h,t. Be-

cause all households are homogenous up to their net worth levels, they choose homo-

geneous risk exposures in equity holdings and pledgeable human capital holdings.

In other words, they hold the diversified equity portfolios and the pledgeable hu-

man capital proportional to their net worth. The total net worth of all households is

nh
t ≡

∫
h∈H

nh
h,tdh. Because the firm-level idiosyncratic risks {W f ,t, N f ,t}t≥0 are priced

at zero by households in equilibrium, the risk averse household will never have any

exposure to them in equilibrium. The expected growth rate µh
h,n,t includes three com-

ponents: (i) the expected returns from the index holdings, (ii) the expected returns from

the diversified equity holdings, and (iii) the identical labor income rate ŵt ≡ wt/nh
t ,

which is guaranteed by perfect labor insurances among all households. More detailed

explanations are in the online appendix.

2.2.2 Experts’ Optimization Problem

Given prices and wages, experts face a joint problem of optimal portfolio allocation

and optimal real investment, subject to portfolio constraints. The portfolio constraints

arise endogenously as a result of incentive compatibility constraints in a moral hazard

problem (see Section 2.1.7). Experts can continuously trade firm’s assets in spot mar-

kets. Meanwhile, they can also access to the short-term financial contracts in the capital

markets. Taking the processes of market price of risk ηt and
{

κ(νt,ν) : νt, ν ∈ 𝒱
}

and
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the prices pt, qt, τt and the wages wt as given, the expert f maximizes the utility

Ue
f ,0 = max{

ĉe
f ,t,g f ,t,k f ,t,s f ,t,ϑ̂e

f ,t,ϑ̂
e,(νt ,ν)
f ,t

}
t≥0

E0

[∫ ∞

0
f(ce

f ,t, Ue
f ,t)dt

]
(2.21)

subject to the solvency constraint ne
f ,t ≥ 0 and the dynamic budget constraint

dne
f ,t

ne
f ,t

=
(

µe
f ,n,t − ĉe

f ,t

)
dt + σe

f ,n,tdZt + ∑ν ̸=νt
ς

e,(νt,ν)
f ,n

[
dN(νt,ν)

t − λ(νt,ν)dt
]

︸ ︷︷ ︸
aggregate risk exposures

(2.22)

+ σe
f ,n,W,tdW f ,t +

[
ςe

f ,n,N,tdN f ,t −Eε
(

ςe
f ,n,N,t

)
λdt

]
︸ ︷︷ ︸

idiosyncratic risk exposures

where the consumption rate is ĉe
f ,t ≡ ce

f ,t/ne
f ,t and the expected growth rate on net

worth (pre consumption) is µe
f ,n,t. Furthermore, the exposure to the aggregate shock

dZt is

σe
f ,n,t = ϑ̂e

f ,t︸︷︷︸
indices

+ φ
qtk f ,t

ne
f ,t

(σ
q
t + ϕσ) + φ

pts f ,t

ne
f ,t

(σ
p
t + ϕσ),︸ ︷︷ ︸

concentrated equity holdings

(2.23)

and the exposure to the aggregate uncertainty risk dN(νt,ν)
t is

ς
e,(νt,ν)
f ,n = ϑ̂

e,(νt,ν)
f ,t︸ ︷︷ ︸

indices

+ φ
qtk f ,t

ne
f ,t

ς
q,(νt,ν)
t + φ

pts f ,t

ne
f ,t

ς
p,(νt,ν)
t ,︸ ︷︷ ︸

concentrated equity holdings

(2.24)

The exposures to the idiosyncratic risks are

σe
f ,n,W,t = φ

qtk f ,t

ne
f ,t

νc,t and ςe
f ,n,N,t = φ

pts f ,t

ne
f ,t

π f ,t.︸ ︷︷ ︸
concentrated equity holdings

Here, the shares ϑ̂e
f ,t ≡ ϑe

f ,t/ne
f ,t and ϑ̂

e,(νt,ν)
f ,t ≡ ϑ

e,(νt,ν)
f ,t /ne

f ,t characterize the expert’s

positions in risky short-term financial contracts. The portfolio constraints forced ex-

perts to bear uninsured idiosyncratic risks σe
f ,n,W,t and ςe

f ,n,N,t. The implementation
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described in Proposition 2 requires expert f to retain φ fraction of firm f ’s equity stake.

The concentrated holdings of the aggregate risks in firm f ’s equity can be offset by the

holdings of aggregate indices as in (2.23) and (2.24). Thus, the true effect of the finan-

cial restriction is to force each expert to bear the background risks, which are the unin-

surable idiosyncratic investment risks. The expected growth rate µe
f ,n,t includes three

components: (i) the expected returns from financial index holdings, (ii) the expected re-

turns from firm’s assets holdings, and (iii) minus the expected returns of firm’s equity

paid out to diffused shareholders.18

2.2.3 Competitive Equilibrium

Now, I provide the formal definition of the competitive equilibrium with incomplete

markets.

Definition 1. Given the initial aggregate assets in place k0 > 0 and growth options s0 >

0 and the distributions among agents which satisfy
∫

f∈F
k f ,0d f +

∫
h∈H

kh,0dh = k0 and∫
f∈F

s f ,0d f +
∫

h∈H
sh,0dh = s0. Each agent starts with strictly positive and identical net

worth k j,0 > 0 and sj,0 > 0 for all j ∈ F ∪H. Households sell their capital to experts

immediately at time 0. A competitive equilibrium is a set of aggregate and idiosyncratic

stochastic processes adapted to the filtration generated by aggregate and idiosyncratic stochas-

tic processes Ft ≡ σ{Zt′ , N(νt′ ,ν)
t′ , W f ,t′ , N f ,t′ , ε f ,t′ : 0 ≤ t′ ≤ t, f ∈ F, νt′ , ν ∈ 𝒱}. The

set of aggregate stochastic processes include the prices of productive capitals {qt, pt}, the mar-

ket prices of aggregate risks {ηt, κ
(νt,ν)
t : νt, ν ∈ 𝒱}, the aggregate productive capital stocks

{kt, st}, the wage process {wt}, the price of investment goods {τt}, and the human capital

{h̄t}. The set of agent-level stochastic processes include the net worth processes {ne
f ,t, nh

h,t}, the

consumptions {ce
f ,t, ch

h,t}, the holdings of firm assets {k f ,t, s f ,t}, the investment rates {i f ,t}, the

demands for the investment goods {g f ,t}, the labor demands {`c, f ,t, `ι,t}, and risk exposures

{σe
f ,n,t, σh

h,n,t, ς
e,(νt,ν)
f ,n,t , ς

h,(νt,ν)
h,n,t }, for all f ∈ F and h ∈H, such that

18More details on the budget constraint of the expert and the household can be found in the online
appendix.
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(i) Initial expert net worth satisfies ne
f ,0 = q0ke

f ,0 + p0se
f ,0 and initial household net worth

satisfies nh
h,0 = q0kh

h,0 + p0sh
h,0.

(ii) Given the aggregate dynamics, each household solves her utility optimization problem

(2.19) and each expert solves her utility optimization problem (2.21).

(iii) Market clearing conditions:

(a) Assets in place market and growth options market:

∫
f∈F

k f ,td f = kt and
∫

f∈F
s f ,td f = s.

(b) Consumption goods market:

∫
f∈F

ce
f ,td f +

∫
h∈H

ch
h,tdh =

∫
f∈F

kϕ
f ,t`

1−ϕ
c, f ,t d f −vptsλΦ̄(ξt/νg,t).

(c) Investment goods market:

∫
f∈F

g f ,tdN f ,t = zι`ι,t.

(d) Labor markets: ∫
f∈F

`c, f ,td f + `ι,t = 1.

(e) Financial market for insurance Zt risk:

∫
f∈F

σe
f ,n,tn

e
f ,td f +

∫
h∈H

σh
h,n,tn

h
h,tdh

= qtkt(σ
q
t + ϕσ) + pts(σ

p
t + ϕσ) + $h̄t(σ

h̄
t + ϕσ).

(f) Financial market for insurance N(νt,ν)
t risk:

∫
f∈F

ς
e,(νt,ν)
f ,n,t ne

f ,td f +
∫

h∈H
ς

h,(νt,ν)
h,n,t nh

h,tdh

= qtktς
q,(νt,ν)
t + ptsς

p,(νt,ν)
t + $h̄tς

h̄,(νt,ν)
t .
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(iv) Law of motion of aggregate capital

dkt =

(∫
f∈F

i f ,tdN f ,t − δ

)
ktdt + σktdZt and dst = 0.

By Walras’ law, the market for risk-free debt clears automatically.

2.2.4 Solving for the Equilibrium Recursively

In order to solve the competitive equilibrium, I have to determine how the prices,

investments, and consumptions of all agents depend on the historical paths of the ag-

gregate shock Zt, the aggregate uncertainty shocks N(νt,ν)
t and idiosyncratic shocks

W f ,t, N f ,t, ε f ,t. In fact, I show that the equilibrium can be characterized, in a recursive

formulation, by policy functions of three exogenous state variables (zt, νg,t, νc,t) and

two endogenous state variables. One endogenous state variable is the cross-sectional

distribution of net worth among experts and households. Because Epstein-Zin-Weil

preference is homothetic, the optimal control variables are all linear in the agent’s net

worth. The linear property allows me to simplify the endogenous state space, from

an infinite-dimensional state space to a one-dimensional space. More precisely, I only

need to track the evolution of experts’ net worth relative to the total net worth held by

all agents in equilibrium xt =
ne

t
Qt

, where ne
t =

∫
f∈F

ne
f ,td f and Qt ≡ qtkt + spt + $h̄t.

The other endogenous state variable is the aggregate assets in place kt, which captures

the stochastic trend of the economy. Thus, the equilibrium can be characterized by

state variables (zt, νt, kt, xt) where νt ≡ (νg,t, νc,t). Moreover, the Brownian motion Zt

only affects the economy through the i.i.d. shocks (dZt) driving the stochastic trend

of the economy and it is independent of the state variable νt. So, the variable Zt does

not really serve as a state variable characterizing the equilibrium.19 As a result, the

equilibrium is characterized by (νt, kt, xt).

19The same feature of i.i.d. cash flow shocks is also adopted in Bolton, Chen, and Wang (2011, 2013)
and Dou and Ji (2015).
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Dynamic evolution of the economy In equilibrium, all variables evolve around the

stochastic trend kϕ
t . Moreover, the transitory fluctuations along the stochastic trend

can be characterized by the state variables (νt, xt). The uncertainty state variable νt

is stationary by assumption. The endogenous state variable xt is also mean-reverting

in equilibrium. The dynamics of the variables in equilibrium can be summarized in

Proposition 4.

Proposition 4 (Growth-trending Variables). The price variables, the firm-level output and

payout variables, and the agent-level net worth variables in equilibrium have the following

forms:

pt = p̃tk
ϕ
t , qt = q̃tk

ϕ−1
t , wt = w̃tk

ϕ
t , τt = τ̃tk

ϕ
t , h̄t = ˜̄htk

ϕ
t , and

y f ,t =ỹtk
ϕ
t , d f ,t = d̃tk

ϕ
t , ne

f ,t = ñe
f ,tk

ϕ
t , nh

h,t = ñh
h,tk

ϕ
t , for all f ∈ F and h ∈H,

where p̃t, q̃t, w̃t, τ̃t, ˜̄ht, ỹt, d̃t, ñe
f ,t, and ñh

h,t are independent of the state variables zt and kt and

are only driven by the state variables νt and xt.

Corollary 1 (Stationary Variables). The firm-level profit rate of growth options π f ,t, labor

demand for production `c, f ,t, investment goods demand g f ,t, and investment rate i f ,t do not

depend on the growth-trend state variable kt. They depend only on the stationary state variables

νt and xt.

I now consider the agent-level consumption, real investment, and portfolio hold-

ings. In equilibrium, as in classic consumption-portfolio problems studied by Samuel-

son (1969) and Merton (1969), the individual consumption, real investment, and port-

folio holdings are linear in terms of the individual net worth. This is because Epstein-

Zin-Weil preferences are homothetic. Moreover, the linearity and symmetry of an indi-

vidual’s decision makes it unnecessary to track either the cross-sectional distribution

of experts’ net worth or the cross-sectional distribution of households’ net worth to

characterize the equilibrium. It facilitates the aggregation by making the two infinite-

dimensional cross-sectional distributions irrelevant in equilibrium.
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Proposition 5 (Linearity and Symmetry). In equilibrium, the agent-level consumptions ce
f ,t

and ch
h,t, the firm assets held by individual experts k f ,t and s f ,t, and the positions of financial

short-term contracts shosen by individual agents ϑe
f ,t, ϑ

e,(νt,ν)
f ,t , ϑh

h,t, and ϑ
h,(νt,ν)
h,t for any νt, ν ∈

𝒱 , f ∈ E and h ∈H, have the following forms:

ce
f ,t = ĉe

tn
e
f ,t, ch

h,t = ĉh
t nh

h,t, k f ,t/kt = k̂tñe
f ,t, s f ,t = ŝtñe

f ,t, and

ϑe
f ,t = ϑ̂e

tn
e
f ,t, ϑ

e,(νt,ν)
f ,t = ϑ̂

e,(νt,ν)
t ne

f ,t, ϑh
f ,t = ϑ̂h

t nh
f ,t, ϑ

h,(νt,ν)
f ,t = ϑ̂

h,(νt,ν)
t nh

f ,t,

for all νt, ν ∈ 𝒱 , f ∈ F, h ∈ H. Importantly, the hatted variables ĉe
t, ĉh

t , k̂t, ŝt, ϑ̂e
t , ϑ̂h

t ,

ϑ̂
e,(νt,ν)
t , and ϑ̂

h,(νt,ν)
t are only dependent on the aggregate stationary state variables νt and xt.

The detrended net worth ñe
f ,t and ñh

h,t are defined in Proposition 4.

Value functions. Due to homotheticity of EZW preferences, I know that the value

function for an expert with net worth nj
t takes the following power form:

Uj(ζ
j
t, nj

t) =

(
ζ

j
tn

j
t

)1−γ

1− γ
,

where ζ
j
t is the marginal value of net worth for the agent j ∈ {e, h}. The marginal value

ζ
j
t captures the general equilibrium investment environment the agent faces. In partic-

ular, a higher marginal value of net worth ζ
j
t means a better investment environment

for the agent. I conjecture that ζ
j
t follows the dynamic

dζ
j
t

ζ
j
t

= µ
j
ζ,tdt + σ

j
ζ,tdZt + ∑

ν ̸=νt

ς
j,(νt,ν)
ζ dN(νt,ν)

t , (2.25)

where all the coefficients µ
j
ζ,t, σ

j
ζ,t, and ς

j,(νt,ν)
ζ for j ∈ {e, h} are determined in equilib-

rium.20

20The HJB equations for experts and households can be found in the online appendix. The expressions
of the Ito coefficients in (2.25), (2.26), and (2.27) are also in the online appendix.

79



Wealth distribution dynamics. Due to the homogeneity of experts and the homo-

geneity of households up to their own individual net worth levels, I only need to track

the distribution between the aggregate experts’ net worth ne
t and the aggregate house-

holds’ net worth nh
t . I define Q̃t ≡ Qt/kϕ

t = ñe
t + ñh

t and conjecture that

dQ̃t/Q̃t = µQ
t dt + σQ

t dZt + ∑
ν ̸=νt

ςQ,(νt,ν)dN(νt,ν)
t , (2.26)

where the coefficients depends on those of the prices qt, pt and human capital h̄t. Thus,

in equilibrium, the law of motion of xt can be characterized as follows:

dxt

xt
= µx,tdt + σx,tdZt + ∑

ν ̸=νt

ς
(νt,ν)
x,t dN(νt,ν)

t , (2.27)

where µx,t is the expected growth rate and the volatility of wealth share σx,t and the

jump size ς
(νt,ν)
x,t are,

σx,t = σe
f ,n,t − σQ

t − ϕσ, and ς
(νt,ν)
x,t =

ς
e,(νt,ν)
f ,n,t + 1

ς
Q,(νt,ν)
t + 1

− 1, respectively.

Because the aggregate Zt process characterizes i.i.d. shocks in the economy which

are independent with all other aggregate shocks and it is not a state variable, it only

affects agents’ myopic portfolio decisions and hence is perfectly shared by agents using

contract term contracts on the shock. Thus, in equilibrium, the aggregate shock dZt

should have zero impact on the endogenous state variable xt. In fact, it is not hard to

show the following results.

Proposition 6. In the equilibrium, the aggregate risk Zt is perfectly shared. Thus, each agent’s

exposure σe
f ,n,t to the productivity shock dZt is simply the constant myopic component:

σx,t = σe
f ,n,t − σQ

t − ϕσ = 0.

Corollary 2. In the equilibrium, the loadings of de-trended variables on the productivity shock

80



dZt are all zero, since the risk Zt is perfectly shared among heterogeneous agents. In particular,

σe
ξ,t ≡ σh

ξ,t ≡ σQ
t ≡ σ

p
t ≡ σ

q
t ≡ σh̄

t ≡ 0.

Recursive Markov equilibria.

Definition 2. A Recursive Markov Equilibrium characterized by state variables (xt, νt) is a set

of aggregate functions: marginal values of net worth in value functions ζe, ζh, price functions

p, q, w, h̄, η, r, and κ(ν,ν′) and policy functions ĉe, ĉh, g, k̂, ŝ, θ̂e, θ̂h, ϑ̂e,(ν,ν′), and ϑ̂h,(ν,ν′), and law

of motions for the endogenous state variable xt such that

(i) the marginal value of net worths ζe and ζh solve the experts’ and households’ HJB equa-

tions, and ĉe, ĉh, g, k̂, ŝ, θ̂e, θ̂h, ϑ̂e,(ν,ν′), ϑ̂h,(ν,ν′) are the optimal control variables, taking

prices q̃, p̃, w̃, ˜̄h, r, η, and κ(ν,ν′) and the law of motion of state variables xt and νt as

given;

(ii) the market clearing conditions are satisfied:

ĉeQ̃x + ĉhQ̃(1− x) = ỹ−vsp̃λΦ̄(ξ/νg) (Consumption Goods)

g = zι`ι (Investment Goods)

Q̃k̂x = 1 and Q̃xŝ = s (Tangible and Intangible Capitals)

`c + `ι = 1 (Labor Hours)

σe
nx + σh

n(1− x) = ϕσ (Financial Securities for Zt and σQ
t ≡ 0)

ς
e,(ν,ν′)
n x + ς

h,(ν,ν′)
n (1− x) = ςQ,(ν,ν′) (Financial Securities for N(ν,ν′)

t )

(iii) the law of motion of endogenous state variable xt is characterized as in (2.27).

The fixed-point conditions that characterize the Recursive Markov equilibrium can

be summarized by a set of coupled highly-nonlinear ordinary differential equations,

whose details can be found in the online appendix.
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2.3 Quantitative Results

In this section, I first explore whether a real business cycle model with two sources of

uncertainty shocks and imperfect risk sharing can simultaneously match the key mo-

ments of macroeconomic variables and asset returns. This exercise reveals the quan-

titative importance of two uncertainty shocks, interacting with endogenous imperfect

risk sharing, as drivers of macroeconomic fluctuations and determinants of risk pre-

mia. Then, the calibrated general equilibrium model provides a laboratory allowing

me to examine the quantitative relevance of the key mechanism discovered in this pa-

per. I show that the implications of the key mechanism are quantitatively significant

and coherent within such an empirically-validated framework. Furthermore, in Sec-

tion 2.4, I explore whether the implications of the key mechanism is observed in the

data.

2.3.1 Calibration and Parameter Choices

Table 4.4 summarizes the parameter choices used in my calibration. The key parameter

that characterizes the risk sharing imperfection is the severity of agency problem, de-

noted by φ. In the model, the experts effectively constitute blockholders.21 The block-

holders (including the inside blockholders) control the firm: they can either directly

or indirectly intervene in firm’s operations (e.g., Edmans and Manso, 2011; Holder-

ness, 2003, 2009). Holderness (2009) reports 96% of randomly selected U.S. firms in

1995 have blockholders, and the average percentage of the voting rights in common

stocks held by all blockholders is 43%. Khan, Dharwadkar, and Brandes (2005) show

that from 1992 to 1999, the total institutional ownership increases from 52.6% to 58.8%,

and the CEO ownership is ranged from 2.17% and 2.94%, based on a complete 8-year

21Each expert is a representative agent of the managers and insiders who actively intervene in the
management and hold significant stake of a firm. The degree of blockholding tends to underestimate
the concentrated ownership of the experts, because experts do not only hold stake in the firm through
common stocks but also through compensations and rents. On the other hand, not all blockholders are
forced to bear uninsurable idiosyncratic risks of the firm’s equity. Hoping the two forces cancel out each
other, I take the blockholding level as an approximation for the parameter φ.
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sample with 224 U.S. public firms. More recent data show that the institutional block-

holders in U.S. equity markets holding over 66% of the total equity.22 I choose φ = 0.5

to provide a reasonable blockholding in my model.

To illustrate the role of the two uncertainty shocks, I need to choose the evolution

rules governing how the uncertainty fluctuates over time and to choose the uncertainty

levels that characterizing the scale of fluctuations in uncertainty. The transition inten-

sities λ(νg,ν′g) and λ(νc,ν′c) are estimated based on the regime-switching dynamics of es-

timated growth uncertainty and cash-flow uncertainty, respectively. Specifically, they

are estimated based on Table 2.6 for which the details are in the online appendix. The

uncertainty levels are calibrated such that the interdecile range (IDR) of sales growth

rates and the cross-sectional standard deviation (CSD) of investment rates have means

and standard deviations that reasonably match the moments in the data summarized

in Table 2.4. More precisely, the means of the IDR of sales growth rates are 53.02% in

the model and 49.02% in the data; moreover, its standard deviations are 16.03% in the

model and 12.32% in the data. The means of the CSD of investment rates are 45.12%

in the model versus 40.85% in the data; and, its standard deviations are 13.50% in the

model versus 7.25% in the data.

To calibrate the specification of preferences, I choose a value for EIS ψ = 2 consistent

with Bansal and Yaron (2004a); Bansal, Kiku, and Yaron (2012a), who emphasize that

the preference of early resolution of uncertainty is important to understand uncertainty

shock’s impact on asset prices. Consistent with macroeconomic models of asset prices

such as Guvenen (2009), I choose a value for risk aversion no bigger than 10. Here, I

use γ = 6 to provide a comparable capital-to-output ratio to the data as summarized

in Table 2.3 (196.20% in the model versus 169.24% in the data). The subjective discount

factor is chosen to be δ = 0.0111 to help the model match the average level of risk-free

rates as in Table 2.5 (1.53% in the model versus 1.31% in the data).

The average lifespan parameter is chosen to be µ = 1/40, which is a standard choice

22See, e.g., Carolyn K. Brancato and Stephan Rabimov, “The 2008 Institutonal Investment Report:
Trends in Institutional Investor Assets and Equity Ownership of U.S. Corporations” (The Conference
Board, 2008).
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since the average number of working years in U.S. is about 40. The pledgeability of

human capital chosen to be $ = 5% which is consistent with Lustig and Nieuwerburgh

(2010). The population of experts is estimated based on the U.S. income distribution

observations provided by U.S. census. A simple linear extrapolation estimates that, on

average, about 2% of U.S. households earn annual salary 30, 000 dollars. Presumably,

the experts make at least 30, 000 dollars a year, so 2% is a reasonable approximation for

the population share of experts in the economy.

Lastly, as for the production and investment of consumption goods firms, the pro-

ductivity volatility σ is calibrated in a standard way. I choose σ = 10% to match the

standard deviation of output log growth as summarized in Table 2.2 (1.92% in the

model versus 1.67% in the data). The shares of capital are chosen to be ϕ = 0.3 and

1− α = 0.1, which help match the relative size of the consumption goods sector and

the investment goods sector (approximately 23% for the investment goods sector in

terms of sectoral outputs in the data), while generating a labor share of output of ap-

proximately 75% as in Table 2.3 (75.25% in the model versus 75.26% in the data). This

is also in line with Papanikolaou (2011). The constant arrival rate of investment oppor-

tunities is chosen at λ = 3.33 and the fixed adjustment cost rate is chosen at v = 0.83%

to match the average annual positive investment rate (approximately 79% in the data)

and the standard deviation of aggregate investment log growth (Table 2.2) simultane-

ously. The standard deviations of log growth rates of aggregate investment are 55.38%

in the model and 36.00% in the data. The average productivity in the investment goods

sector zι = 1.03 and the depreciation rate δ = 15% help match the average investment-

to-output ratio (Table 2.3: 16.60% in the model versus 16.47% in the data) and the

average payout-to-consumption ratio (Table 2.3: 6.30% in the model versus 5.46% in

the data).

2.3.2 Model Implications

Macroeconomic moments. I report the model-implied moments of the growth rates

of log consumption, log investment, and log output in Panel B of Table 2.2; for compar-
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ison, I also report their empirical counterparts in Panel A of the same table. Columns

(1) – (3) of the table report means, standard deviations, and autocorrelations for each

growth variable; Columns (4) – (6) report the correlations among the three growth

variables. For the simulated data in panel B, the table shows the average values across

independent simulations, along with the 5th and 95th percentiles reported in brackets.

For the moments in the data, the table reports the point estimates and the correspond-

ing confidence intervals in brackets estimated by stationary block bootstrap methods.

The moments in blue and bold are those used for calibration. For most of the mo-

ments of interest in Table 2.2, the data and the model are close statistically. However,

the model fails to produce the right pattern of comovement between investment and

consumption growth (−0.44 in the model versus 0.83 in the data). The main reason

is that the growth uncertainty resembles the investment shock, especially when the

risk sharing condition is good. This can be seen from (2.14) and (2.17). The implied

investment shock generates opposite responses in investment and consumption. The

negative correlation arises for two reasons. First, the high value of EIS implies that

consumption does fall heavily in response to an implied positive investment shock. It

generates exceedingly negative correlation between consumption and investment. Sec-

ond, the aggregate productivity shock dZt moves investment and consumption in the

same direction. However, when EIS is large, the effect of implied investment shocks

dominates, generating a negative correlation between investment and consumption.

This is a well-known issue for real business cycle models with investment shocks. In

general, labor market frictions can help restore the positive correlation.

For a macroeconomic growth model, the valid quantitative analysis requires the

key macroeconomic ratios characterizing the steady state along the balanced growth

path to be replicated by the model with reasonably small errors. Basically, the cal-

ibration of the model should be able to generate the steady-state ratios consistent

with the data. Table 2.3 compares the empirical moments of investment-to-output

ratios, net-payout-to-consumption ratios, wage-income-to-output ratios, and capital-

to-output ratios with their correspondences in the simulated data generated from the
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model. The moments in blue and bold are used for calibration. It shows that the data

and the model are statistically close for most of the moments of interest. However, the

model fails to generate a high enough standard deviation of wage-income-to-output

ratio (2.04% in the model versus 4.02% in the data); moreover, their confidence inter-

vals are not even overlapped. The main reason is that the asymmetric and volatile

fluctuations in unemployment is hard to be captured by a model without frictions in

labor markets (e.g., Petrosky-Nadeau and Zhang, 2013). In the model with frictionless

labor markets, agents can efficiently smooth out the labor income shocks over time.

Table 2.4 compares the empirical moments of cross-sectional dispersions to the sim-

ulated ones from the model. Panel A shows that the sales growth dispersion is coun-

tercyclical (the correlation with log output growth is −17.32%), while the investment

rate dispersion is procyclical in the data (the correlation with log output growth is

43.28%). It is consistent with the findings in Bachmann and Bayer (2014) who empha-

size that the uncertainty-driving real business cycle models need to reconcile the two

prominent patterns. Column (4) of Panel B shows that the model generates counter-

cyclical sales growth dispersions (the correlation with log output growth is −27.66%)

and procyclical investment rate dispersion (the correlation with log output growth is

23.82%) simultaneously. In the model, the sales growth dispersion is mainly driven

by cash-flow uncertainty shocks (as shown in (2.42)), which decrease the output and

investment due to the imperfect risk sharing; the investment rate dispersion is mainly

driven by growth uncertainty shocks, which has asymmetrically stronger effect when

risk sharing is less limited. The asymmetric effect of growth uncertainty shocks on the

investment rate dispersion implies procyclical dispersion in equilibrium.

Table 2.5 compares the asset pricing moments in the data to the simulated moments

from the model. In particular, the sizable equity premium (4.95% in the model versus

4.47% in the data) is main a result of the market incompleteness and the amplifica-

tion effect of financial frictions on the uncertainty shocks. The model also reproduces

the sizable value premium (7.57% in the model versus 5.05% in the data). The large

average value spread is mainly due to the cash-flow uncertainty shock which carries
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a negative market price of risk and decreases the value of assets in place relative to

growth options.

Figure 2-1 and Figure 2-2 show the key results of this paper. In Figure 2-1, while the

market price of risk for the cash-flow uncertainty shock is always negative, the market

price of risk for the growth uncertainty shock changes from negative to positive as the

risk sharing condition gets better. In Figure 2-2, while the exposure of value spreads to

cash-flow uncertainty shocks is always negative, their exposure to the growth uncer-

tainty shock changes from positive to negative as the risk sharing condition improves.

2.3.3 Basic Mechanisms

Stochastic discount factors and idiosyncratic risk premia There is a full menu of

short-term contingent claims on both aggregate shocks and idiosyncratic shocks avail-

able to the agents. However, the moral hazard makes the enforcement of some contin-

gent claim contracts on idiosyncratic shocks imperfect.

I denote by Me
f ,t the utility gradients of the expert f at her optimal consumption

policy. According to Duffie and Skiadas (1994, Theorem 2), the utility gradient of ex-

pert f has the following expression:

Me
f ,t = exp

[∫ t

0
fU(ce

f ,t′ , Ue
f ,t′)dt′

]
fc(ce

f ,t, Ue
f ,t).

Thus, the instantaneous intertemporal marginal rate of substitution (IMRS) of expert f

is

dMe
f ,t

Me
f ,t

= −µe
t − ηe

t dZt − ∑
ν′g ̸=νg

κe,(νg,ν′g)
[

dN
(νg,ν′g)
t − λ(νg,ν′g)dt

]
(2.28)

− γσe
f ,n,W,tdW f ,t − γσe

f ,n,N,tdN f ,t,

where the drift µe
t and the coefficients of aggregate shocks ηe

t and κ
e,(νg,ν′g)
t only depend

on aggregate state variables in equilibrium. The coefficients of idiosyncratic shocks

87



σe
f ,n,W,t and σe

f ,n,N,t also only depend on aggregate state with the following expressions:

σe
f ,n,W,t ≡ νc,t

φ

xt
zk(xt, νt) and σe

f ,n,N,t =
1
γ

[
1− (1 + ςe

f ,n,N,t)
−γ
]

.

Effectively, the term γσf ,n,W,t is the market price of the idiosyncratic cash flow risk

dW f ,t required by the expert f , while the term γσe
f ,n,N,t is the market price of the id-

iosyncratic growth risk dN f ,t required by the expert f . The term σf ,n,W,t is simply the

loading of idiosyncratic cash flow risks. The term σe
f ,n,N,t is approximately equal to

ςe
f ,n,N,t when the latter is small according to the Taylor expansion.

In an economy with complete and frictionless financial market, there is a unique

stochastic discount factor which is equal to every agent’s utility gradient. In an incom-

plete market, for any particular set of assets, according to the intertemporal Euler equa-

tions, the non-arbitrage condition implies that the stochastic discount factor is equal to

the highest utility gradient across all agents who have access to the particular set of

assets. In fact, for the unconstrained agent in some state, her utility gradient must

equal to the stochastic discount factor in that state. This is the similar idea in Chien

and Lustig (2010) and Alvarez and Jermann (2001) for asset pricing in an incomplete

market.

Because all experts can freely access all financial assets whose payoffs are contin-

gent on the aggregate shocks, the cross-sectional average of these individual experts’

IMRS is a valid SPD for those financial in all states. Thus, the following results can

be derived readily. For those financial assets whose payoffs depend only on aggregate

states, one SPD that prices their returns is provided by the average IMRS of experts.

More precisely, it is the SPD Λt such that

dΛt

Λt
≡ 1

κ

∫
f∈F

[
dMe

f ,t

Me
f ,t

]
d f

= −rtdt− ηtdZt − ∑
ν ̸=νt

κ
(νt,ν)
t

[
dN(νt,ν)

t − λ(νt,ν)dt
]

. (2.29)
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Here rt ≡ µe
t is the risk-free interest rate, ηt ≡ ηe

t is the market price of aggregate

cash flow risk Zt, and κ
(νt,ν)
t ≡ κ

e,(νt,ν)
t is the market price of uncertainty risk N(νt,ν)

t −

λ(νt,ν)t for each ν ∈ 𝒱 . All market prices ηt, κ(νt,ν) for all ν ∈ 𝒱 and interest rate rt

are determined endogenously in equilibrium. Households agree on the market prices

of risk. It is straightforward to derive that the market price of risk ηt is constant η ≡

γϕσ, because all agents (experts and households) perfectly share the aggregate risk of

productivity shock dZt by holding constant risk exposure ϕσ.

However, experts are the only agents who can trade firm’s assets freely. For each

firm-specific asset, the following Euler equations hold. More precisely, for each f ∈ F,

it holds that

Et

[
dRk

t

]
/dt− rt = −Et

[
dMe

f ,t

Me
f ,t
×

d f ,tdt− (1− φ)qtk f ,tνc,tdW f ,t + d
(
qtk f ,t

)
qtk f ,t

]

for all f ∈ F, and

Et [dRs
t ] /dt− rt = −Et

[
dMe

f ,t

Me
f ,t
×

φpts f ,tdN f ,t + d
(

pts f ,t
)

pts f ,t

]
for all f ∈ F.

Here, d f ,tdt − (1− φ)qtk f ,tνc,tdW f ,t is the effective consumption goods net payout of

assets in place to expert f since she can dump the amount (1 − φ)qtk f ,tνc,tdW f ,t of

the idiosyncratic cash flow exposure for free. And, φπ f ,t ptsdN f ,t is the effective pe-

cuniary net payout of growth options to expert f since she can dump the amount

(1− φ)π f ,t ptsdN f ,t of idiosyncratic growth exposure for free.

The relations of (2.28) – (2.31) leads to the following beta pricing rules for assets in

place and growth options. The expected return from holding assets in place (i.e. assets

89



in place) in excess of the risk-free rate equals

Et

[
dRk

t

]
/dt− rt︸ ︷︷ ︸

risk premium of holding kt

=

Et
[
dR̃k

t
]

/dt− rt︷ ︸︸ ︷
ϕση + ∑

ν ̸=νt

ς
q,(νt,ν)
t κ

(νt,ν)
t λ

(νt,ν)
t︸ ︷︷ ︸

aggregate premium for all agents

+ γ(φνc,t)
2zk(xt, νt)

xt
,︸ ︷︷ ︸

idiosyncratic premium for experts

(2.30)

where R̃k
t is the equity return on assets in place and zk(xt, νt) ≡ qtkt/Qt is the assets-

in-place share in the total net worth Qt.

And, the expected return from holding growth options (i.e. growth options) in

excess of the risk-free rate equals

Et [dRs
t ] /dt− rt︸ ︷︷ ︸

risk premium of holding st

=

Et
[
dR̃s

t
]

/dt− rt︷ ︸︸ ︷
ϕση + ∑

ν ̸=νt

ς
p,(νt,ν)
t κ

(νt,ν)
t λ

(νt,ν)
t︸ ︷︷ ︸

aggregate premium for all agents

+ λφEε
t

{[
1−

(
1 + ςe

f ,n,N,t

)−γ
]

π f ,t

}
,︸ ︷︷ ︸

idiosyncratic premium for experts

(2.31)

where R̃s
t is the equity return on growth options and zs(xt, νt) ≡ ptst/Qt is the growth-

options share in the total net worth Qt.

Alternatively, the beta pricing rules (2.30) – (2.31) can also be derived using the first-

order conditions of experts’ Hamilton-Jacobi-Bellman (HJB) equations, together with

their dynamic budget constraints.

Using the Taylor-expansion approximation, the idiosyncratic risk premium required
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for holding growth options can be approximated by

λφEε
t

{[
1−

(
1 + ςe

f ,n,N,t

)−γ
]

π f ,t

}
≈ λφγEε

t

[
π f ,tς

e
f ,n,N,t

]
= γ

[
ℐα(νg,t/ξt)

]2 zs(xt, νt)

xt
× φ2

λ
.

Figure 2-3 illustrates the idiosyncratic risk premia under the calibration summa-

rized in Table 4.4. The uncertainty shocks increase the risk premia on the idiosyncratic

risks. There are several additional observations that worth mentioning. First, the ef-

fect of uncertainty shocks on the idiosyncratic risk premia increases nonlinearly as the

risk sharing becomes more limited (i.e., xt decreases). The reason is that the expert’s

net worth has larger exposure to the idiosyncratic shocks when xt is lower. Second,

the risk premium on the idiosyncratic cash-flow shock is mainly affected by the cash-

flow uncertainty shock, while the risk premium on the idiosyncratic investment shock

is mainly affected by the growth uncertainty shock. These heterogeneous impacts are

due to the distinct nature of the two uncertainty shocks. Third, while the cash-flow

uncertainty always has significant positive impact on the idiosyncratic cash flow risk

premium, the growth uncertainty has almost no effect on idiosyncratic risk premia

when the risk sharing condition is good. The reason is that the investment shock effect

dominates when the risk sharing condition is good.

Amplification: uncertainty shocks compromise risk sharing conditions. In the

model, the risk sharing condition is endogenously affected by the two uncertainty

shocks. To establish the link between uncertainty shocks and the risk sharing con-

dition, I consider two different types of measures of how much risk sharing is lim-

ited. The first type of measure is based on the idea that the covariance between an

agent’s net worth and idiosyncratic risks is always zero when the market is complete

(i.e., risk sharing is perfect). When experts have a larger exposure to idiosyncratic

shocks in their net worth, there is a larger cross-sectional dispersion in growth rates of

individual consumption shares. So, the cross-sectional dispersion in growth rates of
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individual consumption shares provides a reasonable measure for the risk sharing im-

perfectness. The second type of measure is based on the idea that the marginal value

of net worth should be identical across all agents when the market is complete. There-

fore, the discrepancy between agents’ marginal value of net worth serves as another

natural measure of risk sharing imperfectness.23

Consumption dispersion. In equilibrium, the household’s net worth is indepen-

dent of all idiosyncratic risks, while the incentive constraints force each expert f to

expose his own net worth to the particular idiosyncratic risk dW f ,t. Importantly, the

expert’s idiosyncratic risk exposure is endogenous and hence time varying.

But, it only depends on the aggregate states in the economy. For each expert f , the

conditional instantaneous covariance of net worth growth with the idiosyncratic shock

dW f ,t is

Covt

(
dne

f ,t

ne
f ,t

, dW f ,t

)
/dt = νc,t × φ× 1

xt
×zk(xt, νt),

where zk(xt, νt) ≡ qt/Qt is the value share of asset in place in total financial wealth.

Moreover, the conditional instantaneous covariance of net worth growth with the id-

iosyncratic standardized shock dÑ f ,t, which is normalized by aggregate profit rate of

growth options πt, is

Covt

(
dne

f ,t

ne
f ,t

, dÑ f ,t

)
/dt = ℐα(νg,t/ξt)× φ× 1

xt
×zs(xt, νt),

where zs(xt, νt) ≡ pts/Qt is the value share of growth options in total financial wealth,

and ℐα (·) is a deterministic function which is strictly increasing.

It can be seen that the severity of agency problems characterized by φ, the expert’s

wealth share xt, and the uncertainties νc,t and νg,t have direct monotonic impact on

the risk sharing capacity measures, up to some general equilibrium valuation effects

zk(xt, νt) and zs(xt, νt). The severity of agency problem, the wealth share and the un-

certainties can also affect the risk sharing capacity indirectly, which can be summarized

23The detailed derivations in this section can be found in the online appendix.
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by the general equilibrium effects zk(xt, νt) and zs(xt, νt).

For each expert f , the consumption share is defined as Se
f ,t ≡ ce

f ,t/ce
t . I use the cross-

sectional standard deviation (CSD) of consumption share growth rates to capture the

dispersion. The cross-sectional dispersion of consumption growth depends on the id-

iosyncratic risk exposures. The instantaneous cross-sectional variance of consumption

share growth rates has the following analytical expression

vart

(
dSe

f ,t

Se
f ,t

)
/dt =

[
νc,t

φ

xt
zk(xt, νt)

]2

+

[
ℐα(νg,t/ξt)

φ

xt
zs(xt, νt)

]2

.

The basic idea of the proof is that each individual expert’s consumption share is equal

to his net worth share in the equilibrium. That is, ce
f ,t/ce

t = ne
f ,t/ne

t . Therefore, the

cross-sectional instantaneous variance of the growth rates of consumption shares is

equal to the instantaneous idiosyncratic variance of individual consumption growth.

Therefore, the instantaneous cross-sectional variance of the experts’ consumption

share growth rates is linked to their exposures of idiosyncratic risks in the following

way:

vart

(
dSe

f ,t

Se
f ,t

)
/dt =

[
Covt

(
dne

f ,t

ne
f ,t

, dW f ,t

)
/dt

]2

+

[
Covt

(
dne

f ,t

ne
f ,t

, dÑ f ,t

)
/dt

]2

.

The instantaneous cross-sectional standard deviation of
dSe

f ,t
Se

f ,t
across all experts is

defined as a measure for the risk sharing imperfection (i.e. the inverse of risk sharing

condition). More precisely, I define

Ξt ≡

√√√√vart

(
dSe

f ,t

Se
f ,t

)
=

√[
νc,t

φ

xt
zk(xt, νt)

]2

+

[
ℐα(νg,t/ξt)

φ

xt
zs(xt, νt)

]2

.

Marginal value gap. In complete market, the marginal value of wealth for agents

should be identical. Thus, the gap between two marginal values of wealth can serve

as a index for risk sharing imperfection (i.e. the inverse of risk sharing condition). I
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define

Θt ≡ log(ζe
t )− log(ζh

t ). (2.32)

The quantity is called marginal value gap. It is obvious that Θt in always nonnegative

in the equilibrium. This is because experts have the access to investing in assets in

place and growth options in the spot capital market, whereas households are excluded

from such investment opportunities. As a result, experts always get more utility per

unit of net worth than households. Thus, in equilibrium, it holds that Θt ≡ log(ζe
t )−

log(ζh
t ) ≥ 0.

Figure 2-4 illustrates the consumption dispersion and marginal value gap under

the calibration summarized in Table 4.4. The uncertainty shocks deteriorate the risk

sharing condition by increasing the consumption dispersion and the marginal value

gap. The effect of uncertainty shocks on the consumption dispersion increases non-

linearly as the risk sharing becomes more limited (i.e., xt decreases). The reason is

that the expert’s net worth has larger exposure to the idiosyncratic shocks when xt is

lower. This is particularly true for growth uncertainty shocks’ impact on consumption

dispersions.

Imperfect risk sharing on uncertainty shocks: from an optimal portfolio perspec-

tive. When uncertainty rises, the idiosyncratic risk premia go up. However, experts

are the only ones who can take advantage of the higher idiosyncratic risk premia by

investing more in real assets. As a result, experts’ investment environment deteriorates

relative to households. Therefore, the risk sharing between experts and households is

endogenously imperfect due to the incomplete market faced by experts. The imper-

fect risk sharing on uncertainty shocks can be seen from the optimal portfolio holdings

of households, which deviate from the market portfolio by significant hedging com-

ponents. More precisely, each household’s portfolio holding can be characterized by(
ϕσ, ς

h,(νg,t,νg)
n,t , ς

h,(νc,t,νc)
n,t

)
. The risk sharing on Zt is perfect and thus the optimal hold-

ing is the market portfolio or the myopic component. However, the optimal exposure

to uncertainty shocks features significant hedging components with the following an-
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alytical expressions:

ς
h,(νt,ν)
n,t = ς

Q,(νt,ν)
t︸ ︷︷ ︸

market portfolio

+ xt
γ− 1

γ
ς

Θ,(νt,ν)
t ,︸ ︷︷ ︸

hedging for relative environment

where ς
Θ,(νt,ν)
t is the effect of uncertainty shocks on the marginal value gap Θt. Under

the benchmark calibration, it holds that ς
Θ,(νL

g ,νH
g )

t > 0 and ς
Θ,(νL

c ,νH
c )

t > 0. It means that

higher growth uncertainty or cash-flow uncertainty compromises the relative invest-

ment environment of households. If γ > 1 (intra-temporal wealth effect dominates),

households have hedging motives to rising uncertainty; that is, xt
γ− 1

γ ς
Θ,(νL

g ,νH
g )

t > 0

and xt
γ− 1

γ ς
Θ,(νL

c ,νH
c )

t > 0.

There are three points that are worth mentioning. First, when xt is large and thus

the risk sharing is high, the hedging components for the relative investment environ-

ment are almost gone because ς
Θ,(νt,ν)
t ≈ 0 for all νt, ν. Thus, the optimal holdings go

back to the market portfolio ς
Q,(νt,ν)
t . In the extreme where the risk sharing is perfect,

households only hold the market portfolio. Second, hedging motives mirrored in the

framework of inter-temporal capital asset pricing (ICAPM) models (e.g. Merton, 1973a;

Campbell, 1993), the equity risk premium and the value premium are theoretically and

quantitatively accounted by the covariance between stock returns and relative invest-

ment environment of experts Θt which is negatively driven by uncertainty shocks.

Third, the market portfolio ς
Q,(νt,ν)
t does not only contain the myopic component but

also hedging component, since uncertainty shocks affect the overall investment envi-

ronment.

Displacement risks: why growth uncertainty can be so fearful? Compared to

cash-flow uncertainty shocks, higher growth uncertainty causes an additional risk to

experts, the risk of increasing inequality in the distribution of innovation benefits from

growth options. The skewness in the distribution of innovation benefits matters when

the risk sharing on idiosyncratic investment shocks is limited. Thus, this risk becomes
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particularly devastating when risk sharing condition is poor. The intuition can be seen

clearly from the impulse-response analysis illustrated in Figure 2-5. Panel A shows

the growth uncertainty shock that hits the economy. It is a temporal shock with half

life 1.6 years. Panels B, C, and D show the responses of experts’ aggregate consump-

tion, experts’ consumption dispersion, and the median of the cross-section of experts’

consumption shares, respectively. The blue solid curve is the response when the risk

sharing condition is good, while the red dashed curve is the response when the risk

sharing condition is poor. In Panel A, it is clear that the growth uncertainty shock

works as an investment shock which transfer current consumption to future with a

larger amount when the risk sharing is not limited; the growth uncertainty shock de-

stroys consumption and it takes a long time to recover when the risk sharing is seri-

ously limited. In Panel C, the variance of the cross-section of experts’ consumption

shares increases dramatically with the growth uncertainty shock when risk sharing is

limited; they are almost not affected when risk sharing is not limited. Panel D shows

that the cross-sectional distribution of experts becomes permanently more skewed,

though the conditional cross-sectional variance of consumption share growth comes

back to the original level quickly. The distribution is extremely skewed when the risk

sharing is limited. However, the distribution does not matter for the equilibrium. It

is a manifestation of the skewed wealth transfer among experts. The reason for the

skewed wealth transfer is that when risk sharing is limited, experts cannot efficiently

insure the idiosyncratic risks in investment opportunities. Thus, most of the benefits

from innovation accrue to a small fraction of experts, while the majority of experts

bear the cost of creative destruction since they need to pay for the new assets in place.

Essentially, the wealth is reallocated from those who do not invest to those who re-

ceive high-quality investment opportunities. This reallocation becomes more skewed

when growth uncertainty is high, because of asymmetric benefits of growth options.

In other words, each expert faces a more skewed idiosyncratic investment risk. Be-

cause experts are risk-averse, the higher skewness of idiosyncratic risk decreases the

expert’s certainty-equivalent wealth. The displacement risk interacting with financial
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constraints is amplified.

2.4 Empirical Evidence

In this section, I analyze the model’s key predictions on the asset pricing implications of

uncertainty shocks in the data, using empirical measures of growth uncertainty shocks

and cash-flow uncertainty shocks. In Section 2.4.1, I empirically construct both growth

uncertainty and cash-flow uncertainty based on idiosyncratic stock return volatilities

in a panel of U.S. public firms. In Section 2.4.2, I provide an alternative measurement

of growth uncertainty and cash-flow uncertainty based on the time-varying cross-

sectional dispersion of fundamental cash flows and investments, respectively. I show

that the two alternative approaches produce coherent measurements of uncertainty, as

predicted by the model. In Section 2.4.3, I examine the role of risk sharing condition

for determining the securities’ exposures to two kinds of uncertainty shocks. I explore

whether time-varying cross-sectional heterogeneous risk exposures to growth uncer-

tainty shocks and cash-flow uncertainty shocks can rationale the observed differences

in average returns between value and growth firms.

2.4.1 Measuring Uncertainty Based on Idiosyncratic Stock Returns

The idiosyncratic return volatility on assets in place. I denote dR̃k
f ,t as the in-

stantaneous return on the equity of assets in place. The return is exposed to all three

aggregate shocks in the economy with the risk loadings determined in equilibrium. Its

conditional expected return Et

[
dR̃k

f ,t

]
is determined by these risk loadings and mar-

ket price of risk for the aggregate shocks according to the beta pricing rule in Equations

(2.30) and (2.31). The equity return exposes to the idiosyncratic cash flow shock dW f ,t.

In the model, the idiosyncratic equity return is captured by the term νc,tdW f ,t. The
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instantaneous equity return on assets in place is characterized as follows:

dR̃k
f ,t = Et

[
dR̃k

f ,t

]
︸ ︷︷ ︸

expected return

+ ϕσdZt + ∑ν ̸=νt
ςq,(νt,ν)

(
dN(νt,ν)

t − λ(νt,ν)dt
)

︸ ︷︷ ︸
aggregate return risk

+ νc,tdW f ,t.︸ ︷︷ ︸
idiosyncratic return risk

It is obvious that the idiosyncratic volatility of dR̃k
f ,t is simply νc,t. That is, if I denote,

by σk,t, the idiosyncratic volatility of equity return on assets in place, the following

relationship holds

σk,t ≡ ivolt

(
dR̃k

f ,t

)
= νc,t. (2.33)

The relation in (2.33) shows that the cash-flow uncertainty νc,t can be identified and

measured by the idiosyncratic volatility of equity return on assets in place σk,t.

The idiosyncratic return volatility on growth options. I denote dR̃s
f ,t as the instan-

taneous return on the equity of growth options. The return is exposed to all three

aggregate shocks in the economy with the risk loadings determined in equilibrium.

Its conditional expected return Et

[
dR̃s

f ,t

]
is determined by these risk loadings and

market price of risk for the aggregate shocks according to the beta pricing rule in

Equations (2.30) and (2.31). The equity return exposes to the idiosyncratic investment

shock π f ,tdNt −Eε(π f ,t)λdt which compounds the idiosyncratic investment opportu-

nity shock dN f ,t with the idiosyncratic IST shock ε f ,t. In the model, the instantaneous

equity return on growth options is

dR̃s
f ,t = Et

[
dR̃s

f ,t

]
︸ ︷︷ ︸

expected return

+ ϕσdZt + ∑ν ̸=νt
ςp,(νt,ν′)

(
dN(νt,ν)

t − λ(ν,ν)dt
)

︸ ︷︷ ︸
aggregate return risk

+
(
π f ,tdN f ,t −Eε(π f ,t)λdt

)
.︸ ︷︷ ︸

idiosyncratic return risk
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Denote, by σs,t, the idiosyncratic equity return volatility of growth options. It is defined

as follows:

σ2
s,t ≡ ivolt

(
dR̃s

f ,t

)2
= vart

[
π f ,tdN f ,t −Eε(π f ,t)λdt

]
/dt, (2.34)

where vart
[
π f ,tdNt −Eε(π f ,t)λdt

]
is the variance of π f ,tdNt − Eε(π f ,t)λdt. In fact,

under the model’s assumptions, the idiosyncratic volatility can be expressed in terms

of economically meaningful variables. I summarize this result in Proposition 7.

Proposition 7 (Identification of Growth Uncertainty). Suppose α ∈ (0, 1). Then, the

idiosyncratic volatility of equity returns on growth options can be expressed in the following

form:

σs,t = ℐα(νg,t/ξt), (2.35)

where ℐα(·) is a deterministic function which is strictly increasing.

The shock in the growth uncertainty νg,t can be captured by

∆ log(νg,t) = ∆ log
[
ℐ−1

α (σs,t)
]
+ ∆ log(ξt). (2.36)

According to (2.6), the second term on the right hand of (2.36) can be expressed as

follows

∆ log(ξt) = (1− α)∆ log(q̂t/ p̂t) + α∆ log(τ̂t/q̂t). (2.37)

The variables in (2.36) and (2.37) can all be approximated empirically. The volatility

of ∆ log(ξt) is smaller than that of ∆ log
[
ℐ−1

α (σs,t)
]

by an order of magnitude in the

data.24 Thus, approximately, the growth uncertainty shocks can be constructed based

24I approximate σs,t by using the lowest 10% U.S. public firms according to their book-to-market ra-
tios. Their annual returns are available from Ken French’s web site and the annual idiosyncratic return
volatility can be constructed as in (2.39). The valuation ratio between assets in place and growth options
q̂t/ p̂t can be approximated by using annual Compustat data. More precisely, I follow Fazzari, Hubbard,
and Petersen (1988) and Kaplan and Zingales (1997). The relative price of investment goods is mea-
sured by the relative price of new equipments as in Greenwood, Hercowitz, and Krusell (1997, 2000),
Cummins and Violante (2002), and Papanikolaou (2011). Specifically, I follow the method adopted by
Israelsen (2010) to extend the quality-adjusted relative price of investment goods proposed by Gordon
(1990) and Cummins and Violante (2002) to 2014.
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only on the idiosyncratic equity return volatility σs,t:

∆ log(νg,t) ≈ ∆ log
[
ℐ−1

α (σs,t)
]

. (2.38)

Methodology. Guided by the implications of the model above, I construct two sources

of uncertainty shocks using the cross section of asset returns. The model suggests that

the cash-flow uncertainty and the growth uncertainty are identified by the idiosyn-

cratic volatilities of equity returns on assets in place (Equation (2.33)) and on growth

options (Equation (2.38)), respectively. However, there is no equivalent to an equity

on pure growth options or an equity on pure assets in place in the data. So, I appeal

to stock returns of firms with low and high book-to-market ratios to approximate the

equity returns on growth options and assets in place, respectively. An advantage of

these measures is that they are available at high frequencies since they are based on

financial data.

To be more precise, I sort firms into 10 portfolios on the basis of book-to-market

ratios.25 The basic idea is to use a firm’s book-to-market ratio as an inverse measure

of growth opportunities held by the firm. This idea follows the conventional wisdom

that the market value of growth options is accounted in the market value of the firm,

but not in the book value of assets. As a result, a firm’s book-to-market ratio should be

negatively associated with the firm’s value of growth options relative to its total value.

In a recent paper by Kogan and Papanikolaou (2014), the authors empirically vali-

date the book-to-market ratio by comparing it with an alternative empirical measure

of growth opportunities based on return sensitivity to investment-specific technology

shocks. The break points for sorting firms are based on New York Stock Exchange

deciles of book-to-market ratios, provided on Ken French’s web site.

I first extract the idiosyncratic component of log returns. For each firm, the id-

iosyncratic component is constructed for every month. More precisely, to obtain the

idiosyncratic component of firm f within the month tm,26 I appeal to the following
25The book-to-market ratio is computed using book equity and market capitalization constructed from

Compustat items. I strictly following Fama and French’s methodology.
26A firm-month return observation is included if (i) the stock has CRSP share code 10 or 11, and (ii)
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factor model

r f ,td
− rtd = a f ,tm + βT

f ,tm
Ftd + ε f ,td

, (2.39)

where Ftd denotes the vector of factors and td denotes a daily observation in the past

Lm months indexed by tm, tm − 1, · · · , tm − Lm + 1. The idiosyncratic component of

the log return is estimated by the regression residual ε f ,td
in (2.39). In the benchmark

case, I choose Lm = 3.27 Also, I use Fama and French (1993) three factors for the

factor structure, following the standard in literature. Robustness check shows that the

main results are not altered if using market returns, four factors in Carhart (1997), or

principal components similar to Herskovic, Kelly, Lustig, and Nieuwerburgh (2014).

The idiosyncratic volatility of firm f ’s stock return in month tm is then calculated

as the standard deviation of residuals ε f ,td
within that month, not including residuals

in months tm − Lm + 1, · · · , tm − 1. However, the standard deviation of ε f ,td
is the id-

iosyncratic volatility of leveraged stock returns instead of all-equity returns as in the

model; in other words, it is an amplified volatility by firm’s financial leverage. More

precisely, the underlying idiosyncratic shock to the value of firm’s assets is amplified

by a factor of the leverage ratio and pass through to the idiosyncratic equity returns.

So the idiosyncratic volatility of stock returns is amplified by a factor of the leverage

ratio. The leverage ratio is constructed by the sum of the book value of debt and the

market value of equity divided by the market value of equity, similar to Welch (2004).28

To construct the idiosyncratic volatility of the all-equity firm’s returns, I need to adjust

std(ε f ) by the leverage ratio. As a result, a panel of firm-month idiosyncratic volatil-

ity estimates for all-equity firms are obtained. Building on this firm-month panel, I

construct two monthly time series, denoted by σk,tm and σs,tm .

the firm has at least 17 return observations within the month, and (iii) the firm has no missing returns
for the past 36 months.

27The empirical results are robust to alternative choices Lm = 1, 2, 4, 6. The way I constructed id-
iosyncratic returns are similar to the approach used in Herskovic, Kelly, Lustig, and Nieuwerburgh
(2014) except several divergences. First, we have different frequencies. I focus on monthly idiosyncratic
volatilities, whereas they construct annually idiosyncratic volatilities. Second, my factor regressions
have overlapping rolling windows, while theirs rolling windows for factor regressions do not overlap.

28If the leverage ratio is missing from Compustat, I use the overall average leverage ratio in the same
category as an approximation.
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For constructing the series σk,tm , I use the equal-weighted average of the idiosyn-

cratic volatilities of those firms whose book-to-market ratios lie in the top 30% quan-

tiles.29 On the other hand, for the series σs,tm , I use the idiosyncratic volatilities of those

firms whose book-to-market ratios lie within the bottom three deciles. I first compute

the average idiosyncratic volatilities within each category. I then regress each of the

three series of logged average idiosyncratic volatilities onto the series log(σk,tm). The

first principle component of the three residual series accounts for over 76% of their

total variation. I use the first principle component to construct log (σs,tm).

Eventually, I construct an index tracking time-variation of the cash-flow uncertainty

νc,tm by the series log(σk,tm) with the constant level and linear trend taken out.30 An

index of tracking the growth uncertainty νg,tm can be constructed by using log (σs,tm)

with the constant level and linear trend taken out. It is quite intuitive why we need

to take out the effect of cash-flow uncertainty from the average idiosyncratic volatil-

ity of low book-to-market firm stock returns. It is simply because their idiosyncratic

volatilities are inevitably affected by cash-flow uncertainty shocks.

Results. The quarterly uncertainty indices, denoted by νg,tq and νc,tq , and annually

uncertainty indices, denoted by νg,ty and νc,ty , are simply defined as the average of

monthly uncertainty indices within each quarter and each year, respectively. Fig-

ure 2-6 illustrates the time variation of the cash-flow uncertainty annual index and

the growth uncertainty annual index. The horizontal segments represent estimated

high/medium/low regimes of uncertainties. The levels of the segments in the plots

are the estimated average levels of uncertainty within each regime. The regimes and

levels are estimated using regime-switching models (e.g., Hamilton, 1989, 1994; Tim-

29I also use the first principle component of the three average idiosyncratic volatilities for the firms
with the highest 10%, with the second highest 10%, and with the third highest 10% book-to-market
ratios. The first principle component accounts for over 73% of the total variation. It leads to almost the
same result for the approximation of νc,t.

30In order to focus on business-cycle behaviors, it is important to get rid of the long-run increasing
trend in firm-level idiosyncratic volatilities of stock returns. There are indeed significant long-run in-
creasing trends in both σg,tm and σc,tm , consistent with empirical results in Campbell, Lettau, Malkiel,
and Xu (2001).
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mermann, 2000).31 Here, I employ the simplest regime-switching model specification

for the cash-flow uncertainty:

νc,ty = a(ωc,ty) + εc,ty (2.40)

where ωc,ty is a latent state variable that follows a Markov chain jumping between

discrete states over time and the constant a(ωc,ty) characterizes the average uncer-

tainty level within each regime. The residual εc,ty is assumed to be uncorrelated with

the latent state variable ωc,ty . This simplest regime-switching model basically pro-

vides a time-series clustering analysis, in which a particular year is classified as a

high/medium/low regime when its likelihood of being in that regime is larger than

50%. This simple clustering analysis helps us with a better understanding of the un-

certainty dynamics. The estimated regimes and their transition probabilities are useful

in calibrating of the model’s transition matrices of the Markov chains of uncertainty

levels. The regime-switching model is estimated using the EM algorithm which maxi-

mizes the marginal likelihood of observable variables. For the growth uncertainty, its

regime shifts are estimated similarly as in the specification (2.40). The point estimation

of Markov transition probabilities are summarized in Table 2.6.

It is observed from Table 2.6 that the high growth uncertainty regime is more per-

sistent compared with the high regime of cash-flow uncertainty. The conditional prob-

ability of staying in high state is 81.9% for the growth uncertainty and is 67.5% for

the cash-flow uncertainty. Also, in the long run, the growth uncertainty stays in the

high state much more often than the cash-flow uncertainty (47.6% versus 24.9%). The

growth uncertainty on average lasts longer in the high state, because it is usually as-

sociated with political unstable periods, technological revolutions, and energy supply

shifts; the resolution of the uncertainty about those events typically takes a long pe-

31The regime-switching model has not only proved its success in macroeconomics, but also been
widely adopted in asset pricing and financial portfolio research (e.g., Ang and Bekaert, 2002; Dai, Sin-
gleton, and Yang, 2007).
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riod.32 Table 2.6 provides targets for the calibrations of Qc and Qg in Table 4.4.33

2.4.2 Over-identifications of Uncertainty: Idiosyncratic Dispersions

Because the idiosyncratic volatilities of value firm returns and growth firm returns

proposed above are new measures for the cash-flow uncertainty and the growth un-

certainty, it is important to first establish the validity of these measures. Specifically, by

the definitions of two kinds of uncertainties, I derive more direct measures for the two

kinds of uncertainties based on the cross-sectional distribution of idiosyncratic shocks

in firm-level sales and capital expenditures. Particularly, the idiosyncratic dispersion

in log sales growth rates should provide an ideal measure for the cash-flow uncertainty,

while the idiosyncratic dispersion in log investment rates should provide an ideal mea-

sure for the growth uncertainty. The two measures based on the idiosyncratic disper-

sions strictly follow the formal definitions of the two sources of uncertainties; they are

also consistent with the model’s implications. However, the idiosyncratic-dispersion-

based measures are only available at low frequencies (annual or quarterly) for a period

of fifty years.34 Now, I statistically verify whether the shocks constructed using the id-

iosyncratic volatility of stock returns validly serve as proxies for the uncertainty shocks

32The episodes of high growth uncertainty in the 1950s are mainly due to the fact that the 1950s
was the first decade of post-war era and the starting decade of the Cold War. The international and
domestic political uncertainty stayed very high for U.S. over the period. The episode of high growth
uncertainty around 1970 is due to a major technological revolution in history (e.g., Perez, 2002). As
the time approached the end of the 1960s, the old industries of oil, automobiles and mass production
became matured, and new industries of information technology and telecommunications began to take
the place from 1971. The episode of high growth uncertainty starting from the end of 1970s and lasting
until the mid-1980s is mainly due to the long-lasting high oil price volatility (e.g., Peter Ferderer, 1996;
Jo, 2012). The high oil price volatility was triggered by Iranian revolution from late 1978 to 1979. The
Iranian Revolution, which began in late 1978, resulted in a drop of 3.9 million barrels per day of crude
oil production from Iran and a large drop of oil supply from OPEC from 1978 to 1981. In early 1981,
the U.S. Government responded to the oil crisis by removing price and allocation controls on the oil
industry, which made oil prices more volatile. The episode of high growth uncertainty in the late 1990s
is the result of the internet revolution. In the mid-1990s, the civilian Internet was transformed from a
military safety net. At that time, the enormous potential of the internet to change all other industries
and businesses aroused great growth uncertainty.

33The details for the calibration of Qc and Qg based on the estimated transition probabilities of uncer-
tainty states can be found in the online appendix.

34I construct them from Compustat datasets. For quarterly frequency idiosyncratic dispersions, the
time series are only available as early as 1984 which gives about 30 year data.
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from two different origins.

Idiosyncratic dispersions of sales growth rates. The sales intensity of firm f over

[t, t + dt) is y f ,t. According to Proposition 1, the sales is linear in firm’s assets in place:

y f ,t = y(wt)k f ,t. Because the equilibrium wage wt only depends on the aggregate state

variables, it readily leads to the dynamics of log sales growth rates:

d log(y f ,t) = d log (y(wt))− δdt + σdZt︸ ︷︷ ︸
only depending on aggregate shocks

+ νc,tdW f ,t.︸ ︷︷ ︸
idiosyncratic shocks

(2.41)

The only source of the cross-sectional heterogeneity comes from the idiosyncratic shocks

νc,tdW f ,t. Thus, the interdecile range (IDR) in the cross section of log sales growth rates

implied by the model is

IDR
[
d log(y f ,t)

]
= ℵνc,t, (2.42)

where ℵ is a universal constant that is approximately ℵ ≈ 2.5633. Therefore, the cross-

sectional dispersion in sales growth rates naturally identifies the cash-flow uncertainty,

which basically justifies the name of such kind of uncertainty.

Idiosyncratic dispersions of investment rates. The firm-level investment rate, nor-

malized by the aggregate investment rate, has the following expression in the model:

τtg f ,t

qtk f ,t
/

τtgt

qtkt
= λ−1Γα(ξt/νg,t)

−1
(

ε f ,t

νg,t

) 1
1−α

1(ε f ,t≥ξt),

where
τtg f ,t
qtk f ,t

is the firm-level capital expenditure normalized by tangible capital stock

(the firm-level investment rate) and τtgt
qtkt

is the aggregate investment rate. The source

of the cross-sectional heterogeneity comes from the idiosyncratic IST shock ε f ,t. The

cross-sectional standard deviation (CSD) of idiosyncratic shocks in investment rates is

characterized by a strictly increasing function of νg,t/ξt. This is formally summarized

in the following proposition with proofs given in the online appendix.
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Proposition 8 (Growth Uncertainty versus Dispersions of Investment Rates). In equi-

librium, the dispersion of idiosyncratic shocks in investment rates depends on νg,t positively.

That is,

CSD

[
τtg f ,t

qtk f ,t
/

τtgt

qtkt

]
= λ−1𝒥α(νg,t/ξt),

where 𝒥α(·) is a deterministic strictly increasing function.

Similarly, the exercising boundary ξt is relatively much stable compared to νg,t.

As a result, the cross-sectional standard deviation CSD
[

τtg f ,t
qtk f ,t

/τtgt
qtkt

]
also provides an

(approximate) identification for the growth uncertainty νg,t.

Methodology. Now, I extract idiosyncratic shocks in sales growth rates and in in-

vestment rates. Once that is done, I compute their dispersions in the cross section of

firms. In this empirical exercise of extracting the idiosyncratic unexpected component,

I adopt the method similar to Purnanandam and Rajan (2014) in which the predictable

component, the aggregate unexpected component, and the idiosyncratic unexpected

component are statistically separated and estimated by using dynamic panel regres-

sion models (e.g., Holtz-Eakin, Newey, and Rosen, 1988; Arellano and Bond, 1991).

I first measure the idiosyncratic unexpected component of firm’s investment rates.

For each firm f , the investment rate of year ty, denoted by IoK f ,ty , is computed as

the capital expenditure CapEx f ,ty deflated by capital stock of tangible assets K f ,ty−1 in

the previous year, and then normalized by the aggregate investment-to-capital ratio
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IoKty−1.35 That is,

IoK f ,ty ≡
(

CapEx f ,ty /K f ,ty−1

)
/IoKty−1.

Here, the capital expenditure of firm f within year ty is measured by the Compustat

item capx, and the capital stock of tangible assets is measured by the Compustat item

ppent. In this empirical exercise, I use the following regression model to extract the

idiosyncratic shock in IoK f ,ty :

IoK f ,ty = λcapx,ty︸ ︷︷ ︸
agg. component

+ acapx, f + βcapx,1 IoK f ,ty−1 + βcapx,2CoK f ,ty−1 + βcapx,3MoB f ,ty−1︸ ︷︷ ︸
firm-level expected component

+ εcapx, f ,ty︸ ︷︷ ︸
idio. shock

,

where acapx, f is the fixed effect capturing the firm-level predictability, λcapx,ty is the year

effect capturing aggregate time-varying effect (can be caused by some latent aggregate

factors) and captures the aggregate shock, CoK f ,ty is the cash flow deflated by capital

stock of tangible assets in the previous year, and MoB f ,ty is the market-to-book ratio of

assets capturing the investment opportunity of firm f in year ty. The variables CoK f ,ty

and MoB f ,ty are needed, particularly because the literature of the cash-flow-sensitivity

of investment argues that cash flows can have impact on investment decisions. Though

there are different ways to measure CoK f ,ty and MoB f ,ty in the data, my measures fol-

35In order to extract the idiosyncratic volatility of investment rates that only caused by the growth un-
certainty νg,t (i.e. the idiosyncratic volatility), I need to remove the scaling effect time-varying volatility
of aggregate investment rates. More precisely, the regression needs to make sure that the heteroskedas-
ticity in the aggregate volatility of investment rate shocks does not alter the idiosyncratic shock εcapx, f ,ty

specified in the econometric model. Bachmann, Caballero, and Engel (2006) show that the volatility in
the aggregate investment rate (IoK) is high when the past aggregate investment rate is high. So, I nor-
malize the firm-level investment rate by the aggregate one; it serves as the simplest way to guarantee the
idiosyncratic shock εcapx, f ,ty not to be affected by the past aggregate investment rates through current
aggregate volatility. This normalization is also consistent with the implications of the model in Propo-
sition 8. I follow Bachmann, Caballero, and Engel (2006) and Favilukis and Lin (2013) to construct the
aggregate investment rate using nominal annual private fixed nonresidential investment and the annual
private nonresidential capital stock at year-end prices from the Bureau of Economic Analysis (BEA).
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low the cash-flow-sensitivity of investment literature (e.g., Fazzari, Hubbard, and Pe-

tersen, 1988; Kaplan and Zingales, 1997).36

The residuals εcapx, f ,ty in the regression model above capture the idiosyncratic shock

in investment rates. The result of this procedure is a firm-year panel of idiosyncratic

shocks εcapx, f ,ty . I estimate the dynamic panel regression model using the GMM es-

timator proposed by Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bond

(1991), with the first lagged value of capital expenditure rate as a GMM instrument

variable.

Second, I measure the idiosyncratic unexpected component in sales growth rates.

Following the literature (e.g., Bloom, 2009; Bachmann and Bayer, 2014; Herskovic,

Kelly, Lustig, and Nieuwerburgh, 2014), the sales growth rate is measured as follows:

GoS f ,ty ≡ log
(

Sales f ,ty /Sales f ,ty−1

)
.

Here, the variable Sales f ,ty is the sales of firm f within year ty and I use the Compu-

stat item sale for its values. I focus on the following regression model to extract the

unexpected idiosyncratic component of GoS f ,ty :

GoS f ,ty = λsale,ty︸ ︷︷ ︸
agg. component

+ asale, f + βsale,1GoS f ,ty−1︸ ︷︷ ︸
firm-level expected component

+ εsale, f ,ty︸ ︷︷ ︸
idio. shock

(2.43)

where asale, f is the fixed effect capturing the firm-level predictability, and λsale,ty is the

year effect capturing the aggregate component (even there are latent factors) which in-

cludes the aggregate shock. The residuals εsale, f ,ty captures the idiosyncratic shocks in

sales growth rates. The result of this procedure is a firm-year panel of idiosyncratic

shocks. Similarly, I estimate the dynamic panel regression model using the GMM esti-

36More precisely, to construct CoK f ,ty , the cash flow is measured by the sum of income before ex-
traordinary items (Compustat item ib) and depreciation (Compustat item dp), and the capital stock of
tangible assets is measured by net property, plant and equipment (Compustat item ppent). To construct
MoB f ,ty , the market value of assets is measured by the book value of assets (Compustat item at) plus
the market value of common stock (Compustat item prccf × Compustat item csho) less the sum of book
value of common stock (Compustat item ceq) and balance sheet deferred taxes (Compustat item txdb).
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mator with the first lagged value of cash flow rate as a GMM instrument variable.

Now, after obtaining these two firm-year panels of idiosyncratic shocks, I construct

two annual time series of cross-sectional dispersions, denoted by σcapx,ty and σsale,ty .

The series σcapx,ty are the cross-sectional standard deviations (CSD) of idiosyncratic

shocks in investment rates across all firms within year ty following Bachmann and

Bayer (2014), while the series σsale,ty are the interdecile ranges (IDR) of idiosyncratic

shocks in sales growth rates across all firms within year ty. Like the indices based

on idiosyncratic stock volatilities, I focus on linearly-detrended series. In particular,

I denote νcapx,ty and νsale,ty the annual time series log
(

σcapx,ty

)
and log

(
σsale,ty

)
with

linear trends removed, respectively.

Results. Consistent with the predictions of my model (Equations (2.33) and (2.38)),

the underlying shocks that drive the idiosyncratic sales dispersions (∆νsale,ty ≡ νsale,ty −

νsale,ty−1) are particularly associated with the cash-flow uncertainty shocks (∆νc,ty ≡

νc,ty − νc,ty−1), but not with the growth uncertainty shocks (∆νg,ty ≡ νg,ty − νg,ty−1). On

the contrary, as predicted by the model (Propositions 7, and 8), the shocks that drive

the idiosyncratic investment dispersions (∆νcapx,ty ≡ νcapx,ty − νcapx,ty−1) are particu-

larly associated with the growth uncertainty shocks ∆νg,ty , but not the cash-flow un-

certainty shocks ∆νc,ty . More precisely, Panel A of Figure 2-7 shows that the shocks of

the idiosyncratic investments dispersions ∆νcapx,ty can be statistically explained by the

growth uncertainty shocks ∆νg,ty with the estimated slope 1.84 and the t-statistic 2.93.

Panel B of Figure 2-7 shows that the shocks of idiosyncratic sales dispersions ∆νsale,ty

cannot be statistically explained by the growth uncertainty shocks ∆νg,ty , because the

estimated slope −0.016 is not statistically different from zero. Its t-statistic is −0.028.

Panel C of Figure 2-7 shows that the shocks of idiosyncratic investment dispersions

∆νcapx,ty cannot be statistically explained by the cash-flow uncertainty shocks ∆νc,ty .

The slope is estimated to be −0.31 with t-statistic −0.62. Panel D of Figure 2-7 shows

that the shocks of idiosyncratic sales dispersions ∆νsale,ty can be statistically explained

by the cash-flow uncertainty shocks ∆νc,ty with the slope estimated to be 1.11 and its
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t-statistic to be 2.75.

Therefore, empirical evidence supports using the idiosyncratic volatilities of equity

returns on assets in place as a measure of the cash-flow uncertainty and on growth

options as a measure of the growth uncertainty. In other words, the uncertainty shocks

of different origins, as fundamental macroeconomic shocks, can be identified and mea-

sured using panels of asset returns. Importantly, the asset pricing data allows for high

frequency proxies for these underlying macroeconomic shocks. From the asset pric-

ing perspective, the results show that the macroeconomic uncertainty shocks can have

direct and significant impacts on the cross-sectional behavior of asset returns.

Discussion: cyclicality of cross-sectional dispersions. The cyclicality of the idiosyn-

cratic investment dispersion νcapx,ty and the idiosyncratic sales dispersion νsales,ty , as

well as the growth uncertainty νg,ty and the cash-flow uncertainty νc,ty , are reported

in Table 2.7. There, the cyclical component of real GDP per capita is estimated by us-

ing the one-sided HP filter. There are three points which worth mentioning about the

statistics in Table 2.7. First, consistent with the main findings of Bachmann and Bayer

(2014) as reproduced in Table 2.4, the cross-sectional dispersion of investment rates

is statistically significantly pro-cyclical. In fact, the results reported here (the Pearson

and Kendall correlations are 0.31 and 0.20, respectively) reinforce theirs. This is be-

cause the firm-specific predictable component, the aggregate predictable component,

and the potential scaling effect have been all removed when the idiosyncratic sale dis-

persion νsale,ty and the idiosyncratic investment dispersion νcapx,ty are constructed. Sec-

ond, the dispersion of idiosyncratic shocks in sales growth rates νsale,ty is countercycli-

cal (the Pearson and Kendall correlations are −0.16 and −0.10, respectively), though

annual estimated correlations are not significant (the p-values for Pearson and Kendall

correlations are 0.26 and 0.32, respectively).37 Third, the growth uncertainty νg,t is pro-

cyclical (the Pearson and Kendall correlations are 0.13 and 0.05, respectively), while

the cash-flow uncertainty νc,t is strongly countercyclical (the Pearson and Kendall cor-

37The insignificance results can be a result of short sample length and high persistency in the annual
level time series.
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relations are −0.31 and −0.21, respectively).

Importantly, my theoretical and empirical results provide a natural and robust rec-

onciliation for the so-called investment dispersion puzzle in the macroeconomics liter-

ature (e.g., Bachmann and Bayer, 2014). Basically, I show what has been missing in the

macroeconomic models with heterogeneous firms is the growth uncertainty shocks.

It’s been a substantial literature documenting that the cross-sectional dispersion of

micro-level fundamentals vary dramatically over time. In particular, it’s been a con-

sensus that the underlying shocks driving dispersions of sales have strongly adverse

macroeconomic effects (e.g., Bloom, 2009; Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry, 2013; Herskovic, Kelly, Lustig, and Nieuwerburgh, 2014). However, in a re-

cent work by Bachmann and Bayer (2014), the authors find pro-cyclical dispersion of

firm-level investment in Germany, the United States, and the United Kingdoms. Quan-

titatively, they examine whether shocks in the dispersion of sales growth rates can gen-

erate pro-cyclical investment dispersions; they build their quantitative exercise upon

the framework of Khan and Thomas (2008), Bloom (2009) and Bachmann, Caballero,

and Engel (2013). They show that only very small shocks to sales growth dispersion

can generate pro-cyclical investment dispersion, and shocks with such small scales

fail to generate observed business cycles. These empirical patterns impose additional

cross-equation restrictions on the properties of uncertainty shocks used in macroe-

conomic models; in particular, they pose quantitative challenges to the uncertainty-

driven business cycle models, such as Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2013).

In my model with growth uncertainty shocks, as suggested theoretically and veri-

fied empirically, the dispersion of investment rates is mainly driven by the growth un-

certainty, but not by the cash-flow uncertainty; on the contrary, the dispersion of sales

growth rates is driven by the cash-flow uncertainty, but not by the growth uncertainty.

Therefore, my model naturally reproduces the empirical patterns for the dynamics of

sales dispersions and investment dispersions.
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2.4.3 Inspecting the Mechanism: the Role of Risk Sharing Condition

In this section, I explore the empirical tests of the basic mechanism. The basic mech-

anism of the model is that the effects of growth uncertainty shocks on asset prices in

the cross section are determined by the risk sharing condition in the economy. In par-

ticular, I focus on testing two most direct implications of the basic mechanism, which

are summarized as follows. The first direct implication (Basic Implication I) is that in

response to a positive growth uncertainty shock, the value of growth options increases

relative to assets in place when the risk sharing condition is good, but decreases oth-

erwise; the cash-flow uncertainty always tends to suppress the value of assets in place

relative to the value of growth options, regardless of the risk sharing condition. The

second direct implication (Basic Implication II) is that the growth uncertainty shock

carries a positive market price of risk when risk sharing condition is good, but carries

a negative one otherwise; the cash-flow uncertainty shock always carries a negative

market price.

Testing basic implication I. I use the value spread, high minus low book-to-market

portfolio returns, to approximate the relative value change of assets in place to growth

options in the data. To add robustness of the testing results, I set up three tests us-

ing different econometric tools, and I also use three different measures of risk sharing

conditions in the economy.

Regime-switching models. My model implies that the betas of value spreads with

respect to growth uncertainty shocks are informative about the underlying state of risk

sharing conditions. More precisely, when the beta of value spreads to growth uncer-

tainty shocks is negative, the underlying risk sharing condition is likely to be good;

alternatively, the underlying risk sharing condition is likely to be poor. In order to

provide a direct test on this implication, I appeal to the regime-switching economet-

ric model studied by Hamilton (1989, 1994) and Timmermann (2000). In my monthly

regime-switching econometric specification, the underlying risk sharing condition is
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the latent state variable, denoted by ωx,tm . The latent state variable ωx,tm is to be uncov-

ered from the data. It is assumed that ωx,tm follows a two-state Markov chain process;

it’s transition probabilities are to be estimated using the observables in the model. The

observables include monthly market excess returns rM,tm − r f ,tm , uncertainty shocks

∆νg,tm and ∆νc,tm , and monthly value spreads rH,tm − rL,tm with rH,tm and rL,tm to be

returns of high and low book-to-market portfolio, respectively. More precisely, the

econometric model is specified as follows:

rH,tm − rL,tm = av,tm + βv,z,tm

(
rM,tm − r f ,tm

)
+ βv,g,tm ∆νg,tm + βv,c,tm ∆νc,tm + εv,tm (2.44)

where the coefficients are time-varying and depend on the latent state av,tm ≡ av (ωx,tm)

and βv,ι,tm ≡ βv,ι (ωx,tm) for ι ∈ {z, g, c}. The latent state variable ωx,tm takes values in

{Good,Bad}. Here, Good (Bad) stands for the state in which the risk sharing condition

is good (bad). The state of risk sharing condition is unobservable in the econometric

model and the identification implied by the theory is that

βv,g (Good) < βv,g (Bad) . (2.45)

Moreover, statistically, it is assumed that the residual term εv,tm is not only uncorrelated

with the input variables but also independent of the latent state variable ωx,tm .

I estimate the regime-switching model (2.44) using the EM algorithm that maxi-

mizes the marginal likelihood function of observables. The estimation results of the

regime-switching model consist of two parts: one is the statistical inference about the

coefficients which are summarized in Table 2.8; the other is the estimated likelihood of

the risk sharing condition being Bad for every month. The estimated likelihoods are

displayed in Figure 2-8.

In Table 2.8, Column (3) shows that the loadings of value spreads on growth un-

certainty shocks change from negative (βv,g is estimated to be −1.76) to positive (βv,g

is estimated to be 6.03) as the underlying state moves from Good to Bad. The signs are
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statistically significant at 75% confidence level. In the econometric analysis, the only

restriction used for identifying the Good state is the inequality (2.45). There is no restric-

tion imposed on the sign of growth uncertainty beta βv,g in the estimation. As a result,

the sign switching itself empirically supports prediction of the theoretical model. It

should be noted that the significance level of the coefficients tend to be understated

compared to the econometric model in which the risk sharing condition is assumed

to be known. This is because a large amount of randomness about the latent states

have to be taken into account when drawing statistical inferences about the regression

coefficients in the regime-switching model. Moreover, Column (4) of Table 2.8 veri-

fies another prediction of the theory: the growth options always offer a hedge against

the cash-flow uncertainty shock. More precisely, the coefficient βv,c is estimated to be

negative in both states (−13.08 in Bad versus −1.00 in Good). In particular, the sign is

significant at 95% confidence level in Bad and 75% confidence level in Good. However,

it is still unclear whether the state Bad in the model truly corresponds to the state of

poor risk sharing in the data. Thus, I need to compare the estimated Bad state with the

measures of risk sharing conditions in the data.

In fact, the regime-switching econometric model does not offer an exact answer to

the question which state the economy is in. Instead, it allows one to estimate the like-

lihood of the economy being in certain state.38 In Figure 2-8, the estimated likelihood

of being in Bad state is plotted in Panel D and is compared with three measures of risk

sharing conditions in the data. The first empirical measure (in Panel A) is the Reinhart-

Rogoff financial crisis index.39 The second empirical measure (in Panel B) is the finan-

cial condition index based on broker-dealer leverages. The third empirical measure (in

Panel C) is the credit spread index. Gilchrist and Zakrajsek (2012), Krishnamurthy and

38Of course, the state of the economy can be estimated based on the estimated likelihood. In practice,
the economy is labeled by a particular state when the estimated likelihood of being that state is higher
than a predetermined threshold. For example, 50% is used as the threshold, like in Figure 2-6.

39It is constructed based on U.S. banking/currency crisis, U.S. stock market crashes, U.K. bank-
ing/currency crisis, German banking/currency crisis, and France banking/currency crisis. I use a sim-
plest nonlinear filter to form U.S. investors’ expectation about financial sector conditions. If there are
two or more crisis, investors have a bad outlook for financial conditions; if there is zero crisis, investors
form a promising outlook for financial conditions; otherwise, they form a medium outlook.
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Muir (2015), and Ivashina and Scharfstein (2010) show that credit spreads can serve as

a crucial gauge of the degree of strains in the financial system. The basic idea is that

fluctuations in credit spreads reflect shifts in the effective supply of funds offered by

financial intermediaries. They found that an adverse shock to the equity valuations of

the highly-leveraged financial intermediaries, relative to the market return, leads to an

immediate and persistent increase in credit spreads.

My estimated likelihood of being in Bad state is plotted in Panel D. To interpret

the levels of the time series in Figure 2-8, I set zero as the benchmark state in which

the risk sharing condition is at its medium level. According to their definitions, posi-

tive index values indicate worse financial conditions than the medium state; negative

index values indicate better financial conditions than the medium state. The three in-

dices in Panels A–C capture the periods of stressed financial sector. Figure 2-8 shows

that the Bad state is actually associated with poor financial conditions. Comparing the

estimated financial condition (in Panel D) with the Reinhart-Rogoff financial condition

index (in Panel A), the broker-dealer leverage index (in Panel B), and the credit spread

index (in Panel C), the estimation results (in Panel D) are clearly consistent with the

observations in the data (in Panels A, B, and C). More precisely, the four time series

capture the major periods of financial stress in the history of the United States; at the

same time, they also agree with each other upon the major periods of excellent financial

conditions for U.S. economy.40

Most importantly, the estimation of financial condition (in Panel D) only depends

on stock returns and the model’s prediction about the cross-sectional impacts of growth

uncertainty shocks. In other words, the estimation has almost zero prior information

about financial conditions, which reinforces the power of the empirical result as a sup-

port for my theory. Now, I formally quantify the statistical association between the em-

pirical measures of risk sharing conditions and the estimated likelihood of Bad state,

40My estimation, together with the three empirical measures, capture the financial crises around 1976,
around 1990, around 2003, and around 2008; they also capture the periods of excellent financial condi-
tions including the late 1990s, the periods around 2005, and the periods after 2014. In the online ap-
pendix, I also compare my estimation with other empirical measures of financial conditions including
the financial condition index proposed by Brave and Butters (2011).
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which are reported in Table 2.9. I use both the Pearson correlation and the Kendall rank

correlation to quantify the associations. As reported in Columns (1) and (2) of Table

2.9, the credit spread index is used as the benchmark, and it is significantly correlated

with both the Reinhart-Rogoff financial condition index, the broker-dealer leverage in-

dex, and the estimated likelihood of Bad state. In Columns (3) and (4) of Table 2.9, I

also report the corresponding statistical associations of the financial condition indices

in my model based on simulated samples. Because there is no corporate bond in my

model, I use the equity premium as the proxy for credit spread. The risk sharing condi-

tion in the simulated data is measured by using Θt in (2.32).41 The likelihood of Bad is

estimated for the simulated data in the same way as for the real data. The associations

between the simulated indices are comparable to those in the real data.

Uncertainty betas of book-to-market sorted portfolios. I also verify the theoretical

implication by looking into the loadings of book-to-market sorted portfolios on uncer-

tainty shocks ∆νc,tm and ∆νg,tm in subsamples corresponding to the periods of good or

bad financial conditions. I first use the Reinhart-Rogoff index as the measure of risk

sharing condition in the economy to construct subsamples. The betas of the book-to-

market portfolios with respect to the market excess return rM,tm − rtm , the growth un-

certainty shock ∆νg,tm , and the cash-flow uncertainty shock ∆νc,tm are estimated within

each of the two subsamples: one subsample includes the periods of good financial con-

ditions; the other subsample includes periods of financial stress. The estimated betas

are reported in Table 2.10. Panel A reports the beta estimates when the risk sharing

condition is poor, while Panel B reports the beta estimates when the risk sharing con-

dition is good. Comparing Columns (2) and (3) with Columns (5) and (6) in Table

2.10, the empirical results are almost perfectly in line with the theoretical prediction

about the loadings on two sources of uncertainty shocks. More precisely, the beta on

∆νg,t increases from−3.11 to 0.21 for the stock returns of the firms with the lowest 10%

41I can also use the endogenous state variable xt or the consumption share dispersion Θe
t quantify risk

sharing condition in the simulated data, because they are equally valid as the measure of risk sharing
condition in my model.
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book-to-market ratios (growth firms) versus those with highest 10% book-to-market

ratios (value firms) when risk sharing condition is bad, as shown in Panel A with the

sorting scheme #1; however, the growth uncertainty beta decreases from 2.40 to−12.66

for growth firms versus value firms when risk sharing condition is good, as shown in

Panel B with the sorting scheme #1. Moreover, according to the sorting scheme #1,

the beta on ∆νc,tm , for the stock returns of growth firms versus value firms, decreases

from 2.56 to −17.85 when the risk sharing condition is bad and decreases from 14.10 to

−8.36 when the risk sharing condition is good. Importantly, as shown in Figure 2.10,

the empirical findings are robust to various sorted book-to-market portfolios (e.g. the

sorting schemes #2 and #3).

I then use the financial condition index based on broker-dealer leverages as the

measure of risk sharing condition in the economy. The estimated betas are reported

in Table 2.11. According to the sorting scheme #1, the beta on ∆νg,tm for growth firms

versus value firms increases from −2.81 to 1.10 when the risk sharing condition is bad

(in Panel A), while it decreases from −1.61 to −3.74 when the risk sharing condition

is good (in Panel B). Moreover, under the sorting scheme #1, the beta on ∆νc,tm for

growth firms versus value firms decreases from 6.80 (11.27) to −21.37 (−1.34) when

the risk sharing condition is bad (good). The empirical results are robust across var-

ious sorting schemes (#2 and #3). Therefore, the results in Table 2.11 show that the

empirical findings in Table 2.10 are quite robust against other measures of risk sharing

conditions.

At last, I use the credit spread index as the measure of risk sharing condition in

the economy. I fit the credit spread into a simplest three-state regime-switching model

like in (2.40). The estimation results using 50% to be the threshold is to cluster each

quarter into three categories: high/median/low credit spread levels.42 The estimated

betas are reported in Table 2.12. According to the sorting scheme #1, the beta on ∆νg,tm

42The periods of low risk sharing condition (i.e. high credit spread) include 1974Q4 – 1976Q3, 1980Q2
– 1983Q3, 1988Q4 – 1992Q2, 2002Q1 – 2003Q4, 2008Q1 – 2009Q4, 2010Q2 – 2010Q4, and 2011Q4 –
2012Q4. On the other hand, the periods of high risk sharing condition (i.e. low credit spread) include
1973Q1 – 1974Q3, 1977Q3 – 1979Q3, 1987Q3 – 1988Q3, 2000Q1 – 2000Q3, 2004Q4 – 2005Q2, 2004Q4 –
2005Q2, and 2013Q4 – 2014Q3.
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for growth firms versus value firms increases from −2.81 to 8.08 when the risk shar-

ing condition is bad (in Panel A), while it decreases from 2.37 to −1.34 when the risk

sharing condition is good (in Panel B). Moreover, under the sorting scheme #1, the

beta on ∆νc,tm for growth firms versus value firms decreases from 0.78 (1.61) to −10.13

(−9.45) when the risk sharing condition is bad (good). The empirical results are robust

across various sorting schemes (#2 and #3). Therefore, the results in Table 2.12 reinforce

that the empirical findings in Table 2.10 are quite robust against other measures of risk

sharing conditions.

However, statistically, it is still unclear how significantly the role of risk sharing

conditions in altering the impact of growth uncertainty on the value of growth options

relative to assets in place. To investigate the statistical significance, I compute the t-

statistics for the estimated betas of extreme book-to-market-sorted portfolios. In Table

2.13, it shows that the sign changes (Column (1) versus Column (3)) are significant

based on one-sample statistical tests; the statistical result is particularly strong when

using the credit spread index as the measure for risk sharing conditions (in Panel C).

Linear models with interaction terms. Now, I set up a linear regression model in

which the dependent variable is the value spread and the independent variables in-

clude the interaction terms between the uncertainty shocks and the risk sharing condi-

tion. The risk sharing condition is measured by the Reinhart-Rogoff financial condition

index (reported in Columns (5) and (6)) or by the financial condition index based on

broker-dealer leverages (reported in Columns (7) and (8)) or by the credit spread in-

dex (reported in Columns (3) and (4)). The regression model with interaction terms is

specified as follows:

rH,ty − rL,ty = avi + βvi,z

(
rM,ty − rty

)
+ βvi,g∆νg,ty + βvi,c∆νc,ty

+ βvi,xregime-xty + γvi,g

[
∆νg,ty × regime-xty

]
+ γvi,c

[
∆νc,ty × regime-xty

]
+ εvi,ty (2.46)
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where vi in the subscript of coefficients means that they are coefficients for the value

spread regression with interactions. Here, rM,ty − rty is the market excess return, ∆νg,ty

and ∆νc,ty are uncertainty shocks, and rH,ty − rL,ty is the value spread with rH,ty and

rL,ty to be the returns of high and low book-to-market-portfolio returns, respectively.

The variable regime-xty is an aggregate state variable characterizing the condition of

risk sharing in the economy.

The focus of this test has two folds: one is to test whether the coefficient γvi,g in

(2.46) is significantly positive; the other is to test whether the coefficient βvi,c is sig-

nificantly negative. The regression (2.46) provides a formal statistical framework for

testing whether the switching signs between Column (2) and Column (5) in Tables 2.10,

2.11, and 2.12 are statistically significant. In computing the t-statistics of coefficients,

I appeal to Newey and West (1987a, 1994) for the robust covariance matrix estimation

with one year lag.

In Table 2.14, Column (1) shows that the value premium exists; it is about 5.65% and

statistically significant. More importantly, Column (1) shows that the market excess

return fails to explain the value premium, because the intercept term is significantly

nonzero and the F−statistic is insignificant. Column (2) shows that the uncertainty

shocks have large explanatory power for value spreads, since the F−statistic for the

regression (2) has significance less than 0.5%. It also shows that the impact of cash-

flow uncertainty on value spreads is significantly negative, which is consistent with

the theoretical prediction of my model. Regression (3) shows that the risk sharing con-

dition helps explain the value spread when it interacts with growth uncertainty shocks.

Perfectly in line with the prediction of the model, the coefficient of the interaction term

∆νg,ty × regime-xty is significantly positive, with estimate 407.44 and t-statistic 2.61.

Moreover, the adjusted R2 increases from 19.13% to 22.75% from the regression (2),

and the intercept term becomes insignificantly positive. In Column (4), I further add in

the interaction term between the risk sharing condition and the cash-flow uncertainty

shock. The regression results of Column (3) are almost unaffected. The coefficient of

the extra interaction term ∆νc,ty × regime-xty is insignificantly positive, with estimate
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66.93 and t-statistic 0.72. The regression results in Columns (5)–(6) and the regression

results in Columns (7)–(8) show the robustness of the regression results in Columns (3)

and (4) when the measure of risk sharing conditions changes to the Reinhart-Rogoff

financial condition index and the broker-dealer leverage index displayed in Figure 2-8,

respectively. Furthermore, as shown in Table 2.14, the loadings of value spreads on

cash flow shocks, denoted as βvi,c in (2.46), are significantly negative across all regres-

sions and different measures for risk sharing conditions.43

Testing basic implication II. To verify the model predictions on stochastic discount

factors, I explore the possibility of the cross section of stock returns. Because the pre-

diction is specifically on the market price of risk for the growth uncertainty shock and

the cash-flow uncertainty shock, I focus on portfolios of firms’ stocks sorted based on

the two uncertainty shocks, separately. As long as the loadings of firm stock returns

on the uncertainty shocks are fairly persistent, the ex ante differential sensitivity to

uncertainty shocks will lead to the ex post differential sensitivity. The differential av-

erage returns of sorted portfolios then are informative about these market price of risk

associated with the uncertainty shocks.

In Table 2.15, the average returns for uncertainty-sorted portfolios are reported for

the full sample (in Columns (5) and (6)) and two subsamples (in Columns (1) – (4)).

One subsample corresponds to the periods of poor risk sharing conditions (reported

in Columns (1) and (2)), while the other subsample corresponds to the periods of good

risk sharing conditions (reported in Columns (3) and (4)). In Panel A, the risk sharing

condition is measured by the Reinhart-Rogoff financial condition index; in Panel B, the

risk sharing condition is gauged by the broker-dealer leverage index; in Panel C, the

risk sharing condition is gauged by the credit spread index. Across all columns in Table

2.15, it shows that the firms with a higher exposure to the cash-flow uncertainty shock,

on average, gain lower returns; it thus implies that cash-flow uncertainty shocks tend

to carry a negative market price of risk, no matter whether the risk sharing condition

43They are all significant except regressions in Columns (7)–(8) in which the risk sharing condition is
measured by the financial condition index based on broker-dealer leverages.

120



is good or bad. In particular, over the whole sample, the valuation spread between the

firms with a high exposure to the cash-flow uncertainty shock versus those with a low

exposure is statistically significantly negative; the spread is −5.11% with the t-statistic

equal to −3.02.

However, the firms with a higher exposure to the growth uncertainty shock, on av-

erage, gain lower returns when risk sharing is limited (see Columns (1)); in contrast,

they gain higher average returns otherwise (see Columns (3)). More precisely, if the

Reinhart-Rogoff financial condition index is used as the measure for risk sharing con-

ditions (in Panel A), the spread between high versus low νg-sorted portfolios changes

from −2.30 (with t-statistic −1.24) to 1.96 (with t-statistic 0.91) when the risk sharing

condition improves. This empirical pattern is robust against different choices of mea-

sures of risk sharing conditions. Particularly, if the broker-dealer leverage index is used

to construct the regimes of risk sharing conditions (in Panel B), the spread between

high versus low νg-sorted portfolios changes from−3.00 (with t-statistic−2.444) to 3.73

(with t-statistic 3.33) as the risk sharing condition improves; if the credit spread index

is used to construct the regimes of risk sharing conditions (in Panel C), the spread be-

tween high versus low νg-sorted portfolios changes from −5.34 (with t-statistic −1.14)

to 4.36 (with t-statistic 0.96) as the risk sharing condition improves. This suggests that

the growth uncertainty shock tends to carry a negative market price of risk when the

risk sharing condition is bad and a positive market price of risk otherwise.

2.5 Conclusion

I have studied an investment-based general equilibrium model with two sources of

uncertainty shocks and endogenous imperfect risk sharing. The model provides a

fundamental mechanism which can help reconcile seemingly contradictory empirical

findings in asset pricing and macroeconomics under a unified framework.

There are two main new insights provided by this paper. First, the source of un-

certainty shocks matters, since they affect the economy through different asset classes.
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The characteristics of the assets determine the impact of uncertainty shocks from cer-

tain origin on asset prices and investment. In particular, the growth uncertainty shocks

can increase asset prices and investment because of the option feature embedded in

growth options. Second, the risk sharing condition plays a vital role in shaping the im-

pact of uncertainty shocks. When risk sharing is severely limited, a rise in uncertainty

distorts agents’ real investment decisions and portfolio allocations in an inefficient

manner. If agents’ preference over smoothing consumption across time (governed by

the elasticity of intertemporal substitution) is not very strong, even the growth uncer-

tainty shock can suppress asset prices, decrease investment, deteriorate risk sharing

conditions, and hence carry a negative market price of risk.

This paper, moreover, discovers the linkage between the cross section of asset re-

turns and uncertainty shocks from different origins. Because different sources of uncer-

tainty shocks do not affect firms symmetrically, then the cross section of asset returns

can help identify the source of uncertainty shocks. Financial data with a larger cross

section and a higher frequency can serve well for uncovering the uncertainty shocks

used in macroeconomic models. Moreover, as shown theoretically and empirically,

the cross sectional exposures of asset returns to growth uncertainty shocks are largely

driven by the risk sharing condition; hence the time-varying cross-sectional exposures

to the growth uncertainty shock are informative about the underlying economy state

of risk sharing.

122



Table 2.1: BASELINE PARAMETRIZATION

PARAMETER SYMBOL VALUE

A. PREFERENCES

Subjective discount rate ρ 0.0111
Relative risk aversion γ 6
EIS coefficient ψ 2

B. ASSETS IN PLACE IN CONSUMPTION GOODS SECTOR

Capital share in production function ϕ 0.3
Assets in place depreciation rate δ 15%
Aggregate volatility σ 10%
Cash-flow uncertainty νL

c /νH
c 10%/50%

Transition of cash-flow uncertainty λ(νL
c ,νH

c )/λ(νH
c ,νL

c ) 0.111/0.39

C. GROWTH OPTIONS IN CONSUMPTION GOODS SECTOR

Investment goods share in production function α 0.9
Growth uncertainty νL

g /νH
g 10%/49%

Investment opportunity arrival rate λ 3.33
Transition of growth uncertainty λ(νL

g ,νH
g )/λ(νH

g ,νL
g ) 0.1/0.44

Fixed adjustment cost rate v 0.0083
Aggregate growth options s 1

D. INVESTMENT GOODS SECTOR

Average productivity level zι 1.03

E. LABOR MARKET

Population share κ 2.04%
Average lifespan µ 1/40

F. FINANCIAL MARKET

Severity of agency problem φ 0.4
Pledgeability of human capital $ 5%

NOTE: This table reports the calibrated parameters of the model. The annualized values are used in the table for the dynamic
parameters. When choosing the values of the parameters, both inside and outside-model data are employed.
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Table 2.2: MODEL VERSUS DATA: UNCONDITIONAL MOMENTS OF MACROECONOMIC
CYCLES

CORRELATION

MEAN STDEV AC(1) ∆ log (ct+1) ∆ log (ct) ∆ log (yt)

(1) (2) (3) (4) (5) (6)

A. DATA

∆ log (ct) 1.46 3.77 0.36
[0.98, 1.93] [3.31, 4.17] [-0.13, 0.17]

∆ log (yt) 1.67 5.78 0.28 0.34 0.92
[0.65, 2.63] [3.43, 7.49] [0.00, 0.42] [-0.03, 0.50] [0.89, 0.94]

∆ log (it) 1.35 36.00 0.43 0.38 0.83 0.87
[-2.58, 5.20] [10.92, 49.55] [0.29, 0.56] [0.09, 0.45] [0.78, 0.87] [0.85, 0.93]

B. MODEL

∆ log (ct) 1.92 3.96 0.32
[0.74, 3.09] [2.96, 4.33] [0.11, 0.50]

∆ log (yt) 1.92 4.01 0.50 0.62 0.52
[0.73, 3.06] [3.35, 4.70] [0.34, 0.65] [0.49, 0.73] [0.33, 0.70]

∆ log (it) 2.36 55.38 0.30 0.23 -0.44 0.30
[-0.47, 5.73] [32.41, 77.63] [-0.00, 0.49] [0.07, 0.39] [-0.26, -0.61] [0.17, 0.43]

NOTES: The table compares unconditional moments of the data to their simulated analogies in the model. Panel A reports the
mean, standard deviation, and autocorrelation of U.S. output (y), consumption (c), and investment (i) log growth rates, as well
as their cross-correlation coefficients. All variables are real (adjusted by CPI) and scaled by U.S. population. The 95% confidence
intervals are reported in brackets; they are obtained by applying stationary block bootstrap method in which the block size is
random (see Politis and Romano, 1994a,b). The average block size is determined by the adaptive block length selection procedure
of Politis and White (2004) and Patton, Politis, and White (2009). Data are sampled at the annual frequency. Their sources and
construction details are explained in the appendix. All variables are reported in percentage points, except for the autocorrelation
and cross-correlation coefficients. The moments of the consumption growth and the output growth are from the extended long
sample of Barro and Ursúa (2008) with sample period 1790 – 2014. The sample periods of net payout growth and investment are
1929 – 2014, and the labor supply growth is only available during 1948 – 2014. Panel B reports simulated moments in the model.
I simulate the model at the weekly frequency and then time-aggregate the simulated data to construct annual observations. In
brackets, they are the 5% and 95% quantiles across 1,000 independent simulations, each with a length of 80 years.
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Table 2.3: MODEL VERSUS DATA: UNCONDITIONAL MOMENTS OF MACROECONOMIC
RATIOS

A. DATA B. MODEL

RATIOS (%) MEAN STDEV AC(1) MEAN STDEV AC(1)

(1) (2) (3) (4) (5) (6)

INVESTMENT
TO OUTPUT

16.47 5.23 0.90 16.60 6.41 0.70
[13.85, 18.79] [2.84, 6.23] [0.60, 0.87] [14.74, 18.28] [4.83, 7.89] [0.58, 0.83]

NET PAYOUT
TO CONSUMPTION

5.46 3.07 0.85 6.30 4.03 0.70
[3.93, 7.00] [2.22, 3.42] [0.59, 0.83] [5.03, 7.49] [2.42, 5.28] [0.55, 0.84]

WAGE INCOME
TO OUTPUT

75.26 4.02 0.96 75.25 2.04 0.71
[72.94, 77.69] [2.71, 4.48] [0.74, 0.94] [74.55, 75.89] [1.55, 2.49] [0.58, 0.83]

CAPITAL
TO OUTPUT

169.24 46.96 0.90 196.20 48.35 0.71
[144.40, 195.55] [29.85, 53.13] [0.66, 0.89] [186.77, 204.51] [33.96, 65.33] [0.48, 0.82]

NOTES: The table compares unconditional moments of the data to their simulated analogies in the model. Panel A reports
the mean, standard deviation, and autocorrelation of U.S. investment/output ratio, net payout/consumption ratio, wage in-
come/output ratio, and capital/output ratio. The 95% confidence intervals are reported in brackets; they are obtained by applying
stationary block bootstrap method in which the block size is random (see Politis and Romano, 1994a,b). The average block size
is determined by the adaptive block length selection procedure of Politis and White (2004) and Patton, Politis, and White (2009).
Data are sampled at the annual frequency. Their sources and construction details are explained in the appendix. All variables are
reported in percentage points, except for the autocorrelation coefficients. The sample period is 1929 – 2014. Panel B reports sim-
ulated moments in the model. I simulate the model at the weekly frequency and then time-aggregate the simulated data to form
annual observations. In brackets, they are the 5% and 95% quantiles across 1,000 independent simulations, each with a length of
80 years.
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Table 2.4: MODEL VERSUS DATA: FUNDAMENTAL DISPERSIONS

A. DATA

DISPERSIONS (%) MEAN STDEV AC(1) CORR ∆ log(yt)

(1) (2) (3) (4)

IDR SALES GROWTH 49.02 12.32 0.80 -17.32
[42.20, 55.90] [8.39, 13.71] [0.64, 0.89] [-36.85, 3.80]

CSD INVESTMENT RATE 40.85 7.25 0.66 43.28
[37.03, 44.71] [5.22, 7.93] [0.48, 0.77] [30.45, 59.99]

B. MODEL

IDR SALES GROWTH 53.02 16.03 0.69 -27.66
[42.20, 61.90] [9.84, 23.19] [0.57, 0.80] [-45.51, -13.83]

CSD INVESTMENT RATE 45.12 13.50 0.71 23.82
[39.13, 49.98] [10.31, 16.37] [0.43, 0.79] [1.89, 40.35]

NOTES: The table compares unconditional moments of the data to their simulated analogies in the model. Panel A reports, in the
data, the mean, standard deviation, autocorrelation, and cyclicality of Compustat sales dispersion measured by the cross-sectional
interdecile range (IDR) and Compustat capital expenditures dispersion measured by the cross-sectional standard deviation (CSD).
The sales are deflated by the sales in the previous year, and capital expenditure is deflated by capital stock in the previous year.
Sales is constructed using item sales, capital expenditure is constructed using item capx, and capital stock is constructed using item
ppent. The 95% confidence intervals are reported in brackets; they are obtained by applying stationary block bootstrap method
in which the block size is random (see Politis and Romano, 1994a,b). The average block size is determined by the adaptive
block length selection procedure of Politis and White (2004) and Patton, Politis, and White (2009). Data are sampled at the
annual frequency. Their sources and construction details are explained in the appendix. All variables are reported in percentage
points, except for the autocorrelation coefficients. All variables have the sample period of 1966 – 2014. Panel B reports simulated
moments in the model. I simulate the model at the weekly frequency and then time-aggregate the simulated data to form annual
observations. In brackets, they are the 5% and 95% quantiles across 1,000 independent simulations, each with a length of 80 years.
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Table 2.5: MODEL VERSUS DATA: UNCONDITIONAL ASSET PRICING MOMENTS

A. DATA B. MODEL

RETURNS (%) MEAN STDEV AC(1) MEAN STDEV AC(1)

(1) (2) (3) (4) (5) (6)

EQUITY
PREMIUM

4.47 20.83 0.03 4.95 19.25 0.12
[0.85, 8.07] [18.08, 22.99] [-0.19, 0.16] [3.17, 6.58] [11.37, 27.91] [-0.10, 0.33]

INTEREST
RATE

1.31 2.71 0.62 1.53 2.92 0.71
[0.63, 2.13] [2.07, 3.19] [0.39, 0.92] [0.49, 2.66] [2.41, 3.43] [0.58, 0.83]

NET PAYOUT
YIELD

2.25 3.60 0.79 3.67 4.14 0.68
[1.78, 2.71] [2.73, 3.91] [0.56, 0.88] [2.34, 4.71] [3.31, 4.92] [0.55, 0.81]

VALUE
SPREAD

5.05 25.21 0.11 7.57 16.84 -0.02
[0.57, 9.57] [21.14, 28.54] [-0.16, 0.20] [5.88, 9.57] [12.39, 21.39] [-0.29, 0.26]

NOTES: The table compares unconditional moments of the data to their simulated analogies in the model. Panel A reports the
mean, standard deviation, and autocorrelation of U.S. equity premium, the real interest rate, the net payout yield, and the value
spread which is the return spread between two portfolios of firms with the top and bottom decile of book-to-market ratios. The
95% confidence intervals are reported in brackets; they are obtained by applying stationary block bootstrap method in which
the block size is random (see Politis and Romano, 1994a,b). The average block size is determined by the adaptive block length
selection procedure of Politis and White (2004) and Patton, Politis, and White (2009). Data are sampled at the annual frequency.
Their sources and construction details are explained in the appendix. All variables are reported in percentage points, except for
the autocorrelation coefficients. All variables have the sample period of 1929 – 2014. Panel B reports simulated moments in the
model. I simulate the model at the weekly frequency and then time-aggregate the simulated data to form annual observations. In
brackets, they are the 2.5% and 97.5% quantiles across 1,000 independent simulations, each with a length of 80 years.

Table 2.6: ESTIMATED TRANSITION: UNCERTAINTY REGIMES

MARKOV TRANSITION PROBABILITIES (%)

G-Uncert C-Uncert

(states) HIGH MEDIUM LOW HIGH MEDIUM LOW

HIGH 81.9 16.3 1.8 67.5 20.1 12.4

MEDIUM 21.6 70.5 7.9 13.9 80.5 5.6

LOW 6.6 13.3 80.1 8.6 2.7 88.8

STATIONARY DIST. 47.6 34.4 18.0 24.9 31.7 43.4

NOTES: This table reports point estimation of Markov transition probabilities of the latent states for two kinds of uncertainty,
respectively. G-Uncert stands for growth uncertainty, and C-Uncert stands for cash-flow uncertainty. The numbers are estimates
of the regime-switching model in (2.40) using the EM algorithm. The estimation is based on annual sample from 1953 to 2014.
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Figure 2-1: Policy Functions: market price of risk

NOTES: This figure illustrates the market price of risk for two uncertainty shocks under the calibration summarized in Table 4.4.
Panel A shows the market price of risk for growth uncertainty shocks; Panel B is about the market price of risk for cash-flow
uncertainty shocks. The red solid curve corresponds to the normal state of the world where both uncertainties are at low levels;
the blue dashed curve corresponds to state of high growth uncertainty; and, the black dashed-dotted curve corresponds to the
state of high cash-flow uncertainty. The grey distribution in the background is the stationary distribution of the endogenous state
variable xt.
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Figure 2-2: Value Spread’s Uncertainty Exposures

NOTES: This figure illustrates the uncertainty exposure of value spreads under the calibration summarized in Table 4.4. Panel
A shows the exposure of value spreads to growth uncertainty shocks; Panel B shows the exposure of value spreads to cash-flow
uncertainty shocks. The red solid curve corresponds to the normal state of the world where both uncertainties are at low levels.
The grey distribution in the background is the stationary distribution of the endogenous state variable xt.
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Figure 2-3: Idiosyncratic Risk Premia

NOTES: This figure illustrates the idiosyncratic risk premia under the calibration summarized in Table 4.4. Panel A is about
the premium on the idiosyncratic cash flow risk dW f ,t, and Panel B is about the premium on the idiosyncratic investment risk
associated with ε f ,t and dN f ,t. The red solid curve corresponds to the normal state of the world where both uncertainties are at
low levels; the blue dashed curve corresponds to state of high growth uncertainty; and, the black dashed-dotted curve corresponds
to the state of high cash-flow uncertainty. The grey distribution in the background is the stationary distribution of the endogenous
state variable xt.
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Figure 2-4: Limited Risk Sharing

NOTES: This figure illustrates the consumption dispersion and marginal value gap under the calibration summarized in Table 4.4.
Panel A is about the premium on the idiosyncratic cash flow risk dW f ,t, and Panel B is about the premium on the idiosyncratic
investment risk associated with ε f ,t and dN f ,t. The red solid curve corresponds to the normal state of the world where both
uncertainties are at low levels; the blue dashed curve corresponds to state of high growth uncertainty; and, the black dashed-
dotted curve corresponds to the state of high cash-flow uncertainty. The grey distribution in the background is the stationary
distribution of the endogenous state variable xt.
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Figure 2-5: Impulse Responses to Growth Uncertainty Shocks

NOTES: This figure illustrates the impulse-response to a temporary growth uncertainty shock under the calibration summarized
in Table 4.4. Panel A shows the temporal shock as an impulse; Panel B is about the responses of experts’ aggregate consumption;
Panel C is about the responses of conditional cross-sectional variance of consumption share growth, and Panel D is about median
of cross-section of experts’ consumption shares. The blue solid curve corresponds to the states of good risk sharing conditions;
the red dashed curve corresponds to states of high poor risk sharing conditions. The grey distribution in the background is the
stationary distribution of the endogenous state variable xt.
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Figure 2-6: Annual Uncertainty indices, Estimated Uncertainty Regimes and U.S. Re-
cessions

NOTES: This figure plots the annual indices of the cash-flow uncertainty and the growth uncertainty. The annual index is defined
as the average of twelve monthly index values within each year. The monthly indices of uncertainty are constructed as described
in Section 2.4.1.
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Table 2.7: CYCLICALITY: UNCERTAINTY AND IDIOSYNCRATIC DISPERSION

CORRELATIONS WITH THE CYCLICAL COMPONENT OF OUTPUT:

A. Dispersion B. Uncertainty

PEARSON KENDALL PEARSON KENDALL

(1) (2) (3) (4)

INVESTMENT 0.31 0.20 0.13 0.05
(0.03) (0.04) (0.39) (0.62)

CASH FLOW −0.16 −0.10 −0.31 −0.21
(0.26) (0.32) (0.03) (0.03)

NOTES: This table reports correlations of uncertainty indices and idiosyncratic dispersions with the cyclical component of U.S. real
GDP per capita. The cyclical component is extracted from the log real GDP per capita by using the one-sided Hodrick-Prescott
(HP) filter. Panel A reports the cyclicality of the dispersion of idiosyncratic shocks in sales growth rates νsales,ty (CASH FLOW

row) and the idiosyncratic shocks in investment rates νcapx,ty (INVESTMENT row). Panel B reports the cyclicality of the cash-flow
uncertainty νc,ty (CASH FLOW row) and the growth uncertainty νg,ty (INVESTMENT row). Column (1) and Column (3) report
the Pearson correlations, while Column (3) and Column (4) report the Kendall rank correlations. The Kendall rank correlation
measures the similarity of the orderings of the data when ranked by each of the quantities. Thus, it provides a non-parametric
measure of the association of two time series. The validity of the Pearson correlation is more dependent on the parametric gaussian
assumption. The p values are reported inside the parentheses. The sample is annual from 1966 to 2014. The reliable dispersion
estimates are only available after 1966 in annual Compustat fundamentals.

Table 2.8: THE REGIME-SWITCHING MODEL: ESTIMATED COEFFICIENTS

ESTIMATED COEFFICIENTS IN THE REGIME-SWITCHING MODEL (2.44):

av βv,z βv,g βv,c

(1) (2) (3) (4)

Bad state 0.47 0.41 6.03 −13.08
95% CI [ 0.09, 1.07] [−0.27, 0.55] [ 0.29, 11.21] [−19.92,−0.16]
75% CI [ 0.28, 0.67] [ 0.27, 0.48] [ 2.60, 6.84] [−13.88,−5.47]

Good state 0.46 −0.41 −1.76 −1.00
95% CI [ 0.11, 1.99] [−0.57, 0.89] [−10.42, 1.07] [−7.44, 0.73]
75% CI [ 0.26, 0.59] [−0.49,−0.26] [−4.19,−0.99] [−5.27,−0.80]

NOTES: This table reports the estimation results of the regime-switching model (2.44). The model is estimated using the EM algo-
rithm which maximizes the marginal likelihood of observables. The 95% and 75% confidence intervals are reported in brackets;
they are obtained by applying stationary block bootstrap method in which the block size is random (see Politis and Romano,
1994a,b). The average block size is determined by the adaptive block length selection procedure of Politis and White (2004) and
Patton, Politis, and White (2009). Data are sampled at the monthly frequency from January 1953 to December 2014.
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Figure 2-7: STATISTICAL ASSOCIATIONS: UNCERTAINTY VERSUS CROSS-SECTION DIS-
PERSION

NOTES: This figure plot the annual changes of idiosyncratic sales dispersions and idiosyncratic investment dispersions against
annual changes of uncertainty indices ∆νc,ty and ∆νg,ty .
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Figure 2-8: Measures and Estimation of Risk Sharing Condition of U.S. Economy

NOTES: The figure presents three measures of risk sharing conditions in the data (in Panels A, B, and C) and the estimated
likelihood of being in the Bad state (in Panel D).
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Table 2.9: STATISTICAL ASSOCIATIONS: ESTIMATION AND MEASURES OF RISK SHAR-
ING CONDITIONS

CORRELATION OF CREDIT SPREAD INDEX WITH:

A. DATA B. MODEL

PEARSON KENDALL PEARSON KENDALL

(1) (2) (3) (4)

ESTIMATED LIKELIHOOD
OF BEING IN STATE Bad

0.38 0.23 0.36 0.29
(0.00) (0.00) (0.00) (0.00)

REINHART-ROGOFF
FINANCIAL INDEX

0.52 0.39 0.27 0.18
(0.00) (0.01) (0.00) (0.00)

BROKER-DEALER
LEVERAGE INDEX

0.42 0.29 −− −−
(0.00) (0.07) −− −−

NOTES: This table reports the statistical association between the credit spread index, the Reinhart-Rogoff financial index, the
Broker-Dealer leverage index, and the estimated likelihood of being in the Bad state plotted in Figure 2-8. Panel A shows the
Pearson correlation (in Column (1)) and the Kendall rank correlation (in Column (2)) of the credit spread index with estimated
likelihood of Bad state. At the same time, Panel B reports the corresponding statistical moments in the simulated data based
on my model. Because there is no corporate bond in my model, I use the equity risk premium as the proxy for credit spread.
The risk sharing condition in the simulated data is measured by using Θt in (2.32). The likelihood of Bad is estimated for the
simulated data in the same way as for the real data. The Kendall rank correlation measures the similarity of the orderings of the
data when ranked by each of the quantities. Thus, it provides a non-parametric measure of the association of two time series. The
validity of the Pearson correlation is more dependent on the parametric gaussian assumption. The p values are reported inside
the parentheses. The sample of indices are annual. They are time-aggregated from monthly or quarterly sample by averaging
within each year. The simulated data are monthly and time-aggregated into quarterly frequency in the same way.
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Table 2.10: UNCERTAINTY BETAS: THE REINHART-ROGOFF FINANCIAL INDEX

A. BAD RISK SHARING CONDITION B. GOOD RISK SHARING CONDITION

(REINHART-ROGOFF INDEX IS HIGH) (REINHART-ROGOFF INDEX IS LOW)

MKT EX-RET ∆νg ∆νc MKT EX-RET ∆νg ∆νc

BOOK-TO-MARKET SORT (1) (2) (3) (4) (5) (6)

SORT #1: SIX PORTFOLIOS

LOWEST 10% (GROWTH) 1.06 −3.11 2.56 1.18 2.40 14.10
10%− 30% 0.96 −0.81 0.91 0.90 −1.85 −7.85
30%− 50% 0.99 0.91 0.68 0.79 −11.21 −15.98
50%− 70% 0.99 2.55 −0.66 0.72 −11.56 −10.97
70%− 90% 0.98 0.77 −4.48 0.62 −12.15 −14.29
HIGHEST 10% (VALUE) 1.22 0.21 −17.85 0.64 −12.66 −8.36

SORT #2: FIVE PORTFOLIOS

LOWEST 20% (GROWTH) 1.02 −2.79 0.89 1.10 2.55 8.23
20%− 40% 0.98 0.50 2.04 0.87 −8.39 −12.18
40%− 60% 0.97 2.03 −0.46 0.78 −9.80 −14.50
60%− 80% 0.97 1.94 −0.27 0.60 −11.37 −15.55
HIGHEST 20% (VALUE) 1.05 −0.98 −9.69 0.63 −11.40 −12.74

SORT #3: THREE PORTFOLIOS

LOWEST 30% (GROWTH) 1.00 −2.39 1.97 1.06 1.91 4.38
30%− 70% 0.99 1.78 0.32 0.76 −11.49 −14.37
HIGHEST 30% (VALUE) 1.97 0.32 −4.98 0.62 −12.59 −13.49

NOTES: The table reports estimated betas of book-to-market sorted portfolios with respect to the market excess return, the growth
uncertainty shock, and the cash-flow uncertainty shock. In particular, it compares the estimation results of two subsamples. One
subsample consists of the periods in which the risk sharing condition is good, while the other subsample consists of the periods
in which the risk sharing condition is poor. The periods of good or poor risk sharing conditions are estimated using the Reinhart-
Rogoff index shown in Panel A of Figure 2-8. The regression model for estimating the betas is rBM,tm = aBM + βBM,z(rM,t −
r f ,t) + βBM,g∆νg,tm + βBM,c∆νc,tm + εBM,tm , where BM stands for a book-to-market portfolio and rBM,tm is the return of the book-
to-market portfolio labeled by BM. The reported estimates are obtained by using the ordinary-least-squares method. To account
for the heteroskedasticity in stock returns, I also use the weighted-least-squares method with inverse market variance to be the
weights. The estimation results are quite similar, because the regressions are totally separated for different subsamples. And, the
heteroskedasticity does not show up dramatically and hence not bias the estimation within each subsample. The data are monthly
from January of 1976 to December 2014.
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Table 2.11: UNCERTAINTY BETAS: THE BROKER-DEALER LEVERAGE INDEX

A. BAD RISK SHARING CONDITION B. GOOD RISK SHARING CONDITION

(BD LEVERAGE INDEX IS HIGH) (BD LEVERAGE INDEX IS LOW)

MKT EX-RET ∆νg ∆νc MKT EX-RET ∆νg ∆νc

BOOK-TO-MARKET SORT (1) (2) (3) (4) (5) (6)

SORT #1: SIX PORTFOLIOS

LOWEST 10% (GROWTH) 1.09 −2.81 6.80 1.03 −1.61 11.27
10%− 30% 0.98 2.41 −0.99 0.97 −2.00 0.98
30%− 50% 0.98 3.82 −3.35 0.91 −5.75 −3.75
50%− 70% 0.89 1.66 −6.59 0.87 −4.79 −3.67
70%− 90% 0.88 1.22 −9.79 0.84 −4.30 −1.40
HIGHEST 10% (VALUE) 1.03 1.10 −21.37 1.06 −3.74 −1.34

SORT #2: FIVE PORTFOLIOS

LOWEST 20% (GROWTH) 1.05 −1.94 3.81 1.02 −1.35 6.99
20%− 40% 0.98 4.86 −1.52 0.95 −3.49 −0.72
40%− 60% 0.93 2.90 −5.48 0.89 −7.02 −3.67
60%− 80% 0.86 0.78 −6.20 0.79 −3.30 −3.69
HIGHEST 20% (VALUE) 0.92 0.65 −14.44 0.95 −3.82 −2.83

SORT #3: THREE PORTFOLIOS

LOWEST 30% (GROWTH) 1.03 −0.77 3.62 1.01 −1.21 5.41
30%− 70% 0.94 2.45 −4.26 0.89 −4.89 −4.30
HIGHEST 30% (VALUE) 0.91 1.71 −10.30 0.88 −3.86 −1.95

NOTES: The table reports estimated betas of book-to-market sorted portfolios with respect to the market excess return, the growth
uncertainty shock, and the cash-flow uncertainty shock. In particular, it compares the estimation results of two subsamples.
One subsample consists of the periods in which the risk sharing condition is good, while the other subsample consists of the
periods in which the risk sharing condition is poor. The periods of good or poor risk sharing conditions are estimated using
the Broker-Dealer Leverage Index shown in Panel B of Figure 2-8. The regression model for estimating the betas is rBM,tm =
aBM + βBM,z(rM,t − r f ,t) + βBM,g∆νg,tm + βBM,c∆νc,tm + εBM,tm , where BM stands for a book-to-market portfolio and rBM,tm is the
return of the book-to-market portfolio labeled by BM. The reported estimates are obtained by using the ordinary-least-squares
method. To account for the heteroskedasticity in stock returns, I also use the weighted-least-squares method with inverse market
variance to be the weights. The estimation results are quite similar, because the regressions are totally separated for different
subsamples. And, the heteroskedasticity does not show up dramatically and hence not bias the estimation within each subsample.
The data are monthly from January of 1976 to December 2014.
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Table 2.12: UNCERTAINTY BETAS: THE CREDIT SPREAD INDEX

A. BAD RISK SHARING CONDITION B. GOOD RISK SHARING CONDITION

(CREDIT SPREAD IS HIGH) (CREDIT SPREAD IS LOW)

MKT EX-RET ∆νg ∆νc MKT EX-RET ∆νg ∆νc

BOOK-TO-MARKET SORT (1) (2) (3) (4) (5) (6)

SORT #1: SIX PORTFOLIOS

LOWEST 10% (GROWTH) 1.07 −2.81 0.78 1.03 2.37 1.61
10%− 30% 0.97 0.41 0.24 1.06 0.92 −0.15
30%− 50% 0.98 0.80 0.59 1.00 −3.92 0.27
50%− 70% 0.98 2.56 −3.22 0.86 −2.23 −1.82
70%− 90% 0.98 2.43 0.07 0.86 −4.51 −0.35
HIGHEST 10% (VALUE) 1.24 8.08 −10.13 0.98 −1.34 −9.45

SORT #2: FIVE PORTFOLIOS

LOWEST 20% (GROWTH) 1.03 −0.97 1.73 1.04 0.56 2.71
20%− 40% 0.96 0.20 −0.67 1.04 0.88 −2.12
40%− 60% 0.97 0.76 −0.92 0.94 −2.13 −2.10
60%− 80% 0.96 2.77 −1.01 0.82 −5.82 −0.67
HIGHEST 20% (VALUE) 1.06 4.69 −3.81 0.90 −2.00 −0.45

SORT #3: THREE PORTFOLIOS

LOWEST 30% (GROWTH) 1.01 −1.53 0.53 1.05 1.02 0.96
30%− 70% 0.98 1.26 −0.84 0.93 −2.83 −0.55
HIGHEST 30% (VALUE) 1.03 3.08 −0.77 0.88 −3.83 −2.96

NOTES: The table reports estimated betas of book-to-market sorted portfolios with respect to the market excess return, the growth
uncertainty shock, and the cash-flow uncertainty shock. In particular, it compares the estimation results of two subsamples. One
subsample consists of the periods in which the risk sharing condition is good, while the other subsample consists of the periods
in which the risk sharing condition is bad. The periods of good or bad risk sharing conditions are estimated by using the simplest
three-state regime-switching model of the credit spread index. The periods of bad risk sharing conditions are those estimated to
have high credit spread index level, while the periods of good risk sharing conditions are those estimated to have low credit spread
index level. The regression model for estimating the betas is rBM,tm = aBM + βBM,z(rM,t − r f ,t) + βBM,g∆νg,tm + βBM,c∆νc,tm +
εBM,tm , where BM stands for a book-to-market portfolio and rBM,tm is the return of the book-to-market portfolio labeled by BM.
The reported estimates are obtained by using the ordinary-least-squares method. To account for the heteroskedasticity in stock
returns, I also use the weighted-least-squares method with inverse market variance to be the weights. The estimation results are
quite similar, because the regressions are totally separated for different subsamples. The heteroskedasticity does not show up
significantly and hence not bias the estimation within each subsample. The data are monthly from January of 1976 to December
2014.
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Table 2.13: MODEL VERSUS DATA: UNCERTAINTY EXPOSURES

LOW RISK HIGH RISK ALL

SHARING CONDITION SHARING CONDITION

BOOK-TO-MARKET ∆νg ∆νc ∆νg ∆νc ∆νg ∆νc
SORT (1) (2) (3) (4) (5) (6)

A. DATA: REINHART-ROGOFF INDEX

LOW 10% −3.11 2.56 2.40 14.10 −0.47 3.84
(−0.75) (0.85) (0.47) (3.51) (-0.08) (0.62)

HIGH 10% 0.21 −17.85 −12.66 −8.36 3.96 −30.01
(0.04) (−3.35) (−2.42) (−2.53) (0.64) (−3.11)

B. DATA: BROKER-DEALER LEVERAGE INDEX

LOW 10% −2.81 6.80 −1.61 11.27 −0.47 3.84
(−0.75) (2.21) (−0.34) (3.32) (−0.08) (0.62)

HIGH 10% 1.10 −21.37 −3.74 −1.34 3.96 −30.01
(0.23) (−3.73) (−0.36) (−0.24) (0.64) (−3.11)

C. DATA: CREDIT SPREAD INDEX

LOW 10% −1.25 3.33 18.82 26.38 −0.47 3.84
(−0.15) (0.37) (2.33) (3.12) (−0.08) (0.62)

HIGH 10% 25.19 −41.17 −7.10 −32.40 3.96 −30.01
(2.05) (−6.78) (−0.90) (−3.36) (0.64) (−3.11)

D. MODEL

GROWTH −0.88 1.14 0.31 0.11 −0.09 0.43
(−3.66) (5.42) (1.99) (2.10) (−0.16) (3.03)

VALUE −0.31 −1.06 −0.37 −0.13 −0.34 −0.47
(−1.91) (−5.13) (−2.34) (−2.22) (−2.01) (−3.49)

NOTES: The table compares unconditional moments of the data to their simulated analogies in the model. It reports boot-
to-market sorted portfolios’ uncertainty betas for the whole sample and two subsamples. The t-statistics are reported in the
parentheses. In computing the t-statistics, the standard errors are estimated using Newey and West (1987a, 1994) method with
one lag. Data are sampled at the monthly frequency. Their sources and construction details are explained in the appendix. The
sample period is 1976 – 2014. The risk sharing regimes are measured by using the Reinhart-Rogoff Index (the Broker-Dealer
Leverage Index) in the Panel A (Panel B), while the risk sharing regimes are measured by using the credit spread index in Panel
C. Panel D reports the simulated results based on the model. I simulate at the weekly frequency and then time-aggregate the
simulated data to form monthly observations. In parentheses, they are t-statistics computed using 1,000 independent simulations,
each with a length of 400 years.
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Table 2.14: INTERACTIONS: RISK SHARING CONDITIONS AND UNCERTAINTY SHOCKS

RETURN SPREADS OF HIGHEST 10% AND LOWEST 10%
BOOK-TO-MARKET PORTFOLIO (VALUE SPREAD)
ARE REGRESSED ON

(1) (2) (3) (4) (5) (6) (7) (8)

RISKS (INPUT VARIABLES)

INTERCEPT (αvi) 5.65 5.82 6.03 5.72 6.56 6.53 5.54 5.52
(2.45) (2.12) (1.39) (1.27) (2.37) (2.59) (3.95) (6.39)

MKT EX-RET (βvi,z) 0.21 0.22 0.18 0.18 0.21 0.22 0.03 0.04
(1.91) (1.60) (1.54) (1.46) (3.06) (2.55) (0.22) (0.89)

∆νg (βvi,g) 59.45 −93.55 −85.98 8.39 4.98 −28.12 −37.90
(1.26) (−1.29) (−1.14) (0.29) (0.20) (−0.74) (−1.61)

∆νc (βvi,c) −183.33 −181.78 −151.40 −212.63 −213.63 −55.35 −19.12
(−2.31) (−3.29) (−3.39) (−4.63) (−3.01) (−1.27) (−0.73)

regime-x (βvi,x) −3.59 −3.15 −2.35 −2.64 −11.40 −11.22
(−0.53) (−0.45) (−0.74) (−1.01) (−3.86) (−7.57)

∆νg × regime-x (γvi,g) 407.44 390.06 90.89 100.56 80.48 88.64
(2.61) (2.38) (2.27) (3.24) (1.82) (6.25)

∆νc × regime-x (γvi,c) 66.39 37.45 63.17
(0.72) (0.67) (2.67)

ADJ-R2 (%) 1.50 19.13 22.75 21.66 18.42 17.32 16.63 14.27

F-STATISTIC 1.92 5.73 4.53 3.76 3.66 3.06 3.29 2.75
(0.17) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.04)

NOTES: The table reports the results of regressions for value spreads. Column (1) reports the results of regressing value spreads
on the constant term and the excess market return. Column (2) the uncertainty shocks into the regression. In Columns (3) and (4),
the risk sharing condition (regime-xty ) is measured by the credit spread index; in Columns (5) and (6), the risk sharing condition
(regime-xty ) is measured by the Reinhart-Rogoff Index; and, in Columns (7) and (8), the risk sharing condition (regime-xty ) is
measured based on the Broker-Dealer Leverage Index. In Columns (3), (5), and (7), an extra independent variable regime-xty and its
interaction term with the growth uncertainty shock ∆νg,ty × regime-xty . In Columns (4), (6), and (8), the interaction terms between
the state of risk sharing condition and the cash-flow uncertainty shock are added on the top of the regression (3), (5) and (7),
respectively. The regressions are annual, because the state variable regime-xty is quite slow moving and monthly returns cause too
much unnecessary noise for the inference about the slow moving state variable. The annual indices are constructed by averaging
monthly or quarterly indices within each year. The coefficients are estimated based on weighted-least-square estimation where
weights are inverse market return variance. The weighted-least-squares method is necessary, since heteroskedasticity shows up
largely in this unified regression and it is correlated with the explanatory state variable regime-xty . The data are from 1953 to 2014
for regressions in (1), (2), (5), and (6); due to restrictions of availability, the data are from 1976 to 2014 for regressions in (3), (4), (6),
and (8).
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Table 2.15: MODEL VERSUS DATA: UNCERTAINTY-BETA SORTED PORTFOLIOS

BAD RISK GOOD RISK ALL

SHARING CONDITION SHARING CONDITION
UNCERTAINTY-BETA ∆νg ∆νc ∆νg ∆νc ∆νg ∆νc
SORT (1) (2) (3) (4) (5) (6)

A. DATA: REINHART-ROGOFF INDEX
LOW 20% 3.77 6.89 13.79 16.79 12.38 17.45

(0.87) (1.11) (3.23) (2.86) (6.49) (8.18)

HIGH 20% 1.46 0.21 15.75 14.11 12.34 12.34
(0.37) (0.03) (3.98) (2.26) (7.98) (6.62)

HIGH − LOW −2.30 −6.68 1.96 −2.27 −0.04 −5.11
(−1.24) (−1.69) (0.91) (−0.42) (−0.02) (−3.02)

B. DATA: BROKER-DEALER LEVERAGE INDEX
LOW 20% 7.99 10.19 12.76 14.91 12.38 17.45

(1.31) (1.69) (4.13) (3.60) (6.49) (8.18)

HIGH 20% 4.98 5.21 16.49 14.12 12.34 12.34
(1.21) (0.81) (5.92) (3.33) (7.98) (6.62)

HIGH − LOW −3.00 −4.99 3.73 −0.80 −0.04 −5.11
(−2.44) (−1.19) (3.33) (−0.27) (−0.02) (−3.02)

C. DATA: CREDIT SPREAD INDEX
LOW 20% 14.32 13.04 13.41 19.09 12.38 17.45

(2.31) (1.64) (2.07) (2.59) (6.49) (8.18)

HIGH 20% 8.98 9.45 17.77 15.37 12.34 12.34
(1.31) (1.16) (2.43) (3.10) (7.98) (6.62)

HIGH − LOW −5.34 −3.59 4.36 −3.72 −0.04 −5.11
(−1.13) (−0.60) (0.96) (−1.23) (−0.02) (−3.02)

D. MODEL
LOW 16.97 18.33 11.22 16.03 13.73 16.33

(6.66) (6.84) (4.49) (6.42) (8.11) (9.65)

HIGH 7.79 7.34 15.79 11.39 13.34 11.76
(2.60) (2.76) (6.28) (4.56) (7.88) (6.95)

HIGH − LOW −9.18 −10.99 4.57 −4.64 −0.39 −4.57
(−3.06) (−3.98) (1.79) (−1.86) (−0.23) (−2.70)

NOTES: The table compares unconditional moments of the data to their simulated correspondences in the model. Within each
Panel, it reports the average returns of uncertainty-beta sorted portfolios for the whole sample and two subsamples. The difference
is that Panel A (Panel B) uses the Reinhart-Rogoff Index (Broker-Dealer Leverage Index) to measure risk sharing conditions, while
Panel C uses the credit spread index to measure risk sharing conditions. The t-statistics are reported in the parentheses. Data are
sampled at the monthly frequency. Their sources and construction details are explained in the online appendix. The sample period
is 1976 – 2014. Panel D reports simulated average returns based on uncertainty-beta sorted portfolios in the model. I simulate
the model at the weekly frequency and then time-aggregate the simulated data to form monthly observations. In parentheses, the
numbers are t-statistics computed using 1,000 independent simulations, each with a length of 400 years.
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Chapter 3

Measuring the “Dark Matter” in Asset

Pricing Models

3.1 Measuring Model Fragility

In this section, we first introduce a formal measure of model fragility. Then we derive

asymptotic properties of the fragility measure.

3.1.1 A Generic Model Structure

Consider a baseline model P, which is a part of the full structural model Q. The base-

line model P has a DΘ × 1 parameter vector θ ∈ Θ and it specifies the dynamics of a

vector of variables xt. In comparison, the full structural model Q has extra parameters

as summarized by the vector ψ in addition to θ. The model Q aims to capture cer-

tain features of the distribution Q that governs the joint dynamics of xt and additional

variables yt.

We assume that the stochastic process {xt} is strictly stationary and has a stationary

distribution P0 ≡ Pθ0 . The true joint distribution for xn ≡ (x1, · · · , xn) is P0,n ≡ Pθ0,n,

with the corresponding parameter vector θ0, which is unknown to the econometrician.

The density function for xn is πP(xn|θ0). Without much loss of generality, we assume
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the process x is first-order Markov.1 Similarly, we assume that the stochastic process

(xt, yt) is strictly stationary and has a stationary distribution Q0. The econometrician

does not need to specify the full functional form of the joint distribution of (xn, yn) ≡

{(xt, yt) : t = 1, · · · , n} , which we denote by Q0,n. The corresponding joint density is

q0(xn, yn).

We evaluate the performance of a structural model under the Generalized Method

of Moments (GMM) framework. Specifically, we assume that the model builder is con-

cerned with the model’s in-sample and out-of-sample performance as represented by a

set of moment conditions, based on a Dg× 1 vector of functions g(x, y; θ, ψ) of data ob-

servations (xt, yt) and the parameter vector (θ, ψ) satisfying the following conditions

EQ0 [g(xt, yt; θ0, ψ0)] = 0. (3.1)

We require the conditional score functions for the likelihood of P, ∂ ln πP(xt; θ)/∂θ,2 to

be included in the vector of moment conditions g(xt, yt, θ, ψ).

Denote

gn(xn, yn; θ, ψ) ≡ 1
n

n

∑
t=1

g(xt, yt; θ, ψ). (3.2)

Then, the (efficient) GMM minimizes

Jn,S0(θ, ψ; xn, yn) ≡ ngn(xn, yn; θ, ψ)TS−1
0 gn(xn, yn; θ, ψ), (3.3)

where Jn,S0 is often referred to as the J-statistic, and S0 has the following explicit for-

mula

S0 ≡
+∞

∑
`=−∞

EQ0

[
g(xt, yt; θ0, ψ0)g(xt−`, yt−`; θ0, ψ0)

T
]

. (3.4)

1If the original random variable xt is a m0-th order Markov with m0 > 1, we can construct a new
random vector xt stacking variables xt with a sufficient number of lags so that xt is first-order Markov.
More precisely, we assume that the underlying time series xt with t = 1, · · · , n is m-dependent process
and the conditional density is πP(xt|θ, xt−1, · · · , xt−m0) for some positive integer constant m0. For the
stacked vector xt = (xt, · · · , xt−K0)

T with K0 ≥ m0, the conditional density for xt under P can be
rewritten as πP(xt; θ) = πP(xt|θ, xt−1, · · · , xt−m0).

2πP(xt; θ) is the conditional density for the m0-th order Markovian underlying process xt, i.e.
πP(xt; θ) = πP(xt|θ, xt−1, · · · , xt−m0).
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The matrix S0 is the covariance matrix of the moment conditions at the true θ0. In

practice, when S0 is unknown, we can replace it with a consistent estimator Ŝn. The

consistent estimators of S0 are provided by Newey and West (1987a), Andrews (1991),

and Andrews and Monahan (1992).

We use GMM to evaluate model performance because of the concern of model mis-

specification. The GMM approach gives the model builder flexibility to choose which

aspects of the model to emphasize when estimating model parameters. This is in con-

trast to the likelihood approach, which relies on the full probability distribution im-

plied by the structural model.3

Finally, we introduce some further notation. We denote the expected Fisher infor-

mation matrix for the baseline model as IP(θ),

IP(θ) ≡ EP0

[
∂

∂θ
ln πP(xt; θ)

∂

∂θT ln πP(xt; θ)

]
. (3.5)

We denote the GMM analog for the structural model as IQ(θ), (see Hansen, 1982; Hahn,

Newey, and Smith, 2011)

IQ(θ) ≡ G0(θ)
TS−1

0 G0(θ), (3.6)

where

G0(θ) ≡ EQ0

[
∂g(xt, yt; θ, ψ0)

∂θT

]
. (3.7)

When evaluated at the true θ0, the two matrices IP(θ0) and IQ(θ0) are the Fisher in-

formation matrix for the parametric family of the baseline model and the GMM infor-

mation matrix for the structural model at the true θ0, respectively. Computing the ex-

pectation in (3.7) requires knowing the distribution Q0. In cases when Q0 is unknown,

G0(θ) in (3.6) can be replaced by its consistent estimator n−1 ∑n
t=1 ∂g(xt, yt; θ, ψ0)/∂θT.

3Our assumptions of the knowledge of the likelihood function for the baseline model P and the GMM
approach for the structural model Q are not restrictive. As a special case, we recover the MLE when
we include the full score function for model Q as the moments. There are also ways to construct our
fragility measure without relying on the likelihood function for P, e.g., by using the limited information
likelihood.
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3.1.2 Model Fragility

We now define our measure of model fragility.

Definition 3 (Fragility Measure). Let π(θ) be a prior distribution on θ and let πP(θ|xn) be

the posterior on θ based on P and xn. We define the fragility measure for the structural model

Q relative to the baseline model P as

$(xn, yn) ≡
∫

dS0{x
n, yn, θ}πP(θ|xn)dθ, (3.8)

where

dS0{x
n, yn, θ} = Jn,S0(x

n, yn; θ)− Jn,S0(x
n, yn; θ̂Q), (3.9)

Jn,S0(x
n, yn; θ) is the J-statistic defined in (3.3), and θ̂Q is the GMM estimator.4

The idea of our fragility measure is to quantify the in-sample over-fitting by a struc-

tural model. In Equation (3.9), dS0{xn, yn, θ} is the J-distance statistic (the GMM analog

of the log likelihood ratio) of the model with parameter vector θ̂Q, which provides the

best in-sample fit of the data based on the GMM criterion, against an alternative model

with the parameter vector θ. Assuming true parameter is θ instead of θ̂Q, the fact that

the J-statistic based on θ̂Q is smaller is a sign of over-fitting.

The weights attached to alternative models are essential for our definition of model

fragility. We consider alternative values of θ while holding the rest of the structural

parameters ψ fixed, i.e., we assume ψ = ψ0. Starting with a prior π(θ), we weigh the

various alternative models using πP(θ|xn) – the posterior for θ based on the baseline

model P and data xn. The weighted average of dS0{xn, yn, θ} over the entire set of

alternative models represents the average degree of model over-fitting.

4As emphasized by Newey and West (1987b), it is crucial to define the GMM likelihood ratio test
statistics based on the optimal GMM estimator, for which W = S−1

0 . This is because another choice of the
weighting matrix W will destroy the asymptotic property of having chi-squared distribution as limiting
distribution and will break the asymptotic equivalence between GMM likelihood ratio test statistics and
other GMM test statistics such as Wald and LM test statistics. Similarly, as highlighted in Kim (2002), it is
important to use efficient weighting matrix for developing the theory of limited information likelihood
based on GMM.
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The weights on various alternative models depend on P, therefore $(xn, yn) is a

measure of fragility of Q relative to the baseline model P. Thus, our measure of model

fragility depends on the choice of the baseline model. Many structural models involve

both a statistical model of exogenous variables and restrictions on the endogenous

variables which are derived from the economic model. For such models, a natural

choice may be to take P to be the statistical model, with xt being the exogenous vari-

ables. yt would then be the vector of endogenous variables in the structural model.

In this context, our fragility measure quantifies the fragility of the structural model

relative to the statistical model.

Alternatively, a structural model could be taken as the baseline model. Then, the

fragility measure applies to the over-fitting caused by the additional economic restric-

tions imposed by Q relative to the baseline model.

The distribution over the alternative models also depends on the choice of the prior

π(θ). If the econometrician does not have any information about θ beyond the baseline

model and the data xn, an “uninformative” prior would be a desirable choice, one

candidate being the Jeffreys prior. In many cases a truly uninformative prior is difficult

to define, especially in the presence of constraints. If the econometrician has additional

information about θ outside the model (e.g., from additional data or other models),

such information can be incorporated through an informative prior.

Our definition of model fragility builds upon Spiegelhalter, Best, Carlin, and van der

Linde (2002), who propose a related measure of model complexity for statistical mod-

els. Our measure differs from theirs in two respects. First, we adopt the GMM frame-

work as opposed to the likelihood framework to address the issue of stochastic singu-

larities that arise in structural models and to give the econometrician the flexibility to

focus on specific features of a model. Second, Spiegelhalter, Best, Carlin, and van der

Linde (2002) do not explicitly specify the weighting of alternative models.
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3.1.3 Alternative Interpretations

The measure $(xn, yn) has three related interpretations. It can be viewed as a measure

of model complexity. It is also a measure of out-of-sample performance for the struc-

tural model. Finally, it can be seen as a measure of sensitivity of the structural model

to small perturbations in its parameters.

Model complexity

It is well known that adding degrees of freedom to a model can increase the risk of

over-fitting the data in sample with poor out-of-sample performance (see, for exam-

ple, Fisher, 1922). The in-sample over-fitting is reflected by a large gap, on aver-

age, between Jn,S0(x
n, yn; θ̂Q) (the global minimum of the J-statistic in sample) and

Jn,S0(x
n, yn; θ) for alternative values of θ.

Out-of-sample performance

In statistics, the concept of model complexity is tightly linked to out-of-sample perfor-

mance.5 Let (x̃n, ỹn) denote a new data sample generated from the true distribution

Q0,n. Let the J statistic corresponding to the moment conditions, Jn,S0(x
n, yn; θ̂Q), serve

as the loss function for evaluating the out-of-sample performance of model Q.6 Then,

the out-of-sample performance of the model can be summarized by a risk function

based on the expected J statistic,

E
(x̃n,ỹn)
Q0,n

[
Jn,S0(x̃

n, ỹn; θ̂Q)
]

. (3.10)

5Spiegelhalter, Best, Carlin, and van der Linde (2002), Ando (2007) and Gelman, Hwang, and Vehtari
(2013), among others, argue that the effective number of parameters is tightly connected to the out-of-
sample predictive accuracy of a model.

6Under the limited information likelihood interpretation of GMM, which we outline in Section 3.2.2,
the loss function (3.10) can be rewritten as −2 ln πQ(·|θ̂Q), where πQ(·|θ̂Q) is the limited information
likelihood function for the moment conditions. The expected limited information likelihood is a stan-
dard measure for out-of-sample performance. In linear Gaussian models it reduces to an expected sum
of squared errors, which has been extensively used as a measure of out-of-sample fit in applied statistics.
Similar risk functions for out-of-sample performance are also adopted in the macroeconomics literature
(see, e.g. Smets and Wouters, 2007).
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The lower the value of this risk function, the better the expected out-of-sample perfor-

mance of the model.

An obvious challenge in computing the risk function in (3.10) is that the true distri-

bution Q0,n is unknown. One solution is to replace Q0,n with the Bayesian predictive

distribution (see, e.g. Spiegelhalter, Best, Carlin, and van der Linde, 2002; Gelfand and

Ghosh, 1998; Ando, 2007).7

When n is large, the sample (xn, yn) reflects the population distribution of the data,

and the expected loss function can be approximated as

E(x̃n,ỹn)|xn
[

Jn,S0(x̃
n, ỹn; θ̂Q)

]
≈ Jn,S0(x

n, yn; θ̂Q) + 2$(xn, yn). (3.11)

Thus, the higher the value of $(xn, yn), the worse the out-of-sample performance of

the structural model.

Model sensitivity

It is common practice to examine robustness of a model by conducting sensitivity anal-

ysis. Intuitively, the goal is to check whether model’s key implications are sensitive to

small perturbations in the parameter values. To formalize this approach, one needs to

define what constitutes “small perturbations” in parameter values and how the evalu-

ate sensitivity of the model performance to such perturbations.

Our definition of $(xn, yn) can be viewed as a multivariate model sensitivity mea-

sure. The GMM J-distance statistic dS0{xn, yn, θ} in (3.9) measure how model perfor-

mance is affected by a change in the parameter vector from θ̂Q to an alternative value

θ. $(xn, yn) evaluates changes in the moments relative to their covariance matrix. It

shows on average how sensitive the model performance is with respect to all possible

perturbations in θ, where the notion of “small perturbations” is captured by assigning

higher weights to the values of θ deemed more likely based on the posterior distribu-

7The Bayesian predictive distribution is given by
∫

πQ(x̃n, ỹn|θ, ψ0)πP(θ|xn)dθ, where
πQ(x̃n, ỹn|θ, ψ0) is the limited information likelihood function for the moment conditions defined
in Section 3.2.2.
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tion from the baseline model, πP(θ|xn).

3.1.4 A Generalized Fragility Measure

Next, we generalize the fragility measure $(xn, yn) to allow for transformations of the

parameter vector θ.

Definition 4 (Fragility Measure with Feature Functions). Let f be a RDΘ → RD f contin-

uous differentiable mapping with 1 ≤ D f ≤ DΘ. Then, we define

$ f (xn, yn) ≡
∫

dS0{x
n, yn, f (θ)}πP(θ|xn)dθ, (3.12)

where dS0{x
n, yn, f (θ)} = inf

θ̃: f (θ̃)= f (θ)
Jn,S0(x

n, yn; θ̃)− Jn,S0(x
n, yn; θ̂Q). (3.13)

Jn,S0(x
n, yn; θ) is the J-statistic defined in (3.3), and θ̂Q is the GMM estimator.

Transforming the original parameter vector is useful, for example, if one wants to

measure model’s robustness with respect to a low-dimensional subset in the parameter

space. For instance, to measure model robustness with respect to the first D0 elements

of θ (D0 < DΘ), we set f (θ) = Fθ, where F = [ID0 , 0]. In the special case of f (θ) = Fθ,

with F being an arbitrary full-rank DΘ × DΘ matrix, we recover the original fragility

measure, $ f (xn, yn) = $(xn, yn).

3.1.5 Asymptotic Fragility Measure

In practice, computation of the fragility measures $(xn, yn) and $ f (xn, yn) may be com-

plicated by the complex form of the likelihood function of the baseline model, the

curse of dimensionality induced by high-dimensional parameter spaces, and the addi-

tional minimization problem involved in the definition of the generalized measure. In

this section, we derive an asymptotic approximation for the fragility measures and an

eigen-decomposition of the asymptotic approximation.
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Definition 5 (Asymptotic Fragility Measure). The asymptotic fragility measure correspond-

ing to a full-rank Dv × DΘ matrix v is defined as

$v
a (θ0) ≡ tr

[(
vIQ(θ0)

−1vT
)−1 (

vIP(θ0)
−1vT

)]
, (3.14)

where IP(θ0) and IQ(θ0) are the information matrices defined in (3.5) and (3.6).

In the special case where v is a full-rank DΘ × DΘ matrix, $v
a (θ0) is independent of

the choice of v. In that case we denote the asymptotic fragility measure as $a(θ0).

The asymptotic fragility measure is connected to the original fragility measure de-

fined in Section 3.1.2, as we show in the following theorem.

Theorem 1. Assume the regularity conditions in Section A.3.3 hold. Consider a feature func-

tion f : RDΘ → RD f with v = ∂ f (θ0)/∂θT being the D f × DΘ Jacobian matrix. Then,

$v
a (θ0) and $ f (xn, yn) are asymptotically related as

$ f (xn, yn) 2$v
a (θ0)− D f + ε, EQ0 [ε] = 0, (3.15)

where the distribution of the random variable ε depends on the feature vector v and the infor-

mation matrices IP(θ0) and IQ(θ0), and  denotes convergence in distribution. Moreover,

convergence of expectations is also guaranteed:

lim
n→∞

EQ0,n

[
$ f (xn, yn)

]
= 2$v

a (θ0)− D f . (3.16)

Proof. See Appendix A.3.3. �

Convergence of expectations shows that the quantity 2$v
a (θ0) − D f indeed pro-

vides a valid asymptotic approximation to the average fragility measure, defined as

EQ0,n

[
$ f (xn, yn)

]
. In practice, with a large sample size, the econometrician can use

re-sampling methods such as bootstrap based on the sample (xn, yn) to estimate the

average fragility measure. The limiting result in (3.18) guarantees that 2$v
a (θ0) − D f

provides a reasonable approximation for such average fragility measure when sample

size is large.
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The asymptotic measure $v
a (θ0) is determined entirely by the properties of the model

and does not depend on the data sample. This measure focuses on local departures

from the true parameter vector θ0. Theorem 1 shows that $v
a (θ0) characterizes average

model fragility as sample size approaches infinity.

The following result follows immediately from Theorem 1 and establishes the asymp-

totic equivalence of the fragility measures (without feature functions):

Corollary 3. Assume the regularity conditions in Section A.3.3 hold.

$(xn, yn) 2$a(θ0)− DΘ + ε, EQ0 [ε] = 0, (3.17)

where the random variable ε has distribution that only depends on the information matrices

IP(θ0) and IQ(θ0), and  denotes convergence in distribution. Moreover, convergence of

expectations is also guaranteed:

lim
n→∞

EQ0,n [$(x
n, yn)] = 2$a(θ0)− DΘ. (3.18)

The measure $v
a (θ0) is defined for a specific feature function f . One might be in-

terested in searching among a class of feature functions to find the worse-case config-

uration. While this is generally difficult to do for the finite-sample fragility measure

$ f (xn, yn), it is actually quite straightforward for the asymptotic measure, because the

original infinite-dimensional optimization problem is reduced to a finite-dimensional

one. This leads us to define the following worst-case asymptotic fragility measure.

Definition 6. The worst-case asymptotic fragility measure for the class of D-dimensional fea-

ture functions (D ≤ DΘ) is defined as:

$D
a (θ0) = max

v∈RD×DΘ ,Rank(v)=D
tr
[(

vIQ(θ0)
−1vT

)−1 (
vIP(θ0)

−1vT
)]

. (3.19)

The problem in (3.19) is a generalized eigenvalue problem. The following proposi-

tion summarizes its solution.
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Proposition 9. Let λ1 ≥ λ2 ≥ · · · ≥ λDΘ be the eigenvalues of IQ(θ0)
1
2 IP(θ0)

−1IQ(θ0)
1
2 ,

with the corresponding eigenvectors e1, e2, · · · , eDΘ in RDΘ . Then, the D-dimensional worst-

case asymptotic model fragility measure is equal to

$D
a (θ0) = λ1 + λ2 + · · ·+ λD, (3.20)

with the worst-case D-dimensional linear subspace of the parameter space characterized by the

matrix v*D = [v*1 v*2 · · · v*D],

v*i = IQ(θ0)
1
2 ei/

∣∣∣IQ(θ0)
1
2 ei

∣∣∣ . (3.21)

As a special case, the overall asymptotic fragility measure is given by

$a(θ0) = λ1 + λ2 + · · ·+ λDΘ . (3.22)

Proof. See Appendix A.3.1. �

The intuition behind the worst-case asymptotic model fragility measure is as fol-

lows. Through the matrix v, we search over all D-dimensional linear subspaces of the

parameter space to find the maximum discrepancy between the inverses of the two

information matrices, IP(θ0) and IQ(θ0). In the context of MLE and GMM estimation,

the inverse of the information matrix is linked to the asymptotic covariance matrices of

the estimators. Since we require the conditional score functions for the baseline model

to be included in the moment conditions for the GMM, the asymptotic efficiency of the

GMM estimator for the structural model dominates that of the baseline model. The

asymptotic fragility measure effectively compares the asymptotic covariance matrices

of these two estimators to isolate the information provided by the structural model

restrictions.

We can view Proposition 9 as a decomposition of the overall fragility of a model

into DΘ 1-dimensional linear subspaces. The i-th largest eigenvalue λi (1 ≤ i ≤ DΘ)

of IQ(θ0)
1
2 IP(θ0)

−1IQ(θ0)
1
2 gives the marginal contribution of the 1-dimensional lin-
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ear subspace associated with v*i to the overall fragility measure. In the language of

sensitivity analysis, such a decomposition reveals the directions in which small pertur-

bations of parameters can have the largest impact on the model output.

The asymptotic fragility measure has a natural sample-size interpretation. Consider

the case of D = 1. In this case, we ask what is the minimum sample size required for

the estimator of the baseline model to match or exceed the precision of the estimator for

the full structural model in all 1-dimensional linear subspaces of the parameter space.

Because the asymptotic covariance of the estimator is proportional to the sample size

n, the required sample size for the baseline model is $1
a times the sample size for the

structural model to achieve at least the same estimation accuracy.

From Proposition 9, it is easy to see that the worst-case asymptotic fragility measure

$D
a (θ0) is monotonically increasing in the dimension of the subpsace D.8

Proposition 10. (Monotonicity) For D1 ≤ D2 ≤ DΘ,

$D1
a (θ) ≤ $D2

a (θ). (3.23)

3.2 Model Fragility and Informativeness of

Cross-Equation Restrictions

In this section we formalize the intuition that excessive informativeness of cross-equation

restrictions tends to be associated with model fragility.

3.2.1 Chernoff Information

Our asymptotic fragility measures are based on the information matrices (the likelihood-

based Fisher information or the generalized Fisher information for GMM) from the

baseline model and the full structural model. We show that by comparing the infor-

8A similar monotonicity property applies to $ f (xn, yn). Let f̃ = [ f , f1]
′, where f and f1 are continu-

ously differentiable and D f̃ ≤ DΘ. Then $ f (xn, yn) < $
f̃
c (xn, yn).

154



mation matrices, the asymptotic fragility measure quantifies the informativeness of the

cross-equation restrictions in the structural model. We define the latter notion precisely

below.

We start by introducing the concept of Chernoff information. Chernoff informa-

tion gives the asymptotic geometric rate (Chernoff rate) at which the detection error

probability (the weighted average of the error probabilities in selection between two

alternative models) decays as the sample size increases. Intuitively, Chernoff informa-

tion measures the difficulty of discriminating among alternative models.9

Consider a model with density p(x|θ0) and an alternative model with density p(x|θ).

Assume the densities are absolutely continuous relative to each other. The Chernoff in-

formation between the two models is defined as (see, e.g., Cover and Thomas (1991)):

C*(p(x|θ) : p(x|θ0)) ≡ − ln min
α∈[0,1]

∫
X

p(x|θ0)
α p(x|θ)1−αdx. (3.24)

The cross-equation restrictions imposed by the structural model increase efficiency

of parameter estimation, which makes it is easier to distinguish model πQ(xn, yn|θ0)

from local alternatives, πQ(xn, yn|θ0 + n−
1
2 u) (u is a vector), compared to distinguish-

ing πP(xn|θ0) from πP(xn|θ0 + n−
1
2 u). Informativeness of cross-equation restrictions

for discrimination between alternative models can be captured asymptotically by the

ratio of two Chernoff rates, computed with and without imposing the cross-equation

restrictions. The following proposition connects such ratio to the asymptotic fragility

measure $a(θ0).

Proposition 11. Assume the regularity conditions in Section A.3.3 hold. Then, there exist DΘ

linearly independent DΘ−dimensional vectors u1, · · · , uDΘ such that

$a(θ0) = lim
n→∞

DΘ

∑
i=1

C*(πQ(xn, yn|θui) : πQ(xn, yn|θ0))

C*(πP(xn|θui) : πP(xn|θ0))
, (3.25)

where θui = θ0 + n−
1
2 ui and n is the sample size.

9Anderson, Hansen, and Sargent (2003) use Chernoff rate to motivate a measure of model mis-
specification in their analysis of robust decision making.
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Proof. See Appendix A.3.2. �

3.2.2 Relative Entropy and Effective Sample Size

In Section 3.2.1, we have shown that the asymptotic fragility measure can be inter-

preted as an asymptotic measure of informativeness of the cross-equation restrictions

in the structural model via the Chernoff rates. In finite samples, we use the Bayesian

method to measure the informativeness of cross-equation restrictions. Starting with

a prior on θ, π(θ), we obtain posterior distributions through the baseline model and

the structural model, respectively. Then, the discrepancy between the two posteriors

shows how the cross-equation restrictions affect the inference about θ. In this section,

we establish the connection between this finite-sample measure of the informativeness

of cross-equation restrictions and the asymptotic fragility measure.

Given the prior π(θ) and data xn, the posterior density of θ in the baseline model

is πP(θ|xn). To derive the posterior density in the structural model πQ(θ|xn, yn), we

first introduce the Limited Information Likelihood (LIL) for GMM. Given the GMM J-

statistic Jn,S0(θ, ψ0; xn, yn) and the true joint density q0(xn, yn), the Limited Information

Likelihood is

πQ(xn, yn|θ, ψ0) = Cn exp
{
−

Jn,S0(θ, ψ0; xn, yn)

2

}
q0(xn, yn), (3.26)
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where Cn are constants.10 The corresponding limited information posterior is

πQ(θ|xn, yn) =
πQ(xn, yn|θ)π(θ)

πQ(xn, yn)
. (3.27)

We quantify the discrepancy between probability distribution using a standard sta-

tistical measure, the relative entropy (also known as the Kullback-Leibler divergence).

The relative entropy between πP(θ|xn) and πQ(θ|xn, yn) is

DKL(πQ(θ|xn, yn)||πP(θ|xn)) =
∫

ln
(

πQ(θ|xn, yn)

πP(θ|xn)

)
πQ(θ|xn, yn)dθ . (3.28)

Intuitively, we can think of the log posterior ratio ln(πQ(θ|xn, yn)/πP(θ|xn)) as a mea-

sure of the discrepancy between the two posteriors at a given θ. Then the relative en-

tropy is the average discrepancy between the two posteriors over all possible θ, where

the average is computed under the constrained posterior. DKL(πQ(θ|xn, yn)||πP(θ|xn))

is finite if and only if the support of the posterior πQ(θ|xn, yn) is a subset of the support

of the posterior πP(θ|xn), that is, Assumption PQ in Appendix A.3.3 holds.

The magnitude of relative entropy is difficult to interpret directly, and we pro-

pose an intuitive “effective sample size” interpretation. Instead of imposing the cross-

equation restrictions from the structural model, one can gain extra information about θ

within the baseline model with additional data. We evaluate the amount of additional

data under the baseline model needed to match the informativeness of cross-equation

restrictions.

Suppose we draw additional data x̃m of sample size m from the Bayesian predictive

10Kim (2002) derives the LIL from the I-projection theory based on relation entropy (see, e.g. Csiszár,
1975; Jaynes, 1982; Jones, 1989). He chooses the probability measure that minimizes the relative en-
tropy distance from the true probability measure Q0, out of a set of probability measures satisfying the
same moment conditions. Kim (2002) extends Bayesian methods of moments of Zellner (1996, 1998)
to the general case of GMM for deriving a limited information posterior and derive a limited infor-
mation likelihood that is not considered by Zellner (1996, 1998). This method is also considered by
Chernozhukov and Hong (2003) as a special case of their “Quasi-Bayesian method” and studied em-
pirically by Yin (2009) as “Bayesian GMM”. The limited information likelihood formulation reconciles
the efficient GMM estimation with the maximum likelihood estimation approach. For example, the
over-identification test (i.e., the J-distance test), the Wald test and Lagrange multiplier test in the GMM
framework (see, e.g. ?Newey, 1985; Newey and West, 1987b) have formal likelihood-based counterparts
under the limited information likelihood formulation.
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distribution

πP(x̃m|xn) ≡
∫

πP(x̃m|θ)πP(θ|xn)dθ. (3.29)

Again, we measure the gain in information from this additional sample x̃m using rela-

tive entropy,

DKL(πP(θ|x̃m, xn)||πP(θ|xn)) =
∫

ln
(

πP(θ|x̃m, xn)

πP(θ|xn)

)
πP(θ|x̃m, xn)dθ . (3.30)

DKL(πP(θ|x̃m, xn)||πP(θ|xn)) depends on the realization of the additional sample of

data x̃m. The average relative entropy (information gain) over possible future samples

{x̃m} according to the Bayesian predictive distribution πP(x̃m|xn) equals the mutual

information between x̃m and θ given xn:

I(x̃m; θ|xn) ≡ Ex̃m|xn [
DKL(πP(θ

′|x̃m, xn)||πP(θ
′|xn))

]
=
∫ ∫

DKL(πP(θ
′|x̃m, xn)||πP(θ

′|xn))πP(x̃m|θ)πP(θ|xn)dx̃m dθ. (3.31)

Like the relative entropy, the mutual information is always positive. It is easy to check

that I(x̃m; θ|xn) = 0 when m = 0. Under the assumption that the prior distribution

is nonsingular and the parameters in the likelihood function are well identified, and

additional general regularity conditions, I(x̃m; θ|xn) is monotonically increasing in m

and converges to infinity as m increases. These properties ensure that we can find an

extra sample size m that equates (approximately, due to the fact that m is an integer)

DKL(πQ(θ|xn, yn)||πP(θ|xn)) with I(x̃m; θ|xn).

Definition 7 (Effective-Sample Size Information Measure). For a feature function vector

f : RDΘ → RD f , we define the effective-sample measure of the informativeness of the cross-

equation restrictions as

$
f
KL (x

n, yn) =
n + m*f

n
, (3.32)
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where m*f satisfies

I(x̃m*f ; f (θ)|xn) ≤ DKL(πQ( f (θ)|xn, yn)||πP( f (θ)|xn)) < I(x̃m*f +1; f (θ)|xn), (3.33)

with DKL(πQ( f (θ)|xn, yn)||πP( f (θ)|xn)) being the relative entropy between the constrained

and unconstrained posteriors of f (θ) and I(x̃m; f (θ)|xn) being the conditional mutual infor-

mation between the additional sample of data xm and the transformed parameter f (θ) given the

existing sample of data xn.

For scalar-valued feature functions, there exists a direct connection between our

asymptotic fragility measure and the relative-entropy based informativeness measure.

We stablish the result in Theorem 2 below using the approximation results summarized

in Propositions 12 and Proposition 13.

Proposition 12 (Relative Entropy). Consider a feature function f : RDΘ → R with v =

∂ f (θ0)/∂θT. Let the MLE from the baseline model Pθ be θ̂P, and the GMM estimator from the

structural model Qθ be θ̂Q. Under the regularity conditions stated in Appendix A.3.3,

DKL(πQ( f (θ)|xn, yn)||πP( f (θ)|xn))− n
2v′IQ(θ0)−1v

( f (θ̂P)− f (θ̂Q))2

→ 1
2

ln
vTIP(θ0)

−1v
vTIQ(θ0)−1v

+
1
2

vTIQ(θ0)
−1v

vTIP(θ0)−1v
− 1/2, (3.34)

where convergence is in probability under Q0,n.

Proof. See Appendix A.3.3. �

Proposition 12 generalizes the results in Lin, Pittman, and Clarke (2007) (Theorem

3) in two important aspects. First, our results extend the traditional results to the more

general GMM framework, building on the Bayesian GMM formulation (see e.g. Kim,

2002; Chernozhukov and Hong, 2003). Second, our results allow for general weak

dependence among the observations, which makes our results applicable to time series

models in finance and economics.
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Proposition 13 (Mutual Information). Under the assumptions in Subsection A.3.3, suppose

that m/n→ ς ∈ (0, ∞) as both m and n approach infinity,

I(x̃m; f (θ)|xn)− 1
2

ln
(

m + n
n

)
→ 0, (3.35)

where convergence is in probability under Q0,n.11

Proof. See Appendix A.3.3. �

The following theorem establishes asymptotic equivalence between the fragility

measure $v
a (θ0) and the effective sample size information measure $

f
KL(x

n, yn).

Theorem 2. Consider a feature function f : RDΘ → R with v = ∂ f (θ0)/∂θT. Under the

regularity conditions stated in Appendix A.3.3, it must hold that

ln $
f
KL (x

n, yn) ln [$v
a (θ0)] +

[
1− $v

a (θ0)
−1
]
(χ2

1 − 1), (3.36)

where χ2
1 is a chi-square random variable with degrees of freedom 1 and denotes convergence

in distribution.

Proof. See Appendix A.3.3. �

3.3 Applications

In this section, we implement our fragility measure in the context of two widely stud-

ied asset pricing models. The first example is a rare disaster model, for which we

compute the asymptotic fragility measure analytically. The second example is a long-

run risk model. We use this example to illustrate how one can diagnose the sources of

fragility in a more complex model.

11There exist related approximation results for mutual information I(x̃m; θ|xn), which consider large
m while holding the observed sample size n fixed. For more details, see Clarke and Barron (1990, 1994)
and references therein. See also the case of non-identically distributed observations by Polson (1992),
among others. Our results differ in that we allow both m and n to grow. Ours is a technically nontrivial
extension of the existing results because, as n increases, the posterior distribution of θ given xn must be
updated according to the Bayes rule.
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3.3.1 Disaster Risk Model

Rare economic disasters are a natural source of “dark matter” in asset pricing models.

It is difficult to evaluate the likelihood of rare events statistically. Yet, agents’ aversion

to large disasters can have an economically large effect on asset prices.12

We consider a disaster risk model similar to Barro (2006b). The structural model

describes the log growth rate of aggregate consumption gt and the excess log return on

the market portfolio rt, which jointly follow the process

 gt

rt

 = (1− zt)ut − zt

 vt

bvt + εt

 , (3.37)

where zt has an IID Bernoulli distribution, is independent of the other random vari-

ables, and takes the value of 1 and 0 with probability p and 1− p. We assume that

realizations of zt are observable. Outside of disasters (zt = 0), gt and rt are jointly

normal with mean (µ, η). Their covariance in the non-disaster state is

Σ =

 σ2 ρστ

ρστ τ2

 .

In a disaster state (zt = 1), the log of decline in consumption vt follows a truncated

exponential distribution, vt ∼ 1{v≥v}λe−λ(v−v), with the lower bound for disaster size

equal to v. Conditional on a disaster, the average disaster size is v + 1/λ. The excess

log return in a disaster is linked to the decline in consumption with a leverage factor

b. In addition, we add an independent shock εt ∼ N(0, ν2) to rt so that rt and gt are

imperfectly correlated in a disaster state.

The representative agent has a separable, constant relative risk aversion utility func-

tion ∑∞
0 δtc1−γ

t /(1− γ), where γ > 0 is the coefficient of relative risk aversion. The eq-

uity premium η = E[rt] can be derived from the consumption Euler equation, which

12See the early work by Rietz (1988), and recent developments by Barro (2006b), Gabaix (2012), Martin
(2012), Wachter (2013), and Collin-Dufresne, Johannes, and Lochstoer (2013), among others.
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is approximately13

η ≈ γρστ − τ2

2
+ eγµ− γ2σ2

2 ∆(λ)
p

1− p
, (3.38)

where

∆(λ) = λ

 eγv

λ− γ
− e

ν2
2 +(γ−b)v

λ + b− γ

 . (3.39)

Equation (3.38) provides a cross-equation restriction among the processes of consump-

tion growth gt, the disaster state zt, and the excess log return of the market portfolio

rt. The first two terms on the right hand side give the market risk premium due to

Gaussian consumption shocks. The third term is the disaster risk premium. We need

λ > γ for the risk premium to be finite, which sets an upper bound for the average

disaster size and dictates how heavy the tail of the disaster size distribution can be.

The fact that the equity premium η explodes as λ approaches γ is a crucial feature

for our analysis. Even when we consider extremely rare disasters (very small p), we

can still generate an arbitrarily large risk premium η by making the average disaster

size sufficiently large (lowering λ towards γ). Extremely rare and large disasters are

difficult to rule out based on standard statistical tests. Below we illustrate how our

fragility measure can detect fragility in models with such features.

Asymptotic fragility measure

Equations (3.37) and (3.38) together specify the full structural model Q. TWe set the

baseline model P to be the model for consumption growth gt. To focus our discussion

on the rare disasters, we treat the parameters µ, σ, v, τ, ρ, b and ν as known. This

simplifying assumption allows us to obtain a simple closed-form expression for the

asymptotic fragility measure. Thus, θ = (p, λ), while the structural parameters of Q

include ψ = γ.

13The approximation we make here is eη+ τ2
2 −γρστ ≈ 1 + η + τ2

2 − γρστ.
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The asymptotic fragility measure is (see Appendix A.1.1 for details)

$a(p, λ) = 2 +
p∆ (λ)2 + p (1− p) λ2∆̇ (λ)2

(1− ρ2) τ2 (1− p)2 e2γµ−γ2σ2
, (3.40)

where ∆̇(λ) is the first derivative of ∆(λ),

∆̇(λ) = − eγvγ

(λ− γ)2 +
e(γ−b)v(γ− b)
(λ− γ + b)2 eν2/2. (3.41)

The one-dimensional worst-case asymptotic fragility measure is $1
a(p, λ) = $a(p, λ)−

1.

As Equation (3.38) shows, ∆(λ) and ∆̇(λ) are related to the sensitivity of the eq-

uity premium to the disaster probability p and disaster size parameter λ, respectively.

When λ approaches γ, both ∆(λ) and ∆̇(λ) approach infinity. Thus, disaster risk mod-

els with high average disaster size are fragile according to our measure.

Quantitative analysis

In our quantitative analysis, we use annual real per-capita consumption growth (non-

durables and services) from the NIPA and returns on the CRSP value-weighted mar-

ket portfolio for the period of 1929 to 2011. We fix the parameters µ, σ, ν, τ and ρ at

the values of the corresponding moments of the empirical distribution of consumption

growth and excess stock returns: µ = 1.87%, σ = 1.95%, τ = 19.14%, ν = 34.89% and

ρ = 59.36%. The lower bound for disaster size is v = 7%. The leverage parameter b is

3. In Figure 3-1, we plot the 95% and 99% confidence regions for (p, λ) based on the

baseline model.

The 95% confidence region for (p, λ) is quite wide. For low values of the disaster

probability p, the baseline model has little power to reject models with a wide range of

average disaster size values (λ). Figure 3-1 also shows the equity premium isoquants

for different levels of relative risk aversion: lines with the combinations of p and λ

required to match the average equity premium of 5.89% for a given value of γ. The
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Figure 3-1: The 95% and 99% confidence regions of (p, λ) for the unconstrained model
and the equity premium isoquants implied by the asset pricing constraint for γ =

3, 10, 24. The maximum likelihood estimates are ( p̂MLE, λ̂MLE) = (0.0122, 78.7922).

fact that these isoquants all intersect with the 95% confidence region implies that even

for low risk aversion (γ = 3), there exist many combinations of (p, λ) that not only

match the observed equity premium, but also are “consistent with the macro data” in

a sense that they cannot be rejected by the macro data based on standard statistical

tests. In the remainder of this section, we refer to a calibration of (p, λ) that is within

the 95% confidence region as an “acceptable calibration.”14

While it is difficult to distinguish among a wide range of calibrations using stan-

dard statistical tools based on the macro data, these calibrated models differ signif-

icantly based on our fragility measures. We focus on four alternative calibrations, as

denoted by the four points located at the intersections of the equity premium isoquants

(γ = 3, 24) and the boundary of the 95% confidence region in Figure 3-1. For γ = 3,

the two points are (p = 4.22%, λ = 5.46) and (p = 0.27%, λ = 3.14). For γ = 24, the

two points are (p = 2.9%, λ = 396.7) and (p = 0.037%, λ = 25.49).

14Julliard and Ghosh (2012) estimate the consumption Euler equation using the empirical likelihood
method and show that the model requires a high level of relative risk aversion to match the equity
premium. Their empirical likelihood criterion rules out any large disasters that have not occurred in the
historical sample, hence requiring the model to generate high equity premium using moderate disasters.
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Figure 3-2: 95% confidence regions for the asymptotic distribution of the MLEs for four
“acceptable calibrations.” In Panels A through D, the asymptotic fragility measures are
$a = 25.47, 2.81, 3.7× 104, and 2.9× 104 respectively.

With only two parameters in θ, we illustrate the worst-case asymptotic fragility

measure by plotting the asymptotic confidence regions for (p, λ) in the baseline model

and the structural model, as determined by the respective information matrices IP(θ)

and IQ(θ).15 In each panel of Figure 3-2, the largest dash-line circle is the 95% confi-

dence region for (p, λ) under the baseline model. The smaller solid-line ellipse is the

95% confidence region for (p, λ) under the structural model. The reason that the confi-

dence region under the structural model is smaller than that under the baseline model

15In fact, we use all the score functions of likelihoods of P and Q to construct the moments, so the
optimal GMM estimation is asymptotically equivalent to the MLE in this case.
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is that the GMM moments in the structural model contain both the score function of

the likelihood for the baseline model and the cross-equation restrictions. In this exam-

ple, the two confidence regions coincide16 in the direction of v*2 and differ the most in

the direction of v*1 . Moreover, with enough extra data, the confidence region for the

unconstrained estimator can be made small enough to reside within the confidence

region of the constrained estimator.

In Panel A, with γ = 3, p = 4.22%, λ = 5.46, $a(p, λ) = 25.47 and $1
a(p, λ) =

24.47. This means that under the baseline model, we need to increase the amount of

consumption data by a factor of 24.47 to match or exceed the precision in estimation of

any linear combination of p and λ afforded by the equity premium constraint. Panels C

and D of Figure 3-2 correspond to the calibrations with “extra rare and large disasters.”

For γ = 3 and 24, $1
a(p, λ) rises to 3.7× 104 and 2.9× 104, respectively. If we raise γ

to 24 while changing the annual disaster probability to 2.9% and lowering the average

disaster size to 7.25%, $1
a(p, λ) drops to 1.81. The reason is that by raising the risk

aversion coefficient we are able to reduce the average disaster size.

So far, we have been examining the fragility of a specific calibrated structural model.

We can also assess the fragility of a general class of models by plotting the distribution

of $a(θ) based on a particular distribution of θ. For example, if econometricians are

interested in fragility of a class of disaster risk models where the risk aversion γ is

fixed at a given level and the uncertainty of the parameters in θ is explicitly taken into

account, the posterior for (p, λ) under the structural model (i.e., constrained posterior

distribution) denoted by πQ(θ|gn, zn, rn; γ) is proposed to be used as the distribution

of θ. Since the constrained posterior updates the prior π(θ) based on information from

the data and the asset pricing constraint, it can be viewed as summarizing our knowl-

edge of the distribution of θ assuming the model constraint is valid.

We implement this idea in Figure 3-3. For each value of γ, the boxplot shows the

1, 25, 50, 75, and 99-th percentile of the distribution of $a(θ) based on the posterior

16This is not true in general. When localized, the cross-equation restriction from the equity premium
in this model is a linear constraint. Thus, the parameter estimates are not affected along the direction of
the constraint.
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Figure 3-3: Distribution of the asymptotic fragility measure $a(p, λ) for different levels
of risk aversion. For each γ, the boxplot shows the 1, 25, 50, 75, and 99-th percentile of
the distribution of $a(p, λ) based on the constrained posterior for (p, λ).

πQ(θ|gn, zn, rn; γ). The asymptotic fragility measures are higher when the levels of

risk aversion are low. For example, for γ = 3, the 25, 50, and 75-th percentile of the

distribution of $a(p, λ) are 23.0, 61.6, and 217.4, respectively. This is because a small

value of γ forces the constrained posterior for θ to place more weight on “extra rare

and large” disasters, which imposes particularly strong restrictions on the parameters

(p, λ). As γ rises, the mass of the constrained posterior shifts towards smaller disas-

ters, which imply lower information ratios. For γ = 24, the 25, 50, and 75-th percentile

of the distribution of $a(p, λ) drop to 2.8, 3.5, and 5.8, respectively.

Uncertainty about γ

So far in this example we have computed the fragility measure for θ conditional on

specific values of the structural parameters ψ (specifically, the risk aversion coefficient

γ). The econometrician could be interested in assessing the fragility of a more general

class of models, which not only takes into account his uncertainty about the baseline

model parameters θ, but also the uncertainty about the structural parameters ψ. We
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Figure 3-4: Constrained posterior distribution for risk-aversion coefficient γ. Panel A
displays the constrained posterior and prior densities for γ when the prior is uniform
on [1, 5]. Panel B displays the results when the prior is uniform on [1,50].

now illustrate how to deal with such uncertainty in a Bayesian framework.

We consider two ways to set up the econometrician’s prior belief on γ. The first is an

“uninformative prior” that allows for a wide range of possible values on γ. Specifically,

we assume γ is uniformly distributed between 1 and 50. Alternatively, the econometri-

cian might prefer models with low levels of risk aversion. For example, Barro (2006b)

states that the usual view in the finance literature is that γ is in the range of 2 to 5.

Thus, we also consider an “informative prior” on γ that is uniform between 1 and 5.

In addition to the prior on γ, we adopt the Jeffreys priors for p, λ (see Appendix A.1.2

for details). Using the macro and return data, we then obtain the constrained posterior

πQ(p, λ, γ|gn, zn, rn).

We plot the constrained posterior marginal density for γ from the two different

priors in Figure 3-4. In the case of “uninformative prior” (Panel A), the median value

for γ in the constrained posterior is 25.8, and the probability that γ is less than 10

is 3.9%. The posterior is clearly very different from the prior, suggesting that asset

prices convey significant information about γ to the econometrician in this case. In

contrast, with an informative prior on γ (Panel B), the constrained posterior on γ is

concentrated on low values and is relatively close to the prior. The median value for γ
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Figure 3-5: Distribution of the asymptotic fragility measure $a(p, λ; γ) based on two
different priors for γ. For each prior, the boxplot shows the 1, 25, 50, 75, and 99-th per-
centile of the distribution of $a(p, λ; γ) based on the constrained posterior for (p, λ, γ).

in the constrained posterior is 3.60 in this case.

Next, we plot in Figure 3-5 the distributions of the asymptotic fragility measure

$a(p, λ; γ) based on the two constrained posteriors πQ(p, λ, γ|gn, zn, rn). In the case

with an uninformative prior for γ, the 25, 50, and 75-th percentile of the distribution of

$a(p, λ; γ) are 2.9, 3.9, and 7.5, respectively. In contrast, the asymptotic fragility mea-

sure is significantly higher in the case of an informative prior that favors low values for

γ. The 25, 50, and 75-th percentile of $a(p, λ; γ) are 22.1, 60.2, and 212.5, respectively.

This finding is consistent with the result in Figure 3-3. Under the high values for γ, we

do not need large and rare disasters to match the observed equity premium, which re-

duces the sensitivity of the cross-equation restrictions, hence lowering the asymptotic

fragility measure.

3.3.2 Long-run risk model

In the second example, we consider a long-run risk model similar to Bansal and Yaron

(2004b) and Bansal, Kiku, and Yaron (2012b). In the model, the representative agent
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has recursive preferences as in Epstein and Zin (1989a) and Weil (1989) and maximizes

his lifetime utility,

Vt =

[
(1− δ)C1−1/v

t + δ
(

Et

[
V1−γ

t+1

]) 1−1/v
1−γ

] 1
1−1/v

, (3.42)

where Ct is consumption at time t, δ is the rate of time preference, γ is the coefficient of

risk aversion for timeless gambles, and v is the elasticity of intertemporal substitution

when there is perfect certainty.

The log growth rate of consumption ∆ct, the conditional mean of consumption

growth xt, and the conditional volatility of consumption growth σt follow the process

∆ct+1 = µc + xt + σtεc,t+1 (3.43a)

xt+1 = ρxt + ϕxσtεx,t+1 (3.43b)

σ2
t+1 = σ2 + ν(σ2

t − σ2) + σwεσ,t+1 (3.43c)

where the shocks εc,t, εx,t, and εσ,t are i.i.d. N(0, 1) and mutually independent.17

Next, the log dividend growth ∆dt follows the processes

∆dt+1 = µd + φdxt + ϕd,cσtεc,t+1 + ϕd,dσtεd,t+1 + σd,uεu
d,t+1, (3.44)

where the shocks εd,t and εu
d,t are i.i.d. N(0, 1) and mutually independent with the other

shocks in (3.43a)-(3.43c). Compared to the dividend process in Bansal, Kiku, and Yaron

(2012b), we have added an extra shock εu
d,t to avoid stochastic singularities.18

From the consumption Euler equation, one can derive a linear approximation of the

stochastic discount factor,

mt+1 = Γ0 + Γ1xt + Γ2σ2
t − λcσtεc,t+1 − λx ϕxσtεx,t+1 − λσσwεσ,t+1. (3.45)

17The volatility process (3.43c) potentially allows for negative values of σ2
t . Following the literature,

we impose a small positive lower bound σ2 for σ2
t in simulations.

18For example, without the additional shock, re
m,t+1 is a deterministic function of ∆ct+1, xt+1, ∆dt+1

and σ2
t+1 conditional on the information up to time t, which poses a stochastic singularity.
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Table 3.1: Benchmark Calibration for the Long-Run Risk Model

Preferences δ γ v
0.9989 10 1.5

Consumption µc ρ ϕx σ ν σw
0.0015 0.975 0.038 0.0072 0.999 2.8e− 6

Dividends µd φd ϕd,c ϕd,d σd,u
0.0015 2.5 2.6 5.96 0.005

The formulae for the coefficients Γ0, Γ1, Γ2, λc, λx, and λσ are given in Appendix A.2.

Moreover, the equilibrium excess (log) return follows

re
m,t+1 = µe

r,t + βcσtεc,t+1 + βxσtεx,t+1 + βσσwεσ,t+1 + ϕd,dσtεd,t+1 + σd,uεu
d,t+1, (3.46)

where the conditional average (log) excess return is

µe
r,t = λcβcσ2

t + λxβx ϕxσ2
t + λσβσσ2

w −
1
2

σ2
rm,t. (3.47)

The expressions for βc, βx, βσ, and σrm,t are given in Appendix A.2.

Quantitative Analysis

We choose the model of consumption as the baseline model P. We assume that the

econometrician observes the process for consumption, the latent variables xt and σ2
t ,

and the process for asset returns. We make the latent variables observable to be con-

sistent with the postulated process for asset returns, which is derived assuming that

these variables are observable.

Accordingly, θ = (µc, ρ, ϕx, σ2, ν, σw). By measuring the fragility of the long-run

risk model relative to this particular benchmark, we can interpret the fragility measure

as quantifying the additional information that asset pricing restrictions provide for

the consumption dynamics (in particular, the long-run risk components) relative to

information contained in consumption data.
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Table 3.2: Fragility Measures for the Long-Run Risk Models

$a $1
a

$v
a

µc ρ ϕx σ2 ν σw

Benchmark Model 2016 2000 1.013 4.591 1.005 19.809 6.565 1.011
ν = 0.98, γ = 27 19 12 1.133 5.714 1.015 1.115 3.688 1.001

Note: The direction corresponding to the worst-case 1-dimensional fragility measure
$1

a is given by v*1 = [0.0021,−0.0004,−0.0003, 0.1286,−0.0053, 0.9917].

The benchmark calibration of the model follows Bansal, Kiku, and Yaron (2012b)

and is summarized in Table 3.1. As Bansal, Kiku, and Yaron (2012b) (Table 2, p. 194)

show, the simulated moments match the set of key asset pricing moments in the data

reasonably well.

The first row of Table 3.2 reports the fragility measures for the benchmark cali-

bration. The asymptotic fragility measure is $a = 2016, indicating a high level of

model fragility. The worst-case 1-dimensional asymptotic fragility measure is also

high, $1
a = 2000, which implies that the sample size needs to be 2000 times longer

in order for the baseline model estimator to match the precision of the estimator for

the full structural model in all 1-D directions.

The large size of $1
a implies that the model under the benchmark calibration is

highly sensitive to perturbations in the parameters in a single direction, as identified

by v*1 (i.e. the worst direction). However, this does not mean that one can discover the

full scope of the fragility issue by examining individual parameters one at a time. We

demonstrate this point by computing the individual parameter-based fragility mea-

sure $v
a , where v is the appropriate standard basis vector ei whose i-th element is one

and other elements are zeros. As Table 3.2 shows, the fragility measures for all the

individual parameters are relatively small. While the measure is somewhat larger in

magnitude for ρ (the persistence of conditional mean consumption growth), σ2 (long-

run variance of consumption growth), and ν (the persistence of conditional variance

of consumption growth), all of the univariate measures are much smaller than $a and
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1
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2 under the benchmark

calibration.

$1
a. Had we focused only on the sensitivity of the model’s properties to individual

parameters in θ, we would have missed the high fragility measure for the full model.

Diagnosing the sources of fragility Besides measuring the fragility of the model,

our asymptotic results have provided a set of tools to diagnose the sources of fragility.

First, the rankings of the eigenvalues of IQ(θ0)
1
2 IP(θ0)

−1IQ(θ0)
1
2 are informative. Each

eigenvalue denotes the marginal contribution of a 1-dimensional subspace to the over-

all fragility measure (see Definition 6 and Proposition 9). As Figure 3-6 shows, there

are large differences between the eigenvalues. Model fragility along the worst direc-

tion in 1-dimensional subspaces, as captured by the leading eigenvalue, is 2000, which

accounts for over 99% of the total fragility. This result means that one can dramatically

reduce the dimensionality (from 6 to 1) when analyzing the fragility of this model.

Second, the worst-case direction (i.e., the worst-case 1-dimensional subspace) is v*1 .

Knowing that the majority of the model fragility is concentrated in this direction, we

can conveniently search for the fragile moments in the model by examining which

moments are the most sensitive to the change in θ along the direction of v*1 . For illus-

tration, we focus on four moments from the long-run risk model, the risk loading and
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Figure 3-7: Sensitivity of return betas and risk prices with respect to the perturbation
along the worst-case direction in the benchmark calibration.

price of risk for volatility shocks (βσσw, λσσw), and for growth shocks (βxσt, λx ϕxσt).

The conditional market excess return depends crucially on these moments (see Equa-

tion (3.47)).

In Figure 3-7, we plot the sensitivities of βσ, λσ, βx and λx with respect to perturba-

tions of θ along the worst direction v*1 (solid line) and compare them to the sensitivities

of the same set of moments to perturbations of θ along the second-worst direction v*2
(dash line). We measure the size of a perturbation of θ relative to the standard devia-

tion of θ in the baseline model P. We measure sensitivity of a moment as the change in

the moment normalized by the moment’s standard deviation in the structural model
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Q.

The risk loading and the price of risk for volatility shocks are both highly sensi-

tive to changes in θ along the direction of v*1 , while the corresponding sensitivities

to changes in θ along the direction of v*2 are all very low in comparison. For ex-

ample, a one standard deviation change in θ along the direction of v*1 can lead to a

51-standard deviation change in βσ under the structural model. Thus, an important

source of fragility of the long-run risk model based on the benchmark calibration is in

the risk exposure of the market portfolio to volatility shocks. If the true value of θ is

slightly different from the benchmark calibration along the direction v*1 , this version of

the long-run risk model will perform poorly at explaining the relation between asset

returns and volatility shocks out of sample.

Finally, we can further trace the sources of fragility by examining how λσ and βσ

are determined (see (A.23) and (A.43)). For example, the fact that the persistence pa-

rameter for the conditional variance of consumption growth, ν, is close to 1, makes

both βσ and λσ sensitive to changes in θ. This motivates us to consider an alternative

calibration with a smaller value for ν. Specifically, we change ν from 0.999 to 0.98, and

simultaneously raise the coefficient of relative risk aversion γ from 10 to 27 in order

to match the unconditional equity premium as in the benchmark calibration. The rest

of the parameters are unchanged. This alternative calibration produces asset pricing

moments largely similar to those in the benchmark calibration. However, based on

our fragility measures, the alternative calibration is much less fragile compared to the

benchmark calibration. As Table 3.2 shows, under the alternative calibration, $a drops

from 2016 to 19, and $1
a drops from 2000 to 12.

3.4 Conclusion

In this paper, we propose a new measure of model fragility by quantifying a model’s

tendency of in-sample over-fitting. We formally connect the fragility of structural mod-

els to the informativeness of the cross-equation restrictions imposed on the parameters.
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We also provide a tractable asymptotic approximation to the fragility measure, which

helps with diagnosing sources of model fragility.

Our methodology has a broad range of applications. In addition to the examples of

applications in asset pricing that we consider in this paper, our measure can be used

to assess robustness of structural models in many other areas of economics, such as

structural IO and structural corporate finance.
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Chapter 4

The Volatility of International Capital

Flows and Foreign Assets

4.1 Key Facts on U.S. International Capital Flows and

Current Accounts

In this section, we review key facts on the U.S. current account and net foreign assets

and then turn to the U.S. international capital flows.

4.1.1 Current Accounts and Net Foreign Assets

The current account is the sum of the trade balance (exports minus imports), the net

dividend payments, and the net interest payments. In all but one of the last thirty

years, the U.S. current account has been consistently negative, mostly because the U.S.

imports more than it exports. The sum of the past cumulated current accounts is now

close to 60% of GDP.

This alarming level contrasts with the net foreign asset position of the U.S. Consis-

tent with a stream of negative current accounts, the net foreign asset position of the

U.S. declined, reaching −20% of the U.S. GDP at the end of the sample. There is con-

siderable uncertainty in the measure of the net foreign asset position. Yet, it appears
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much smaller than the cumulated past current accounts. As Gourinchas and Rey (2007,

2010, 2013) argue, this discrepancy suggests large valuation effects: the U.S. receives

on average larger returns on their assets than they pay on their liabilities. While there

is some uncertainty in the magnitude of the returns and their difference, it appears

likely that the difference in returns at least partly compensates the deficit in the current

account.

In this view, the sustainability of the current account relies on the ability of the U.S.

to pocket large returns on its foreign investments. Such large returns in the past may

have been unexpected and thus pure luck, or expected and thus reflecting differences

in risk premia. As Gourinchas and Rey (2013) note, a difference in expected returns

between U.S. assets and liabilities is consistent with the broad asset allocation of the

country, since the U.S. is short domestic debt and long foreign equity. The U.S. may

thus receive large expected returns on its levered equity investments, as a compensa-

tion for their risk, while paying low returns on its debt.

4.1.2 Equity and Bond Flows

The levered position of the U.S. economy has clear implications for the dynamics of

its net foreign assets. In theory, the foreign asset positions can change either because

their unit values change, a pure valuation effect, or because their quantities change,

as a result of capital reallocation and thus international capital flows. In practice, a

statistical gap exists between the changes in foreign assets on the one hand and the sum

of the valuation effects and capital flows. Even after taking into account this statistical

gap, a clear difference emerges between the dynamics of the U.S. foreign assets and

liabilities.

According to the changes in U.S. equity and bond assets and liabilities over the last

twenty years, three key patterns appear: (i) the volatility in foreign equity holdings

is mostly due to valuation changes, not net capital flows; (ii) the volatility of foreign

equity assets is much larger than the volatility of U.S equity liabilities; (iii) but the

volatility of bond liabilities is mostly due to net capital flows, not valuation changes.
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The last recession illustrates these patterns vividly: the value of foreign equity held

by U.S. investors plummeted, and so did the value of the foreign equity holdings in

the U.S. But the magnitudes are different: in the worst quarter of the crisis, the for-

eign investors lost $600 billions in U.S. equity wealth, while the U.S. investors lost $1

trillion in foreign equity wealth, amounting to a wealth transfer of $400 billions from

the U.S. to the ROW in just one quarter. By comparison, bond values remain relatively

stable. These patterns are intuitive — stocks tend to be more volatile than bonds — but

they highlight the key difficulties in modeling international capital assets flows: the

volatilities of holdings and flows are country- and asset-specific.

We turn now to a model that can potentially assess the volatility of equity and

bond holdings and flows. The model features both expected and unexpected valuation

changes, as well as portfolio rebalancing.

4.2 Model

In this section, we describe the model, starting with the endowment processes and the

preferences, before turning to the market frictions.

4.2.1 Endowments

The model features two endowment economies. In each country, the endowment has

a world and a country-specific component.

World Endowment The world endowment, denoted et, is described by a Lucas tree

whose stochastic growth follows a time-homogeneous Markov process. In the absence

of disasters, the growth rate of the global component is gt, which takes values in a

discrete set Sg and is governed by a Markov transition matrix Πg. But growth switches

from “normal” times, denoted ξt = 0, to “disaster” times, denoted ξt = −1, with some

probability pt. The disaster probability pt follows a homogeneous Markov process

with values in Sp and transition matrix Πp. Once the economy is in its disaster state,
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it remains there the next period with probability pd. The global endowment growth is

thus:

log
et+1

et
= gt+1 + ϕdξt+1,

where ϕd denotes the size of the world disaster. Three state variables therefore describe

the world endowment: the growth rate in normal times, gt, the occurrence of a disaster,

ξt, and the probability of a disaster, pt.

Country-specific Endowments The country-specific endowments, ei,t, follow inde-

pendent time-homogeneous Markov processes, denoted a1,t and a2,t. Both take values

in the set Sa and share the same transition matrix Πa. Thus, the exogenous state of

the economy is summarized by st = (a1,t, a2,t, pt, gt, ξt). The total endowment in each

country is:

log ei,t = log et + ai,t, for i = 1, 2,

and the log endowment growth of country i is equal to:

log
ei,t+1

ei,t
= [gt+1 + ϕdξt+1]︸ ︷︷ ︸

Global Component

+ ∆ai,t+1.︸ ︷︷ ︸
Country-specific Component

Note that the model features permanent shocks to the level of endowments.1 This

feature is key as Alvarez and Jermann (2005) and Hansen and Scheinkman (2014) show,

in a preference-free setting, that permanent shocks account for most of the variance

of the pricing kernel. Lustig, Stathopoulos, and Verdelhan (2015), however, find that

bond markets behave as if exchange rates are mostly driven by temporary components

as if the permanent components were similar across countries. Our model features

both a global permanent and two transitory components in the endowments. In other

1In many Markov economies used to study portfolio choices, such as Judd, Kubler, and Schmedders
(2003), Kubler and Schmedders (2003), and Stepanchuk and Tsyrennikov (2015), endowments, divi-
dends and labor income depend on the current exogenous shock alone, i.e. ei : S → R++ is a time-
invariant function. In our model, because the shocks to the world component et are permanent, the
endowments, dividends and labor income depend on both the current shock and the world component
et. Heaton and Lucas (1996) and Brumm, Grill, Kubler, and Schmedders (2013) also present models with
stochastic growth and permanent shocks to study their asset pricing implications.
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words, our economy is a Lucas-type economy with stochastic growth: the economy

fluctuates around the stochastic trend governed by the world endowment et, whose

sample path is driven by permanent shocks.

4.2.2 Preferences

In each country, there are two groups of agents: workers and investors. Both groups of

agents in both countries maximize their utility over consumption. The utility function

is recursive, following Kreps and Porteus (1978a) and Epstein and Zin (1989b). It is

defined over a final consumption good that aggregates, with a constant elasticity of

substitution (CES), the domestic and foreign goods. The value function of an agent in

country i takes the following recursive form:

Vi,t =

{
C

1−γi
θi

i,t + β
[
EtV

1−γi
i,t+1

] 1
θi

} θi
1−γi

, (4.1)

where C1,t =
[
s
(

c1
1,t

)ρ
+ (1− s)

(
c2

1,t

)ρ]1/ρ
(4.2)

and C2,t =
[
(1− s)

(
c1

2,t

)ρ
+ s

(
c2

2,t

)ρ]1/ρ
. (4.3)

The time discount factor is β, the risk aversion parameter is γi ≥ 0, and the inter-

temporal elasticity of substitution (EIS) is ψi ≥ 0. The parameter θi is defined by θi ≡

(1− γi)/(1− 1
ψi
). The consumption home bias parameter s is between 0.5 and 1, and

the elasticity of substitution between the domestic and foreign goods is ε = 1/[1− ρ].

The aggregate consumption of an agent in country 1 is denoted C1,t: it includes the

consumption of goods produced in country 1, denoted c1
1,t, as well as the consumption

of goods produced in country 2, denoted c2
1,t. More generally, cj

i,t denotes the consump-

tion of good j by agent i at time t.

The CES consumption aggregators immediately imply the following price indices:

P1,t =
[
sε p1−ε

1,t + (1− s)ε p1−ε
2,t

]1/(1−ε)
and P2,t =

[
(1− s)ε p1−ε

1,t + sε p1−ε
2,t

]1/(1−ε)
, (4.4)
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where p1,t and p2,t are the prices for goods produced by country 1 and country 2 re-

spectively.2 We normalize the price system assuming that:

p1,t + p2,t = 1.

Our calibration assumes a preference for an early resolution of uncertainty: for each

agent i ∈ {1, 2}, the EIS and risk-aversion parameters are above one (ψi > 1, γi > 1,

and θi < 0 for i = 1, 2). After transformation, Ui ≡
V

1−ψ−1
i

i
1− ψ−1

i
, the utility function can be

re-written as:

Ui,t =
C

1−ψ−1
i

i,t

1− ψ−1
i

+ βEt

[
Uθi

i,t+1

]1/θi
.

As the notation above suggests, we assume that countries differ in their EIS and risk-

aversion preference parameters: ψ1 > ψ2 and γ1 < γ2. Cross-country differences in

risk-aversion are key in Gourinchas, Rey, and Govillot (2010): in their model, the rel-

atively less risk-averse U.S. agent insures the ROW agent by taking a levered position

in ROW equity. The risky position of the U.S. accounts for the difference between the

returns on its assets and liabilities. Differences in EIS have received some recent em-

pirical support. Vissing-Jorgensen (2002b) shows that the values of the EIS are larger

for the U.S. households with larger financial positions; a similar reasoning at the ag-

gregate level would suggest that the U.S. may have a higher EIS than the ROW. Like-

wise, Havranek, Horvath, Irsova, and Rusnak (2013) find that households in richer

countries and countries with higher asset market participation have higher values of

EIS. Differences in preference parameters are also shortcuts for differences in financial

sectors’ sizes and skills as modeled in Mendoza, Quadrini, and Rios-Rull (2009) and

inMaggiori (2015).

2The terms of trade is q ≡ p2/p1, and hence the real exchange rate is:

Q ≡ P2

P1
=

[
(1− s)εq1−ε + sε

sεq1−ε + (1− s)ε

]1/(1−ε)

.
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4.2.3 Limited Market Participation

Both workers and investors are characterized by the same preferences, but workers are

hand-to-mouth, i.e. they do not have access to financial markets and consume their

labor income every period, whereas investors participate in financial markets.

Financial Income Investors trade three assets: one stock in each country, as well as

an international bond. The stocks are long-term assets, while the bond is one-period.

The net supply of each stock is one, while the net supply of the bond is zero.

The international bond, bought at price qb
t at date t, is a claim on et+1 units of a

composite good, which is a bundle of α goods from country 1 and 1− α goods from

country 2, with α = 1/2. The price of the composite good at date t + 1 is equal to:

pα,t+1 = αp1,t+1 + (1− α)p2,t+1. We model only one instead of two bonds for compu-

tational reasons: an equilibrium with two bonds is more difficult to determine. Note

that adding a second bond would not be enough for the markets to be complete, and

our simplification thus appears innocuous.

In each country, a stock is a claim to a stream of dividends di,t > 0 measured in

units of good i. Stocks are traded at the ex-dividend prices, denoted q1,t and q2,t. The

dividends are leveraged payoffs of endowments:

di,t = et

[
d + sξ (exp(ϕdξt)− 1) + sg (exp(gt)− 1) + sa (exp(ai,t)− 1)

]
.

The leverage is time-varying, as in Longstaff and Piazzesi (2004b). As a result, the

dividend growth rate is not perfectly correlated to the endowment growth rate.

Labor Income Labor income in country i, denoted ωi,t, is the fraction of the total

endowment not distributed as dividends:

ωi,t = et

[
1− d− sξ (exp(ϕdξt)− 1)− sg (exp(gt)− 1)− sa (exp(ai,t)− 1)

]
.

183



In the model, since leverage is time-varying, the income share is also time-varying.

Unlike the dividend cash flow that can be traded by buying and selling long-lived eq-

uities, the future labor income cash flow cannot be traded: potential reasons include

financial frictions, capital income taxation, or poor enforcement of property rights.

Workers thus face a hard constraint: they cannot participate in financial markets and

cannot work around this constraint.

Since workers are hand-to-mouth, their consumption can be easily obtained. Let II

denote the share of labor income received by investors in each country. The workers in

country i receive a total income of (1− II)ωi,t in terms of their domestic goods. Their

budget constraint implies that (1− II)ωi,t pi,t = Pi,tCw,i,t, and their consumption levels

are:

c1
w,1,t = sε

[
p1,t

P1,t

]−ε (1− II)ω1p1,t

P1,t
, and c2

w,1,t = (1− s)ε

[
p2

P1,t

]−ε (1− II)ω1p1,t

P1,t
,

c1
w,2,t = (1− s)ε

[
p1,t

P2,t

]−ε (1− II)ω2,t p2,t

P2,t
, and c2

w,2,t = sε

[
p2,t

P2,t

]−ε (1− II)ω2,t p2,t

P2,t
,

where, again, cj
i,t denotes the consumption of good j by agent i at time t. The investors’

optimal consumption solves a more complicated optimal portfolio problem.

4.2.4 Borrowing and Short-Selling Constraints

In the model, investors face two specific constraints: (i) they cannot short equity and

(ii) their borrowing ability is limited.

The short-selling constraint on equity positions and the presence of labor income

together imply that some risk cannot be hedged. This plays a crucial role in deter-

mining the portfolio position of the agents since the perfect conditional correlation

between non-tradable income and dividends gives investors an incentive to short their

own equity. Let ϑ
j
i,t denote the holding of stock j by agent i at date t: the subscript

characterizes the country holder and the superscript characterizes the goods in which
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the asset is denominated. Formally, the short-selling constraint is:

ϑ
j
i,t ≥ 0, for i, j = 1, 2. (4.5)

The borrowing constraint is such that debt can always be repaid since the amount

due is always above or equal to the financial wealth of the borrower in the worst state

of the world next period:

bi,t ≥ −Bi,t, for i, j = 1, 2, (4.6)

where B1,t ≡ min
st+1<st

{
w1,t+1

p1,t+1

pα,t+1
+

2

∑
j=1

ϑ
j
1,t

qj,+1 + pj,t+1dj,t+1

pα,t+1

}
, (4.7)

B2,t ≡ min
st+1<st

{
w2,t+1

p2,t+1

pα,t+1
+

2

∑
j=1

ϑ
j
2,t

qj,t+1 + pj,t+1dj,t+1

pα,t+1

}
, (4.8)

where the minimum is taken on all possible states the next period: the symbol < de-

notes the partial order on the tree S such that node st1 < st2 if st1 is a descendant of

st2 . The right hand side of Equations (4.7) and (4.8) describe the lowest possible sum

of labor income and equity wealth for investors in countries 1 and 2 respectively next

period. Labor income and equity wealth are thus collateral, securing international

debt. Bonds cannot be used as collateral as there is a unique bond in the model: if one

country lends, the other must borrow. As a result, the country that borrows has no

bond to post as collateral. The borrowing constraint remains potentially binding even

in the long run because investors cannot become rich enough to forget it: the non-

participation of workers to financial markets prevents investors from lending money

to workers, accumulating wealth up to the point when the borrowing constraints are

no longer relevant.

The short-selling and borrowing constraints are key: they rule out defaults and

address the survivorship or degenerated stationary distribution issue highlighted in

Lucas and Stokey (1984) and Anderson (2005). In our model, despite the heterogeneity

in agents’ preferences, both agents survive in the long run because the collateral and
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short-sale constraints prohibit them from assuming more and more debt over time.

The consumption of investors satisfy the following budget constraint:

2

∑
j=1

pj,tc
j
i,t +

2

∑
j=1

qj,tϑ
j
i,t + qb

t bi,t

= pi,tωi,t +
2

∑
j=1

[
qj,t + pj,tdj,t

]
ϑ

j
i,t−1 + pα,tbi,t−1. (4.9)

In the next section, we define the competitive equilibrium in the model and prove

that a wealth-recursive equilibrium exists. This proof is not purely formal: as pointed

out by Kubler and Polemarchakis (2004), the approximate equilibria obtained by nu-

merical methods may exist even when no exact equilibrium exists. The following

section guarantees that the wealth-recursive Markov equilibrium exists. The reader

mostly interested by the simulation results can skip this section.

4.3 Equilibrium

Before characterizing the equilibrium, we formulate the country’s optimization Bell-

man equation into a compact and manageable form.

4.3.1 Time-Shift

We appeal to the “time shift” proposed by Dumas and Lyasoff (2012). We translate

the combined borrowing constraints in Equations (4.6), (4.7), and (4.8) into a group of

separate constraints as follows, for each date t and t + 1:

C1(t, t + 1) ≡ p1,t+1ω2,t+1 +
2

∑
j=1

ϑ
j
1,t
[
qj,t+1 + pj,t+1dj,t+1

]
+ b1,t pα,1,t+1 ≥ 0,

C2(t, t + 1) ≡ p2,t+1ω2,t+1 +
2

∑
j=1

ϑ
j
2,t
[
qj,t+1 + pj,t+1dj,t+1

]
+ b2,2pα,2,t+1 ≥ 0.
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The Lagrangian multiplier for each of the |S| borrowing constraints is µb
i,t,st+1

. The |S|

Lagrangian multipliers are endogenous variables in period t. Likewise, each short-

selling constraint is associated with a multiplier µ
j
i,t. The recursive form of the value

function leads to the following Bellman equation with Lagrangian multipliers, for ev-

ery t ≥ 0:

Ui(Wi,t; st) =

min
µ

j
i,t≥0, µb

i,t,st+1
≥0

max
cj

i,t,θ
j
i,t,bi,t

C
1−ψ−1

i
i,t

1−ψ−1
i

βEt
[
Ui(Wi,t+1; st+1)θi

]1/θi + ∑2
j=1 µ

j
i,tϑ

j
i,t + ∑st+1∈S µb

i,t,st+1
Ci(t, t + 1),

subject to the inter-temporal budget constraints:

Wi,t = p1,tc1
i,t + p2,tc2

i,t + ϑ1
i,tq1,t + ϑ2

i,tq2,t + bi,tqα,t,

and Wi,t+1 = pi,t+1ωi,t+1 II +
2

∑
j=1

ϑ
j
i,t
(
qj,t+1 + pj,t+1dj,t+1

)
+ bi,t pα,t+1.

4.3.2 Definitions

Let us now define formally the competitive equilibrium.

Definition 8. A competitive equilibrium with initial asset holdings {ϑi(s−1), bi(s−1)}i=1,2

and initial shock s0 is a collection of prices PS =
{(

pi(st), qi(st), qb(st)
)

i=1,2

}
st∈S

, con-

sumption allocations CS =
{(

c1
i (s

t), c2
i (s

t)
)

i=1,2

}
st∈S

, and international asset holdings AS ={(
ϑ1

i (s
t), ϑ2

i (s
t), bi(st)

)
i=1,2

}
st∈S

such that

(i) given the price system PS, each investor in country i ∈ {1, 2} solves the optimization

problem Ui(C
S
i ) with the consumption plan CS

i and the asset holdings AS
i lying in the

sequential budget set BS

(
PS
)

described in Equation (4.9) under the short-selling con-

straint described in Equation (4.5) and the borrowing constraints described in Equations

(4.6), (4.7), and (4.8);

(ii) given the same price system PS, each worker in country i ∈ {1, 2} maximizes her utility
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under her budget constraint;

(iii) equity markets and bond markets clear, i.e. for j = 1, 2 and for all dates t:

ϑ
j
1,t + ϑ

j
2,t = 1,

b1,t + b2,t = 0.

(iv) goods markets clear, i.e. for j = 1, 2 and for all dates t

cj
1,t + cj

2,t = ej,t.

The borrowing constraints in the agents’ optimization problem not only constitute

a market imperfection but also ensure the existence of a solution to the agents’ opti-

mization problem (see e.g., Levine and Zame, 1996; Magill and Quinzii, 1996; and Her-

nandez and Santos, 1996). Although the proof of the existence of a competitive equi-

librium in Lucas-type infinite-horizon exchange economies with heterogeneous agents

and incomplete markets exists, it is impossible to compute the equilibrium in general

because it is not unique and the equilibria are mathematically equivalent to an infinite

number of equilibrium prices – a infinite dimensional problem. Duffie, Geanakoplos,

Mas-Colell, and McLennan (1994) show that if the exogenous shocks’ dynamics can be

characterized by a finite-valued time-homogeneous Markov process, then there exists

a competitive equilibrium in which the endogenous variables can be summarized by

a finite number of endogenous state variables as well as the exogenous state variables.

The endogenous state variables follow a time-homogeneous Markov process having a

time invariant transition with an ergodic measure. This type of equilibrium is called

recursive Markov equilibria. A recursive Markov equilibrium in which the wealth dis-

tribution summarizes all the endogenous state variables is called a wealth-recursive

Markov equilibrium. Duffie, Geanakoplos, Mas-Colell, and McLennan (1994) show

that a recursive Markov equilibrium is a competitive equilibrium under general regu-

larity conditions. Under mild regularity conditions, Kubler and Schmedders (2003) in
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their Lemma 2 show that a wealth-recursive Markov equilibrium is a competitive equi-

librium. Their proof does not apply to our model, but we show how to extend their

result. In order to do so, let us first rigorously define the wealth-recursive Markov

equilibrium.

Because we have two heterogeneous representative investors in the economy, the

wealth portion of the agent 1 fully characterizes the wealth distribution. The wealth

share of country 1 is denoted w:

wt ≡
W1,t

W1,t + W2,t
,

where the total wealth in the economy is W1,t +W2,t = ∑2
j=1
[
pj,tej,t + qj,t

]
. Let Y denote

the space of all possible endogenous variables that occur in the economy at some node

st. That is, Y consists of all vectors:

{(
c1

i , c2
i

)
i=1,2

,
(

ϑ1
i , ϑ2

i , bi

)
i=1,2

,
(

pi, qi, qb
i

)
i=1,2

,
(

µ1
i , µ2

i , µb
i,s̃

)
i=1,2;s̃∈S

}
(4.10)

such that, for i, j ∈ {1, 2}:

cj
i , pj, qj, qb, µ

j
i , µb

i,s̃ ∈ R+, and ϑ
j
i , bj

i ∈ R+,

p1 + p2 = 1, and ϑ
j
i µ

j
i = 0, and ϑ

j
1 + ϑ

j
2 = 1, and b1 + b2 = 0.

The Lagrangian multiplier µ
j
i corresponds to the short-selling constraint of the agent

in the country i on the stock j, for i, j ∈ {1, 2}, while the Lagrangian multiplier µb
i,s̃

corresponds to agent i’s borrowing constraint. The space of endogenous variables Z is

a closed subset of R
2×(11+|S|). The space of both exogenous and endogenous variables

is Z ≡ Y× S. Let Ẑ ≡ [0, 1]× Y× S×R+.

The expectation correspondence maps the variables ẑ ∈ Ẑ in the current period

to a subset of the space of endogenous variables in next period ([0, 1]× Y)|S|, where

([0, 1]× Y)|S| is the Cartesian product of |S| copies of [0, 1] × Y. More precisely, the
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expectation correspondence is denoted by

Φ : Ẑ⇒ ([0, 1]× Y)|S| ,

such that for a given state in current period ẑ ≡ (w, y, s, e) ∈ Ẑ, the country 1’s wealth

share {w(s̃) : s̃ ∈ S} of next period and the vector of endogenous variables {ỹ(s̃) : s̃ ∈

S} in the next period lies in the set Φ(ẑ) if and only if they are consistent with the inter-

temporal budget constraints, the first-order conditions and market clearing conditions.

Definition 9. A wealth-recursive Markov equilibrium consists of a (nonempty valued) “policy

correspondence” Π : [0, 1]× S×R+ ⇒ Y, where Y is the space of endogenous policy variables

defined in (4.10) - (4.11) and a “transition map” Ω : [0, 1]× S → [0, 1]|S| such that for any

given (w, s, e) ∈ [0, 1]× S×R+ with (w̃(s̃))s̃∈S = Ω(w, s), it holds that ∀ y ∈ Π(w, s, e)

and ∀ ỹ(s̃) ∈ Π(w̃(s̃), s̃, ẽ)) with ẽ ≡ e× ζ(s̃) and s̃ ∈ S,

(w̃(s̃), ỹ(s̃))s̃∈S ∈ Φ(w, y, s, e).

For notational simplicity, we denote w̃(s̃) = Ω(w, s; s̃).

We now turn to our main theorem.

4.3.3 Existence of a Wealth-Recursive Markov Equilibrium

Theorem 3. Assuming that there exists dm > 0 and ωm > 0 such that di(st)/e(st) > dm

and ωi(st)/e(st) > ωm for all i = 1, 2 and st ∈ S, there exists a wealth-recursive Markov

equilibrium in the economy with heterogenous agents with recursive utility described in Section

4.2.

Proof. The assumption guarantees that the dividend and wage incomes, as percent-

ages of world GDP, are bounded from below. The proof of the theorem is reported in

Appendix B.3. It consists of three main steps. First, we show that for any T-truncated

economy, the competitive equilibrium’s policy functions are uniformly bounded if a
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competitive equilibrium exists.3 In this step, we generalize the results of Kubler and

Schmedders (2003) and Duffie, Geanakoplos, Mas-Colell, and McLennan (1994) to al-

low stochastic growth in the economy, lower-bounded utility functions and Epstein-

Zin-Weil preferences. Second, we show the existence of competitive equilibrium for

each T-truncated economy. Third, we show the existence of wealth-recursive Markov

equilibrium exists for the infinite-horizon economy by backward induction. �

Theorem 3 extends the results of Kubler and Schmedders (2003) to a large class of

preferences and to stochastic growth. Duffie, Geanakoplos, Mas-Colell, and McLen-

nan (1994) and Kubler and Schmedders (2003) crucially assume that the utility is not

bounded from below, which guarantees that the equilibrium variables are all uniformly

bounded. They focus on the time-separable CRRA utility function whose coefficient of

relative risk aversion is not smaller than one. However, for the Epstein-Zin-Weil pref-

erences with an EIS parameter bigger than one, the utility function is not bounded from

below, and thus their arguments do not go through. We use the results inGeanakoplos

and Zame (2013), who show the existence of a competitive equilibrium for a two-

period incomplete-market model, and combine them with the proofs in Kubler and

Schmedders (2003) in order to extend their results.

The wealth recursive formulation of the agent’s optimization problem makes it nat-

ural to consider wealth-recursive Markov equilibrium of the economy. The intuition

is that the wealth distribution among agents at the beginning of each period presum-

ably influences prices and allocations in that period. Intuitively, one would expect that

the wealth distribution constitutes a sufficient endogenous state space. The argument

would be that the initial distribution of wealth is the only endogenous variable that

influences the equilibrium behavior of the economy. However, as pointed by Kubler

and Schmedders (2002), the wealth distribution alone does not always constitute a suf-

ficient endogenous state space, mainly because the equilibrium decisions at time t also

3The T-truncated economy is defined to be a finite-horizon economy built on an event tree, denoted
by ST , which consists of all the nodes and edges along the path sT = (s0, s1, · · · , sT) in the original
event tree S. The endowments and asset payoffs at the nodes of the truncated tree, as well as agents’
preferences and portfolio constraints at these nodes, are the identical to the original infinite-horizon
economy.
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must be consistent with expectations at time t− 1 and that these expectations at time

t − 1 cannot always be summarized in the wealth distribution alone. Our existence

result allow us to proceed further in simulating the model. Theorem 3, however, does

not guarantee the uniqueness of the equilibrium or the existence of non-degenerate

ergodic measure. But Theorem 3 offers a key characteristic of the solution method.

Corollary 4. Under the same assumptions as in Theorem 3, the policy correspondence Π and

value functions Ui in a wealth-recursive Markov equilibrium have the following forms, for

i, j ∈ {1, 2},

cj
i(w, s, e) ≡ cj

i(w, s)e, ϑ
j
i(w, s, e) ≡ ϑ

j
i(w, s), bj

i(w, s, e) ≡ bj
i(w, s), (4.11)

pi(w, s, e) ≡ pi(w, s), qi(w, s, e) ≡ qi(w, s)e, qb
i (w, s, e) ≡ qb

i (w, s)e, (4.12)

µ
j
i(w, s, e) ≡ µ

j
i(w, s)e1−ψ−1

i , µb
i,s̃(w, s, e) ≡ µb

i,s̃(w, s)e−ψ−1
i , (4.13)

and Ui(w, s, e) = Ui(w, s)e1−ψ−1
i . (4.14)

Proof. The proof is in Appendix B.2. �

Corollary 4 suggests that the components of the policy correspondence in equilib-

rium are homogeneous in terms of the size of the global economy e to different degrees,

because the level of the global tree e controls the scale of the economy and shocks on

the size of global tree are permanent shocks. For example, the consumption, the bond

holdings and the equity prices are degree-one homogeneous in the size of the econ-

omy, which is intuitive because only the consumption shares between agents and the

debt ratios of each agent matter for the economy and the size of the economy is pro-

portional to the amount of commodities attached to equity. Furthermore, the equity

shares and the bond prices are invariant to the scale of the economy, because the to-

tal amount of the equity is normalized to be one and by definition the claim of a unit

of bond is always assumed to be one unit of commodity. As a standard property, the

Epstein-Zin-Weil preference Ui is homogeneous in 1− ψ−1
i degrees in term of wealth
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that is proportional to the size of the economy. The shadow values are also homoge-

neous in term of economy scale according to the value functions. Thus, without loss of

generality, we can assume that the endowment level of the global tree in current period

is one, i.e. e = 1. Therefore, when solving for the equilibrium, we only need to focus

on the wealth share w and the exogenous shock s .

4.4 Calibration

This section describes our data set and the key statistics on GDP, consumption, inter-

national trade, and asset prices that define our calibration.

4.4.1 Data

Our data come from different sources. At the quarterly frequency, GDP, consumption

and international trade series are from the OECD, while international capital stocks

and flows are from the International Monetary Fund (IMF). International capital flows

come from Bluedorn, Duttagupta, Guajardo, and Topalova (2013); the balance of pay-

ments of each country is the primary source of the data. Foreign equity return indices

are built by Datastream; for the U.S., the equity return series come from CRSP. Interest

rates correspond to Treasury Bills or money market rates from the IMF. At the annual

frequency, long time-series of capital stocks come from Lane and Milesi-Ferretti (2007).

This dataset is used to characterize two countries, the U.S. and the ROW. The ROW

is defined as the aggregate of the G10 countries, excluding the U.S. (i.e., Belgium,

Canada, Japan, France, Germany, Italy, Netherlands, Sweden, Switzerland, and U.K.).

Each period, the ROW GDP and consumption growth rates are obtained by weight-

ing each country-specific real growth rates by the share of its real GDP (measured at

purchasing power parity) in total GDP. Indices are built from the growth rates and HP-

filtered with a smoothing coefficient of 1600, as it is usual for quarterly series (Hodrick

and Prescott, 1997). The sample period is 1973.1–2010.4.
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4.4.2 Macroeconomic and Financial Variables

Let us now rapidly review the properties of macroeconomic and financial variables in

the U.S. and ROW.

Production, Consumption, and International Trade Table 4.1 reports the mean, stan-

dard deviation, and autocorrelation of U.S. GDP and consumption growth rates, as

well as their rest-of-the-world (ROW) counterparts. The table also reports similar sum-

mary statistics on the U.S. net exports and trade openness. Net exports are obtained

as the difference between exports and imports, both scaled by GDP. Trade openness

corresponds to the average of imports and exports, also scaled by GDP.

The macroeconomic data exhibit classic features of real business cycles. In both

the US and the ROW, consumption appears less volatile than GDP, a common finding

among developed countries. GDP and consumption are less volatile in the ROW than

in the US as some of the foreign shocks average out across foreign countries. GDP

growth rates are more correlated across countries than consumption growth rates.

These characteristics appear on growth rates as well as on HP-filtered series. Trade

openness is around 10%, while net exports are on average −2%; both measures are

very persistent.

Interest Rates, Equity, and Currency Returns Panel A of Table 4.2 reports the mean,

standard deviation, and autocorrelation of U.S. and rest-of-the-world (ROW) real in-

terest rates, dividend yields, real equity returns and excess returns, as well as their

cross-country correlation coefficients. Over the last forty years, the average real equity

returns in the U.S. and ROW are respectively equal to 8.4% and 4.7% per year, leading

to average equity excess returns respectively equal to 6.4% and 2.7%.4 The dividend

yields are 3.1% and 2.8% in the U.S. and ROW, implying price dividend ratios of 32

and 37. The price-dividend ratios are volatile, and thus either future dividend growth

4The Datastream series understate the aggregate equity return: for the U.S., the difference between
the CRSP and Datastream estimates is equal to 2.7% on average over our sample period. The discrepancy
is certainly related to the Datastream focus on only a subset of large firms. The equity premium for the
ROW is thus likely much higher than reported here.
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Table 4.1: GDP, Consumption, and International Trade

Data Model
Mean Std AC(1) Corr(RW,US) Mean Std AC(1) Corr(RW,US)

Panel A: Raw Series (Growth Rates and Ratios)
US GDP 0.68 0.83 0.39 0.68 0.87 0.44

(0.09) (0.07) (0.08)
US Consumption 0.74 0.68 0.34 0.68 0.87 0.46

(0.07) (0.06) (0.08)
ROW GDP 0.53 0.62 0.48 0.45 0.68 0.87 0.44 0.47

(0.07) (0.09) (0.08) (0.10)
ROW Consumption 0.54 0.51 0.04 0.34 0.68 0.85 0.44 0.50

(0.04) (0.05) (0.11) (0.09)
US Net Exports/GDP -2.13 1.71 0.98 -1.74 0.41 0.96

(0.24) (0.13) (0.05)
US Trade Openness 10.44 1.92 0.98 8.28 0.23 0.96

(0.27) (0.16) (0.05)
Panel B: HP-Filtered

US GDP 1.53 0.87 1.08 0.82
(0.15) (0.06)

US Consumption 1.21 0.88 1.07 0.82
(0.10) (0.06)

ROW GDP 1.13 0.88 0.65 1.08 0.82 0.43
(0.13) (0.05) (0.06)

ROW Consumption 0.72 0.80 0.47 1.05 0.82 0.47
(0.07) (0.07) (0.09)

US Net Exports/GDP 0.46 0.77 0.14 0.69
(0.04) (0.06)

US Trade Openness 0.53 0.81 0.08 0.69
(0.07) (0.06)

Notes: Panel A reports the mean, standard deviation, and autocorrelation of U.S. rest-of-the-world
(ROW) GDP and consumption growth rates, as well as their cross-country correlation coefficients. It
also reports the mean, standard deviation, and autocorrelation of U.S. net exports and trade openness.
Net exports are obtained as the difference between exports and imports, both scaled by GDP. Trade
openness corresponds to the average of imports and exports, also scaled by GDP. Panel B reports the
same test statistics (except for the mean) for HP-filtered series in levels. Standard errors are reported
in parentheses; they are obtained by block-boostrapping. Data are quarterly, from the OECD database.
All variables are reported in percentage points, except for the autocorrelation and cross-country corre-
lation coefficients. The sample period is 1973.1–2010.4. The simulated moments correspond to samples
without disasters.
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or future equity excess returns must be predictable (Campbell and Shiller, 1988). Eq-

uity returns are volatile both in the U.S. and in the ROW aggregate (18% on an annual

basis) but appear largely correlated (0.8) among the most developed countries. In the

model, the wealth consumption ratio is large and volatile, as it is in the data (Lustig, et

al., 2013).

Predictability regressions show that equity excess returns are predictable over long

horizons. Panel B of Table 4.2 reports the slope coefficients (βpd or βcay) and the R2

obtained in predictability tests of equity excess returns over 5 years on dividend yields

or, for the U.S., the consumption-wealth ratio of Lettau and Ludvigson (2001). The

slope coefficients are statistically significant and the R2 range from 10% to 30%. The

model matches particularly well the amount of predictability implied by the wealth-

consumption ratio. Panel C of Table 4.2 reports the mean, standard deviations, and

autocorrelations of expected equity excess returns in the U.S. obtained using either the

price-dividend ratio or the wealth consumption ratio as predictors. Expected equity

excess returns, i.e. risk premia, are clearly time-varying.

Table 4.3 focuses on exchange rates. The real exchange rate between the U.S. and

the ROW has an annualized volatility of 8.9% and a small and insignificant autocorrela-

tion. Carry trade excess returns are obtained by building three portfolios of currencies

sorted by their interest rates: carry trades then correspond to strategies long the last

portfolio of high interest rate currencies and short the first portfolio of low interest rate

currencies. The carry trade offers an average excess return of 2.5% in the sample and

a Sharpe ratio of 0.28, higher than the Sharpe ratios on U.S. and ROW aggregate eq-

uity markets. Carry trade excess returns tend to be low when global equity volatility

surges: the correlation between the two is significantly negative. The exchange rate of

low interest rate countries tend to appreciate while the exchange rate of high interest

rate countries tend to depreciate when global volatility increases, leading in both cases

to carry trade losses. This pattern is at the root of a risk-based explanation of the large

average carry trade excess returns. Risk-averse investors expecting losses in bad times

require a risk premium as a compensation for bearing the exchange rate risk.
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Table 4.2: Dividend Yields, Equity Returns, and Interest Rates

Data Model

Panel A: Moments

Mean Std AC(1) Corr(ROW,US) Mean Std AC(1) Corr(ROW,US)

US Dividend Yield 4.36 1.35 0.94 5.37 0.95 0.90
(0.20) (0.11) (0.05)

ROW Dividend Yield 2.76 0.88 0.95 0.72 3.12 0.43 0.86 0.96
(0.12) (0.07) (0.05) (0.07)

US Real Equity Returns 8.37 17.03 0.12 9.36 16.55 -0.05
(2.84) (1.55) (0.10)

ROW Real Equity Returns 4.73 17.76 0.13 0.08 6.62 12.78 -0.04 0.95
(3.12) (1.34) (0.08) (0.09)

US Real Money Market 1.87 2.61 0.82 0.86 3.38 0.88
(0.34) (0.20) (0.06)

ROW Real Money Market 2.07 2.39 0.96 0.63 -1.46 5.76 0.88 1.00
(0.32) (0.22) (0.05) (0.07)

US Equity Excess Returns 6.39 16.99 0.12 8.50 17.72 -0.01
(2.83) (1.60) (0.10)

ROW Equity Excess Returns 2.69 17.34 0.12 0.08 8.09 15.19 0.09 0.95
(2.88) (1.48) (0.07) (0.09)

Panel B: Predictability Tests

βpd R2 βcay R2 βpd R2 βcay R2

US Pred. 0.37 0.09 0.54 0.23 1.44 0.44 0.52 0.36
(0.18) (0.03) (0.14) (0.03)

ROW Pred. 1.24 0.31 2.84 0.39
(0.34) (0.03)

Panel C: Expected Equity Excess Returns

Mean Std AC(1) Mean Std AC(1)

US Exp. ER (D/P) 4.28 1.28 0.98 8.50 7.14 0.90
(2.68) (0.82) (0.05)

US Exp. ER (cay) 4.28 2.66 0.93 8.50 3.21 0.94
(2.68) (1.20) (0.05)

Notes: Panel A of the table reports the mean, standard deviation, and autocorrelation of U.S. and rest-
of-the-world (ROW) real interest rates, dividend yields, real equity returns and excess returns, as well as
their cross-country correlation coefficients. Real equity returns are obtained by subtracting three-month
realized inflation to nominal equity returns. Real interest rates correspond to nominal interest rates mi-
nus 12-month inflation. Panel B reports the slope coefficients (βpd or βcay) and the R2 in predictability
tests of equity excess returns over 5 years on dividend yields or, for the U.S., the consumption-wealth
ratio of Lettau and Ludvigson (2001). Panel C report the mean, standard deviation, and autocorrelation
of the expected U.S. equity excess returns. Expected excess returns over the next quarter are obtained
using either the dividend yield or the wealth-consumption ratio. Standard errors are reported in paren-
theses; they are obtained by block-boostrapping. Data are quarterly, from the Datastream (equity indices
and dividend yields) and IMF (money market rates) databases. All variables are reported in percentage
points, except for the autocorrelation and cross-country correlation coefficients.
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Table 4.3: Exchange Rates

Data Model

Panel A: Exchange Rates and Currency Excess Returns

Mean Std AC(1) Corr(ER, WV.) Mean Std AC(1) Corr(ER, WV)

ROW Real FX chge -3.99 8.94 0.07 -0.00 4.09 -0.04 -0.72
(14.50) (0.50) (0.08)

Carry ER 3.67 8.95 0.11 -0.45 4.61 4.76 0.16 -0.37
(1.42) (1.31) (0.08) (0.11)

Panel B: Backus-Smith Correlations
CUS

I
CRoW

I
, Q CUS

W
CRoW

W
, Q CUS

CRoW , Q CUS
I

CRoW
I

, Q CUS
W

CRoW
W

, Q CUS

CRoW , Q

Growth -0.11 -0.44 0.13 -0.11
(0.09)

HP filter 0.01 -0.40 0.19 -0.06
(0.10)

Notes: Panel A of the table reports the mean, standard deviation, and autocorrelation of the real ex-
change rate change between the U.S. and the ROW, as well as the same moments for the currency carry
trade excess returns, along with its correlation with world equity volatility. Currencies are sorted by the
level other short-term interest rates into three portfolios as in Lustig and Verdelhan (2007). Carry trade
excess returns correspond to the returns on the high interest rate portfolios minus the returns on the
low interest rate portfolio. Panel B of the table reports the Backus-Smith correlation between exchange
rates and the relative consumption in the U.S. and ROW. Consumption and exchange rates are either
measured on growth rates or H.P.-filtered. Consumption corresponds to workers’ (denoted CW) or in-
vestors’ (denoted CI) or aggregate (C) consumption. Standard errors are reported in parentheses; they
are obtained by block-boostrapping. Data are quarterly, from the Datastream (exchange rates) and IMF
(money market rates) databases. All variables are reported in percentage points, except for the autocor-
relation and cross-country correlation coefficients. Exchange rate changes and currency excess returns
are annualized (i.e., average obtained on quarterly returns are multiplied by 4 and the standard devia-
tions are multiplied by 2). The sample period is 1973.1–2010.4. The simulated moments correspond to
samples without disasters.
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Table 4.4: Parameters

Parameter (Quarterly) Symbol Home/Foreign
Panel A: Preferences

Subjective discount rate β 0.99
Relative risk aversion γ1/γ2 3.8/4
EIS coefficient ψ1/ψ2 2.4/1.1
Consumption ES coefficient ε 0.885
Consumption share coefficient s 0.93

Panel B: Endowment
Country-spec. volatility σc 2%
Global volatility σg 0.6%
Average growth µg 0.675%

Panel C: Dividend and Wage Income
Wage income share of investors WI 10%
Dividend share of output d 5%
Dividend leverage on country-spec. shock sd 0.19
Dividend leverage on global. shock sg 0.19
Dividend leverage on disaster shock sgd 0.9

Panel D: Disasters
Disaster size ϕd 9.7%
Disaster escaping prob. 1− pd 11.1%
Average log prob. log(p) log(0.314%)

Std. log prob. σp 4.9%
Autocorr. log prob. ρp 0.9

Notes: This table reports the parameters used in the benchmark simulation of the model. The two
countries share the same parameters, except for their risk-aversion and elasticity of substitution.

4.4.3 Parameters

We use data on macroeconomic variables and asset returns to calibrate our model,

starting with the endowment processes. Table 4.4 reports all the parameters of the

model.

In the simulation, the two countries differ in their risk-aversion (3.3 for the U.S.

vs. 4 for the ROW) and their IES (2.4 for the U.S. vs 1.4 for the ROW). The other

preference parameters are the same in both countries. The subjective discount factor is

0.99. The domestic consumption share is 0.95, and the elasticity of substitution between

the domestic and foreign goods is 0.885.

We follow Rouhenworst (1995) to calibrate the Markov processes such that they
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replicate the GDP series. The dividend share of total endowment is assumed to be ten

times more volatile than the labor income share.

The average probability of a disaster is low, equal to 0.3%, but the disaster size is

large: when it occurs, it entails a GDP decrease of 9.7%. The probability of leaving the

disaster state the next period is 11.1%. The log probability of a disaster is persistent,

with an autocorrelation of 0.9, and volatile, with a standard deviation of 4.9%. As

the disaster probability is not directly observed, its parameters are subject to a large

uncertainty. The model parameters are in line with those suggested by Barro (2006a)

and Gourio (2012).

Going back to Tables 4.1, 4.2, and 4.3, we check that the model reproduces the basic

features of GDP, consumption, interest rates, equity prices and returns, and exchange

rates. The attentive reader can compare moment by moment, series by series, the actual

to the simulated data. The main discrepancy is the volatility of net exports and trade

openness, which are more volatile in the data than in the model.

The model delivers a large equity premium. It also delivers time-variation in eq-

uity returns that is in line with the data. In the data, price-dividend and wealth-

consumption ratios predict future equity returns. The model reproduces these find-

ings. The volatility of the expected excess return obtained using the price-dividend

ratio is higher in the model than in the data, but the volatility of the expected excess

return obtained using the wealth-consumption ratio is the same in the model and the

data. The current calibration, however, implies dividend yields that are more corre-

lated than in the data. Likewise, the realized returns are more correlated in the model

than in the data. As a result, the simulated cross-country correlation of realized and

expected returns is counterfactually high. The model also misses the level of the ROW

risk-free rate, calling for an adjustment in the EIS parameter.

The model delivers exchange rates that are less volatile than in the data, but the cur-

rency risk premium is the same in the model and the data. While frictionless complete

markets where agents are characterized by constant relative risk-aversion imply a per-

fect correlation between the exchange rate changes and relative consumption growth
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(Backus and Smith, 1993), our model implies a negative correlation, closer to its empir-

ical counterpart.

Overall, the model delivers its premises: large and time-varying risk premia with

reasonable endowment and preference assumptions. We turn now to the simulation

results obtained with this calibration.

4.5 Benchmark Simulation

We start by describing the policy functions and then turn to the key result of the paper:

the comparison between the volatility of foreign assets and capital flows in the model

and in the data.

4.5.1 Policy Functions

Symmetric Countries To build intuition on the model, let us start with the case of

symmetric countries: both countries share the same preference parameters (γ1 = γ2 =

4 and ψ1 = ψ2 = 2), and all the other parameters are the same. Figure 4-1 reports

the distribution of relative wealth along with policy functions that describe the asset

holdings.

The upper left panel shows that the distribution of relative wealth, defined as wt ≡

W1,t/[W1,t + W2,t], is symmetric, centered around 0.5 as expected. The lower right

panel shows the amount of lending and borrowing chosen by country 1 (the U.S.).

When the U.S. is relatively poor, the U.S. borrows from the ROW; when the U.S. is

relatively rich, the U.S. lends to the ROW. The policy function is perfectly symmetric

around the 0.5 relative wealth. On average, the U.S. does not have any debt. The role

of the borrowing constraint appears when one country is much poorer than the other.

For example, when the ROW is relatively poor (on the right hand side of the graph)

and the U.S. holds more than 70% of total wealth, then any additional increase in the

U.S. wealth decreases its lending to the ROW. The ROW would like to borrow but is

not rich enough to post collateral. The borrowing constraint becomes binding. The
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Figure 4-1: Relative Wealth and Asset Holdings in the Symmetric Case

This is the symmetric case with γ1 = γ2 = 4 and ψ1 = ψ2 = 2. The Panel A of this figure reports the stationary distribution of
relative wealth, defined as wt ≡W1,t/[W1,t + W2,t], where the country 1 corresponds to the U.S. and country 2 the ROW.
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distribution of relative wealth shows that this state of the world happens rarely in the

model.

The upper right panel describes the U.S. holdings of U.S. equity. The home bias in

consumption implies that the U.S. holds more than half of U.S. equity even when the

two countries share the same wealth level. When the U.S. become relatively richer, they

invest more in their own equity. The increase in their equity holdings is not monotone.

At high wealth level, the binding borrowing constraint of the ROW impacts the U.S.

equity choice. Because the U.S. cannot lend as much as they would like, they adjust

their equity position downwards. This mechanism is particularly strong when the

disaster probability is high, and thus equity prices are low: in that case, the ROW has

less collateral and borrows less, thus affecting more the equity holdings of the U.S.

At the other extreme, when the U.S. is relatively very poor, the U.S. would like to

short their own equity, but the short-selling constraint on equity binds, and the U.S.

simply stop holding equity. The lower left panel describes the U.S. holdings of the

ROW equity. Since equity is either held by the U.S. or the ROW, the set of policy

functions in that panel mirrors the previous one.

Asymmetric Countries We turn now to the asymmetric case. Figure 4-2 reports the

distribution of relative wealth and the policy functions in that model. As Panel A

shows, the simulation delivers again a stationary distribution of relative wealth. The

U.S., which is less risk-averse, tends to be wealthier on average than the ROW.

The three other panels describe the U.S. holdings of the U.S. equity, ROW equity,

and international bonds. At the mode of relative wealth, the U.S. holds a large share of

U.S. equity (Panel B of Figure 4-2), again in line with the well-known home equity bias,

but also a large share of foreign equity (Panel C of Figure 4-2). To do so, the U.S. tends

to borrow from the ROW (Panel D of Figure 4-2) and thus exhibits a levered position

in equity markets: borrowing on average from the ROW in order to buy U.S. and ROW

equity. Only when the U.S. is much much wealthier than the ROW does the U.S. lend

to the ROW. As in the symmetric case, the U.S. lending increases with U.S. relative
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Figure 4-2: Relative Wealth and Asset Holdings

The Panel A of this figure reports the stationary distribution of relative wealth, defined as wt ≡ W1,t/[W1,t + W2,t], where the
country 1 corresponds to the U.S. and country 2 the ROW.
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wealth up to a point, where the borrowing constraint binds for the ROW: the ROW is

then so poor that it can no longer collateralize its borrowing. After that point, the U.S.

lending decreases with the U.S. relative wealth.

4.5.2 International Capital Stocks and Flows

We turn now to the comparison between actual and simulated foreign capital stocks

and flows.

Stocks Over the last forty years, the total stocks of U.S. foreign assets and liabilities

(even scaled by U.S. GDP) has increased tremendously from less than 10% to more than

160%. The large increase in international positions occurs across all four categories of

investments reported in the balance of payments and international investments statis-

tics: debt, equity, FDI, and other investments. It follows an increase in the financial

openness of the US and ROW, as encoded for example from the restrictions on cross-

border financial transactions reported in the IMF’s Annual Report on Exchange Ar-

rangements and Exchange Restrictions. To parallel the model, we report statistics on

two asset categories, equity vs debt, both built from the the Lane and Milesi-Ferretti

dataset (2007). All "equity" stocks correspond to the sum of equity, foreign direct in-

vestment, and other investments. For debt, we focus on net debt holdings because the

model features only one international bond. Net debt assets correspond to the differ-

ence between debt portfolio assets and liabilities.

Table 4.5 reports basic summary statistics on U.S. international stocks. Because of

the trend in foreign holdings, we report statistics on raw data as well as on HP-filtered

series.

While the average level of debt is slightly higher in the data than in the model, the

average equity position is much higher in the model than in the data. The current cali-

bration offers expected equity excess returns that are too large, inducing large foreign

holdings. The foreign capital holdings are also more volatile in the model than in the

data, particularly for equity assets. They are also too persistent compared to their ac-

205



Table 4.5: U.S. International Capital Stocks

Raw Data HP-Filtered Series

Min Mean Max Std AC(1) Corr Corr

US GDP ROW GDP

Panel I: Data

US All "Equity" assets 13.62 45.63 108.86 6.25 0.23 0.40 0.04
US All "Equity" liabilities 8.93 39.12 84.24 4.20 0.39 0.44 0.04
US Net All "Equity" assets -3.90 6.51 24.61 3.29 0.36 0.20 0.03
US Net Debt assets -41.82 -14.02 -2.36 1.09 0.54 -0.32 -0.03
US Net Foreign assets -29.54 -6.73 4.56 3.20 0.20 0.08 -0.03

Panel II: Model

US All "Equity" assets 118.41 356.45 742.15 39.64 0.69 0.19 -0.04
US All "Equity" liabilities 0.00 69.12 444.46 13.70 0.69 0.27 0.00
US Net All "Equity" assets 77.05 287.33 484.13 29.03 0.69 0.13 0.05
US Net Debt assets -71.43 -9.72 20.17 2.23 0.69 -0.11 -0.04
US Net Foreign assets 43.74 277.61 500.19 27.41 0.69 0.13 0.04

Notes: This table reports the min, mean, max, standard deviation, autocorrelation, and cross-country
correlation of U.S. international capital stocks in different asset classes. All "equity" stocks correspond to
the sum of equity, foreign direct investment, and other investments. Net all "equity" assets correspond
to the difference between all “equity” assets and liabilities. Net debt assets correspond to the difference
between debt portfolio assets and liabilities. The last two columns correspond to the cross-country
correlation coefficients between international capital flows and U.S. or rest-of-the-world (ROW) HP-
filtered GDP series. All series are scaled by GDP. The min, mean, and max statistics are computed on
raw data, while the standard deviation, autocorrelation, and correlations are computed on HP-filtered
series. Standard errors are reported in parentheses; they are obtained by block-boostrapping. Data are
annual, from the Lane and Milesi-Ferretti dataset and the OECD. All variables are reported in percentage
points, except for the autocorrelation and cross-country correlation coefficients. The sample period is
1973–2010.

tual counterparts. The model, however, captures the cyclicality of U.S. equity assets

and liabilities with respect to the U.S. GDP, as well as the counter-cyclicality of the net

U.S. debt position.

Flows In the data, the large increase in total assets and liabilities is accompanied by

a large increase in the size and volatility of all categories of international capital flows.

Balance of payments record international capital flows at the quarterly frequency, dis-

tinguishing between foreign direct investment, portfolio flows, and the remainder, de-

noted “other flows.”5 To quantify the volatility of the capital flows, Table 4.6 reports

5Gross outflows are defined as net purchases of foreign financial instruments by domestic residents.
Gross inflows are defined as net sales of domestic financial instruments to foreign residents. By con-
vention, negative outflows mean that residents are buying more foreign assets than they are selling,
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some simple summary statistics. Total U.S. equity outflows attain more than 13% of

GDP, and sometimes even reverse sign. The total equity inflows amount to close to

12% GDP at their maximum.

Turning to HP-filtered series to eliminate the trends, both equity inflows and out-

flows exhibit a low but significant autocorrelation of around 0.2. The autocorrelation

of net equity flows is only 0.1, much lower than the autocorrelation of net debt in-

flows (0.3). The total net inflows (debt and equity) are essentially uncorrelated. Total

gross inflows and outflows tend to increase (more capital flowing abroad and in the

U.S.) when US and ROW GDP are high, delivering significant correlation coefficients

between capital flows and GDP series.

Table 4.6 also shows that capital flows tend to shrink in times of high aggregate

volatility. We measure aggregate volatility as the cross-country average of the real-

ized standard deviations of daily equity returns over each quarter. When aggregate

volatility increases, capital outflows out of the U.S. become less negative, i.e. shrink

in magnitude. likewise, capital inflows in the U.S. decrease. Such correlations appear

clearly for equity and debt portfolio flows, as well as for the “other” flows and the to-

tal inflows and outflows. Foreign direct investment and net capital flows, however, do

not exhibit any significant correlation with aggregate volatility. These correlation are

best exemplified during the Great Recession. As already noted by several authors, the

Great Recession is characterized by retrenchment: foreigners pull out their wealth out

of U.S. equity and equity-like assets (equity inflows turn negative), while U.S. residents

repatriate part of their foreign equity-like holdings (outflows turn positive). These un-

usual patterns coincide with large increases in world volatility, from pre-crisis levels

of 20% to close to 60% (in annualized terms). Net debt inflows remain positive during

the spike in volatility but turn negative when volatility recesses.

As in the data, our model produces volatile stock holdings because the value of the

contributing positively to negatively to net inflows. Intuitively, a negative outflow means than money
is leaving the home country and flowing to the foreign country. Positive inflows means that foreigners
are purchasing more domestic assets than they are selling, contributing positively to net inflows. Intu-
itively, a positive inflow means that money is flowing into the home country. Up to accounting errors,
net inflows are then the sum of gross outflows and gross inflows.
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Table 4.6: U.S. International Capital Flows

Raw Data HP-Filtered Series

Min Mean Max Std AC(1) Corr Corr Corr

US GDP ROW GDP World Vol.

Panel I: Data

US All "Equity" Outflows -13.43 -2.94 5.82 2.55 0.21 -0.22 -0.28 -0.06
(1.22) (0.33) (1.02) (0.29) (0.08) (0.09) (0.10) (0.12)

US All "Equity" Inflows -5.89 3.16 12.43 2.42 0.18 0.26 0.24 0.12
(1.47) (0.33) (1.00) (0.29) (0.09) (0.09) (0.09) (0.10)

US All "Equity" Net Inflows -3.56 0.22 4.70 1.40 0.11 0.05 -0.10 0.10
(0.19) (0.15) (0.27) (0.10) (0.07) (0.09) (0.09) (0.10)

US Net Debt Inflows -3.55 1.73 8.56 1.23 0.30 0.24 0.36 0.05
(1.35) (0.25) (0.82) (0.18) (0.06) (0.11) (0.12) (0.07)

US Net Capital Inflows -2.31 1.96 9.04 1.31 0.03 0.25 0.20 0.14
(0.26) (0.27) (0.88) (0.16) (0.06) (0.10) (0.10) (0.07)

Panel II: Model

US All "Equity" Outflows -348.34 -0.15 415.95 17.38 -0.09 -0.08 0.08 -0.04
US All "Equity" Inflows -280.42 -0.01 237.17 10.52 -0.09 0.08 -0.08 0.03
US All "Equity" Net Inflows -116.75 -0.17 146.91 7.54 -0.09 -0.07 0.07 -0.06
US Net Debt Inflows -34.58 -0.00 32.18 1.79 -0.09 -0.01 -0.04 0.14
US Net Capital Inflows -128.24 -0.17 157.13 6.91 -0.09 -0.07 0.07 -0.03

Notes: This table reports the min, mean, max, standard deviation, autocorrelation, and cross-country
correlation of U.S. international capital flows in different asset classes. All "equity" flows correspond
to the sum of equity, foreign direct investment, and other investments. Net debt flows correspond to
the sum of debt portfolio inflows and outflows. The next two columns correspond to the cross-country
correlation coefficients between international capital flows and U.S. or rest-of-the-world (ROW) HP-
filtered GDP series. The last column corresponds to the cross-country correlation coefficients between
international capital flows and the change in world equity volatility. All series are scaled by GDP. The
min, mean, and max statistics are computed on raw data, while the standard deviation, autocorrelation,
and correlations are computed on HP-filtered series. Standard errors are reported in parentheses; they
are obtained by block-boostrapping. Data are quarterly, from the Bluedorn, Duttagupta, Guajardo, and
Topalova (2013) dataset, Datastream, and the OECD. All variables are reported in percentage points,
except for the autocorrelation and cross-country correlation coefficients. The sample period is 1973.4–
2010.4.
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stock holdings move a lot. Recall that in the model as in the data, stock returns exhibit

a 16% annualized volatility. The volatility of equity flows is much higher in the model,

as it is in the data. Turning to bonds, the model reproduces the volatility of net debt

flows, with little valuation effects.

Overall the model thus reproduces the start contrast between the volatility of the

U.S. foreign assets and liabilities. Changes in debt liabilities are mostly due to changes

in the amount of borrowing and thus international debt flows. To the contrary, changes

in equity assets are mostly due to valuation changes. In the model, changes in equity

prices and thus returns are either expected and unexpected. The large expected re-

turns on ROW equity help the U.S. finance its negative trade balance and reimburse its

debt. The model does not feature sovereign default and the negative trade balance is

sustainable.

4.6 Conclusion

This paper presents a two-good, two-country real model that replicates basic stylized

facts on equity excess returns and real interest rates. In the model, the U.S. borrows

from the ROW and invests in ROW equity. The gross foreign asset positions are large

and volatile. The changes in asset positions reflect both capital flows and changes in the

value of the existing assets. The returns on existing assets feature an expected compo-

nent that compensate investors for the risk of losing money in times of high marginal

utility. Valuation effects appear key to understand the volatility of international asset

holdings and the sustainability of current account imbalances.
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Appendix A

Appendix: Measuring the “Dark

Matter” in Asset Pricing Models

A.1 Disaster risk model

A.1.1 Asymptotic fragility measure

The probability density for (g, z) in the baseline model is

πP(g, z; θ) =pz(1− p)1−z
[

1
2πσ

exp
{
− (g− µ)2

2σ2

}]1−z

×
[
1{−g>v}λ exp {−λ(−g− v)}

]z
. (A.1)

The Fisher information matrix for (p, λ) under the baseline model P` is

IP(p, λ) =

 1
p(1− p) 0

0 p
λ2

 . (A.2)

Next, to derive the probability density function πQ(g, r, z|θ, ψ) in the structural model,

we simply substitute the risk premium η in πP(g, z; θ) with the asset pricing constraint
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(3.38) and add the indicator function for the restrictions on parameters:

πQ(g, r, z|θ, ψ) = pz(1− p)1−z

×
[

1
2πστ

√
1− ρ2

× exp
{
− 1

2(1− ρ2)

[
(g− µ)2

σ2 +
(r− η(θ, ψ))2

τ2 − 2ρ(g− µ)(r− η(θ, ψ))

στ

]}]1−z

×
[

1{−g>v}λ exp {−λ(−g− v)} 1√
2πν

exp
{
− 1

2ν2 (r− bg)2
}]z

1{η(θ,ψ)>η*,λ>γ},

where η* is a lower bound for the risk premium and

η(θ, ψ) ≡ γρστ − τ2

2
+ eγµ− γ2σ2

2 λ

(
eγv

λ− γ
− e

1
2 ν2 e(γ−b)v

λ + b− γ

)
p

1− p
. (A.3)

Using the notation introduced by (3.39) and (3.41), we can express the Fisher infor-

mation for (p, λ) under the constrained model Qθ,ψ as

IQ(p, λ) =

 1
p(1−p) +

∆(λ)2

(1−ρ2)τ2
e2γµ−γ2σ2

(1−p)3
p

(1−ρ2)τ2
e2γµ−γ2σ2

(1−p)2 ∆(λ)∆̇(λ)
p

(1−ρ2)τ2
e2γµ−γ2σ2

(1−p)2 ∆(λ)∆̇(λ) p
λ2 +

∆̇(λ)2

(1−ρ2)τ2 e2γµ−γ2σ2 p2

1−p

 . (A.4)

Following the definition in (3.19) and Proposition 9, the asymptotic fragility mea-

sure is the sum of eigenvalues of matrix IQ(θ)
1/2IP(θ)

−1IQ(θ)
1/2. This matrix has

identical eigenvalues with the matrix IP(θ)
−1/2IQ(θ)IP(θ)

−1/2. The latter eigenvalue

problem is much easier to compute compared to the former one. In this case, the eigen-

values are available in simple closed form. This gives us the formula for $a(θ) = $2
a(θ)

in (3.40). The minimum information ratio is $
v*2
a (θ) = 1.

A.1.2 Posteriors

Next, we construct the posteriors of the parameters θ = (p, λ) and ψ = γ under the

baseline model and the structural model, respectively. We appeal to the Jeffreys prior

for (p, λ) under the model without asset pricing constraint as the econometrician’s
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Table A.1: Independent Jeffreys/Reference priors for parameters

Parameters Prior PDF (up to a constant)

p p−1/2(1− p)−1/2

λ λ−11(λ>0)

prior. The structural parameter γ has an independent prior π(γ). The prior for γ can

be delta distributions like in Figure 3-3 or the uniform priors as in Section 3.3.1. Given

the likelihood function in (A.1), the parameters are mutually independent under the

Jeffreys prior and their probability density functions (PDFs) are explicitly specified in

Table A.1.

The constrained likelihood function (given by equation (??)) is “nonstandard” when

we impose equality and inequality constraints on the parameters. Given the indepen-

dent reference priors specified in Table A.1 and the “nonstandard” likelihood function,

not only the analytical form of the posterior density function becomes inaccessible,

but also the traditional Monte Carlo methods designed to draw i.i.d. samples from the

posterior become inefficient. For simulations of posterior based on a “nonstandard”

likelihood function, one of the general methods is the Approximate Bayesian Com-

putation (ABC) method.1 One issue concerning with applying the conventional ABC

method to our disaster risk model is the lack of efficiency when the priors are flat.

Given the specific structure of our problem, we propose a tilted ABC method to boost

the speed of our simulation. The details of the procedure are in Appendix A.1.3.

A.1.3 ABC Method and Implementation

Given the special structure of our problem, we propose a tilted ABC method in the

hope of boosting the speed of our simulation. The algorithm described here is for the

case of joint estimation with the risk aversion coefficient γ. We illustrate the case where

1For general introduction to the ABC method, see Blum (2010) and Fearnhead and Prangle (2012),
among others.
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γ has the prior π(γ). The algorithm can be adapted easily for the special case where

the value of γ is fixed.

The posterior for (p, λ, γ) under the baseline model satisfies

p, λ, γ | r, g, z ∼ Beta (p|0.5 + n− κn, 0.5 + κn) (A.5)

⊗Gamma

(
λ|n− κn,

n

∑
t=1

zt(gt − v)

)
⊗ π(γ),

where

xt = (gt, rt)
T, µn =

n

∑
t=1

(1− zt)xt/
n

∑
t=1

(1− zt), κn =
n

∑
t=1

(1− zt), νn = κn − 1,

Sn =
n

∑
t=1

(1− zt)(xt − µn)(xt − µn)
T, sn =

n

∑
t=1

zt(rt − bgt)
2.

Define

g =
n

∑
t=1

(1− zt)gt/κn and r =
n

∑
t=1

(1− zt)rt/κn.

The posterior for (p, λ, γ) under the structural model satisfies:

πQ(p, λ, γ|gn, rn, zn) ∝ pn−κn+1/2−1(1− p)κn+1/2−1 (A.6)

× 1(λ>γ)λ
n−κn−1 exp

{
−λ

n

∑
t=1

zt(−gt − v)

}
× τ−1(1− ρ2)−1/2

× exp
{
− κn

2(1− ρ2)τ2

[
η(p, λ, γ)− r− ρ

τ

σ
(µ− g)

]2
}

× 1{η(p,λ,γ)>η*} × π(γ).

Then, the posterior distribution will not change if we view the model in a different
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way as follows:

r ∼ N
(

η(p, λ, γ) + ρ
τ

σ
(g− µ), τ2(1− ρ2)

)
where η(p, λ, γ) > η*,

with priors

γ ∼ π(γ),

p ∼ Beta(n− κn + 1/2, κn + 1/2),

λ ∼ Gamma

(
λ|n− κn,

n

∑
t=1

zt(gt − v), λ > γ

)
.

The tilted ABC method is implemented as follows.

Algorithm We illustrate the algorithm for simulating samples from the posterior

(A.6) based ABC method. We choose the threshold in ABC algorithm as ε = τ̂/n/100,

where τ̂ is the sample standard deviation of the observations r1, · · · , rn. Our tilted ABC

algorithm can be summarized as follows:

For step i = 1, · · · , N:

Repeat the following simulations and calculations:

(1) simulate γ̃ ∼ π(γ),

(2) simulate p̃ ∼ Beta(n− κn + 1/2, κn + 1/2),

(3) simulate λ̃ ∼ Gamma (λ|n− κn, ∑n
t=1 zt(gt − v)),

(4) calculate η̃ = η(θ̃, ψ̃) with

θ̃ = ( p̃, λ̃) and φ̃ = γ̃,

(5) simulate r̃ ∼ N
(

η̃ + ρ̃ τ̃
σ̃ (g− µ̃), τ̃2(1− ρ̃2)

)
,
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Figure A-1: The 95% Bayesian confidence regions for (p, λ). In the left panel, the pos-
terior under the structural model (i.e. constrained posterior) sets γ = 3. In the right
panel, the posterior under the structural model sets γ = 24. Both are compared with
the posterior under the baseline model (i.e. unconstrained posterior).

Until (i) |r̃− r| < ε and (ii) η̃ > η*, we record

θ(i) = θ̃

φ(i) = φ̃

Set i = i + 1, if i < N; end the loop, if i = N.

Using this algorithm, we shall get simulated samples θ(1), · · · , θ(N) from the posterior

(A.6).

A.1.4 Results

Now, we show some examples of posteriors for (p, λ) when γ has delta priors. In Fig-

ure A-1 we illustrate their differences by plotting the 95% Bayesian confidence regions

for (p, λ) according to the two posteriors. The 95% Bayesian region for (p, λ) under the

baseline posterior distribution is similar to the 95% confidence region for (p, λ) under

the baseline model (see Figure 3-1).
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The shape of the 95% Bayesian region for the constrained posterior depends on the

coefficient of relative risk aversion γ. When γ is high (e.g, γ = 24), the constrained

posterior is largely similar to the unconstrained posterior (see Panel B), except that it

assigns lower weight to the lower right region, because these relatively frequent and

large disasters are inconsistent with the equity premium constraint. For a lower level

of risk aversion, γ = 3, the constrained posterior is drastically different. The only

parameter configurations consistent with the equity premium constraint are those with

large average disaster size, with λ close to its lower limit γ.

A.2 Long-run Risk Model

We consider a long-run risk model similar to Bansal and Yaron (2004b) and Bansal,

Kiku, and Yaron (2012b). The log growth rate of aggregate consumption ∆ct, the long-

run risk component in consumption growth xt, and stochastic volatility σt follow the

joint processes

∆ct+1 = µc + xt + σp,tεc,t+1 (A.7a)

xt+1 = ρxt + ϕxσp,tεx,t+1 (A.7b)

σ2
t+1 = σ2 + ν(σ2

t − σ2) + σwεσ,t+1 (A.7c)

σ2
p,t+1 = max(σ2, σ2

t+1), (A.7d)

where the shocks εc,t, εx,t, and εσ,t are i.i.d. standard normal variables and they are

mutually independent. We formally denote the statistical model characterizing the

three exogenous variables (∆ct, xt, σ2
t ) with t = 1, · · · , n to be P. The focus is the

dynamic parameters θ ≡ (µc, ρ, ϕx, σ2, ν, σw).

The preference of the representative agent is assumed to be Epstein-Zin-Weil pref-

erence:

Vt =

[
(1− δ)C

1−γ
ϑ

t + δ
(

Et

[
V1−γ

t+1

]) 1
ϑ

] ϑ
1−γ

(A.8)
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where ϑ = (1 − γ)/(1 − ψ−1). Define the wealth process and the gross return on

consumption claims:

Wt+1 = (Wt − Ct)Rc,t+1. (A.9)

Therefore, the stochastic discount factor (SDF) can be expressed as follows:

Mt+1 = δϑ

(
Ct+1

Ct

)−ϑ/ψ

Rϑ−1
c,t+1. (A.10)

The log SDF can be written as

mt+1 = ϑ log δ− ϑ

ψ
∆ct+1 + (ϑ− 1)rc,t+1. (A.11)

The state variables in long-run risk models are (xt, σ2
t ). The log consumption growth

rate ∆ct+1 can be expressed in terms of xt and σ2
t by assumption (3.43a). In contrast,

the dependence of rc,t+1 on the state variables are endogenous. To turn the system into

an affine model, we first exploit the Campbell-Shiller log-linearization approximation:

rc,t+1 = κ0 + κ1zt+1 + ∆ct+1 − zt, (A.12)

where zt = log(Wt/Ct) is log wealth-consumption ratio where wealth is the price

of consumption claims. The log-linearization constants are determined by long-run

steady state:

κ0 = log(1 + ez)− κ1z (A.13)

κ1 =
ez

1 + ez , (A.14)

where z is the mean of the log price-consumption ratio.

Given the log-linearization approximation (A.12) - (A.14), we can search the equi-

librium characterized by

zt = A0 + A1xt + A2σ2
t , (A.15)
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where the constants A0, A1 and A2 are to be determined by the equilibrium conditions.

Thus, the log return on consumption claim can be written as

rc,t+1 = κ0 + κ1

(
A0 + A1xt+1 + A2σ2

t+1

)
+ ∆ct+1 −

(
A0 + A1xt + A2σ2

t

)
. (A.16)

Therefore, the log SDF can be re-written in terms of state variables and exogenous

shocks

mt+1 = Γ0 + Γ1xt + Γ2σ2
t − λcσtεc,t+1 − λxσt ϕxεx,t+1 − λσσwεσ,t+1, (A.17)

where predictive coefficients are

Γ0 = log δ− ψ−1µc −
1
2

ϑ(ϑ− 1) (κ1A2σw)
2 (A.18)

Γ1 = −ψ−1 (A.19)

Γ2 = (ϑ− 1)(κ1ν− 1)A2 =
1
2
(γ− 1)(ψ−1 − γ)

[
1 +

(
κ1ϕx

1− κ1ρ

)2
]

(A.20)

and the market price of risk coefficients are

λc = γ (A.21)

λx =
(

γ− ψ−1
) κ1ϕx

1− κ1ρ
(A.22)

λλ = −(γ− 1)
(

γ− ψ−1
) κ1

2(1− κ1ν)

[
1 +

(
κ1ϕx

1− κ1ρ

)2
]

(A.23)

It can be seen that as ρ or ν approaches to unit, the risk premium goes to infinity.

The coefficients Aj’s are determined by equilibrium condition (i.e. Euler Equation for

price of consumption claim – pure intertemporal first-order condition of consumption

decision), which is

1 = Et [Mt+1Rc,t+1] = Et
[
emt+1+rc,t+1

]
(A.24)
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It leads to the equilibrium conditions:

A0 =
1

1− κ1

[
log δ + κ0 +

(
1− ψ−1

)
µc + κ1A2(1− ν)σ2 +

ϑ

2
(κ1A2σw)

2
]

(A.25)

A1 =
1− ψ−1

1− κ1ρ
(A.26)

A2 = − (γ− 1)(1− ψ−1)

2(1− κ1ν)

[
1 +

(
κ1ϕx

1− κ1ρ

)2
]

(A.27)

The long-run mean z is also determined endogenously in the equilibrium. More

precisely, given all parameters fixed, we have Aj = Aj(z) in Equations (A.25) – (A.27)

because κ0 and κ1 are functions of z. In the long-run steady state, we have

z = A0(z) + A2(z)σ2. (A.28)

Thus, in the equilibrium, the long-run mean z is a function of all parameters in the

model, according to (A.28) and Implicit Function Theorem,

z = z
(

µc, ρ, ϕx, σ2, ν, σw, · · ·
)

. (A.29)

And hence, we can also solve out κ0 and κ1 based on (A.29) as follows, whose explicit

forms are usually not available

κ0 = κ0(µc, ρ, ϕx, σ2, ν, σw, · · · ) and κ1 = κ1(µc, ρ, ϕx, σ2, ν, σw, · · · ). (A.30)

The gradients κ0 and κ1 with respect to the parameters, such as ρ and ν, can be calcu-

lated using Implicit Function Theorem in (A.28).

Given the pricing kernel in the equilibrium, we can price assets. We specify the joint

distribution of the exogenous state variables and the log dividend growth ∆dt, these

joint distributional assumptions are part of the structural component of the model.
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More precisely, we assume that the log dividend growth process is

∆dt+1 = µd + φdxt + ϕd,cσp,tεc,t+1 + ϕd,dσp,tεd,t+1 + σd,dεu
d,t+1. (A.31)

Market Return

Using the Campbell-Shiller decomposition and linearization, we can represent the re-

turn in terms of log price-dividend ratio and log dividend growth:

rm,t+1 = κm,0 + κm,1zm,t+1 + ∆dt+1 − zm,t, (A.32)

where

κm,0 = log(1 + ezm)− κm,1zm (A.33)

and

κm,1 =
ezm

1 + ezm
(A.34)

and zm is long-run mean of market log price-dividend ratio. We search for the equilib-

rium where the log market price-dividend ratio is a linear function of the states:

zm,t = Am,0 + Am,1xt + Am,2σ2
t , (A.35)

where the constants Am,0, Am,1 and Am,2 are to be determined by equilibrium condition

(i.e. Euler equation for market returns). Thus, we have

rm,t+1 −Et [rm,t+1] = ϕd,cσp,tεc,t+1 + κm,1Am,1ϕxσp,tεx,t+1

+ κm,1Am,2σwεσ,t+1 + ϕd,dσp,tεd,t+1 + σd,uεu
d,t+1, (A.36)

where

Et [rm,t+1] = µd + κm,0 + (κm,1 − 1)Am,0 + κm,1Am,2(1− ν)σ2 (A.37)

+ [φd + (κm,1ρ− 1)Am,1] xt + (κm,1ν− 1)Am,2σ2
t . (A.38)
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Plugging the equation above into the Euler Equation

1 = Et
[
emt+1+rm,t+1

]
, (A.39)

we can derive the coefficients

Am,0 =
1

1− κm,1

×
[

Γ0 + κm,0 + µd +
1
2

σ2
d,u + κm,1Am,2(1− ν)σ2 +

1
2
(κm,1Am,2 − λw)

2σ2
w

]

Am,1 =
φd − ψ−1

1− κm,1ρ
(A.40)

and

Am,2 =
1

1− κm,1ν

[
Γ2 +

1
2

(
ϕ2

d,d + (ϕd,c − λc)
2 + (κm,1Am,1ϕx − λx)

2
)]

(A.41)

In sum, according to (A.36), the market return can be re-written as the following beta

representation for the priced aggregate shocks:

rm,t+1 −Et [rm,t+1] = βcσp,tεc,t+1 + βxσp,tεx,t+1 + βσσwεε,t+1

+ ϕd,dσp,tεd,t+1 + σd,uεu
d,t+1. (A.42)

where the betas are

βc = ϕd,c, βx = κm,1Am,1ϕx, and βσ = κm,1Am,2 (A.43)

Excess Market Return and Equity Premium

The Euler Equations for market return and riskfree rate can be written in one equation

Et [emt+1 ] = Et

[
emt+1+re

m,t+1

]
. (A.44)
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The risk premium is given by the beta pricing rule:

Et
[
re

m,t+1
]
= λcσ2

p,tβc + λxσ2
p,tβx + λσσ2

wβσ −
1
2

σ2
rm,t, (A.45)

where σ2
rm,t = β2

cσ2
p,t + β2

xσ2
p,t + β2

σσ2
w + ϕ2

d,dσ2
p,t + σ2

d,u. (A.46)

Similarly, the long-run mean of log market price-dividend ratio is

zm = Am,0(zm) + Am,2(zm)σ
2. (A.47)

Based on (A.42), the excess log return of market portfolio re
m,t+1 = rm,t+1 − r f ,t has the

following expression:

re
m,t+1 −Et

[
re

m,t+1
]
= βcσp,tεc,t+1 + βxσp,tεx,t+1 + βσσwεε,t+1

+ ϕd,dσp,tεd,t+1 + σd,uεu
d,t+1. (A.48)

In sum, the equilibrium excess return follows the dynamics:

re
m,t+1 = µe

r,t + βcσp,tεc,t+1 + βxσp,tεx,t+1 + βσσwεσ,t+1

+ ϕd,dσp,tεd,t+1 + σd,uεu
d,t+1,

where

µe
r,t = λcβcσ2

p,t + λxβxσ2
p,t + λσβσσ2

w −
1
2

(
β2

cσ2
p,t + β2

xσ2
p,t + β2

σσ2
w + ϕ2

d,dσ2
p,t + σ2

d,u

)
.
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Generalized Methods of Moments

The likelihood function of the baseline statistical model Pθ,n can be seen clearly when

re-arrange the terms

∆ct+1 − µc − xt

σp,t
= εc,t+1 (A.49a)

xt+1 − ρxt

ϕxσp,t
= εx,t+1 (A.49b)

(σ2
t+1 − σ2)− ν(σ2

t − σ2)

σw
= εσ,t+1 (A.49c)

where εc,t, εx,t and εσ,t are i.i.d. standard normal variables and they are mutually

independent. We consider the GMM where the moments functions are identical to

the score functions of the likelihood function. Thus, it is equivalent to the MLE. De-

note the set of moment functions to be gP(∆ct+1, xt+1, xt, σ2
t+1, σ2

t ; θ). More precisely,

gP(∆ct+1, xt+1, xt, σ2
t+1, σ2

t ; θ) includes six moment conditions:

0 =
1

T − 1

T−1

∑
t=1

∆ct+1 − µc − xt

σ2
p,t

0 =
1

T − 1

T−1

∑
t=1

(xt+1 − ρxt)xt

ϕ2
xσ2

p,t

1 =
1

T − 1

T−1

∑
t=1

(xt+1 − ρxt)2

ϕ2
xσ2

p,t

0 =
1

T − 1

T−1

∑
t=1

[
(σ2

t+1 − σ2)− ν(σ2
t − σ2)

]
(σ2

t − σ2)

σ2
w

1 =
1

T − 1

T−1

∑
t=1

[
(σ2

t+1 − σ2)− ν(σ2
t − σ2)

]2

σ2
w

0 =
1

T − 1

T−1

∑
t=1

(σ2
t+1 − σ2)− ν(σ2

t − σ2)

σ2
w

In the long-run risk model, the major focus is to understand the stock excess return’s

dynamics explained by the consumption process specified in (A.49a) - (A.49c). The

joint distribution of the excess log return re
m,t+1 and the consumption variables can be
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seen clearly from the following formula:

re
m,t+1 − µe

r,t − βc(∆ct+1 − µc,t − xt)− βx
xt+1 − ρxt

ϕx
− βσ

[
σ̂2

t+1 − νσ̂2
t

]
√

ϕ2
d,dσ2

p,t + σ2
d,u

= εt+1

where σ̂2
t ≡ σ2

t − σ2 and εt is a standard normal variable defined as

εt+1 ≡
ϕd,dσp,tεd,t+1 + σd,uεu

d,t+1√
ϕ2

d,dσ2
p,t + σ2

d,u

,

and

µe
r,t = λη βησ2

p,t + λeβeσ
2
p,t + λwβwσ2

w −
1
2

(
β2

ησ2
p,t + β2

eσ2
p,t + β2

wσ2
w + ϕ2σ2

p,t

)
.

We choose the over-identification moment constraints

gQ(∆ct+1, xt+1, xt, σ2
t+1, σ2

t , re
m,t+1; θ)

to include the score functions of the conditional likelihood of re
m,t+1 above. Thus, the

moment conditions for the optimal GMM setup to assess the fragility of the benchmark

version of long-run risk model are

g(∆ct+1, xt+1, xt, σ2
t+1, σ2

t , re
t+1; θ)

≡

 gP(∆ct+1, xt+1, xt, σ2
t+1, σ2

t ; θ)

gQ(∆ct+1, xt+1, xt, σ2
t+1, σ2

t , re
m,t+1; θ)

 . (A.50)

Intuitively, the over-identification moment conditions imposed by the long-run risk

model on the dynamic parameter θ is through the cross-equation restrictions on the

beta coefficients βc, βx, βσ and the pricing coefficients λc, λx, λσ. Because of the shocks

εt+1, εc,t+1, εx,t+1, and εσ,t+1) are mutually independent, the GMM setup in (A.50) is ac-

tually asymptotically equivalent to the MLE for the joint distribution of (∆ct, xt, σ2
t , re

m,t).
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It should be noted that the whole joint distribution of the economic variables, including

(∆ct, xt, σ2
t , re

m,t) and many other variables such as dividend growth and price-dividend

ratio, may have stochastic singularities and many features that are not the targets of the

long-run risk model to explain at the first place. Following the spirits of GMM-based

estimation and hypothesis testing for structural models, we focus on the moments tar-

geted by the particular long-run risk model, while discarding most parts of the whole

joint distribution of the model. The analytical formulas of the over-identification mo-

ment conditions are super complicated, since the dependence of the beta coefficients

and pricing coefficients is extremely complicated in the long-run risk model. We ignore

the formulas here and, in fact, we calculate them numerically to compute the fragility

measures. Moreover, we compute the Fisher Information matrixes for the moment

conditions gP and g based simulated stationary time-series data generated according

to the Monte Carlo method.

A.3 Proofs

A.3.1 Proof of Proposition 1

If we define u = IQ(θ0)
−1/2v, we can rewrite the $D

a (θ0) as

$D
a (θ0) = max

u∈RDΘ×D,Rank(u)=D
tr
[(

uTu
)−1 (

uTIQ(θ0)
1/2IP(θ0)

−1IQ(θ0)
1/2u

)]
= max

u∈RDΘ×D,Rank(u)=D
tr
[

u
(

uTu
)−1

uTIQ(θ0)
1/2IP(θ0)

−1IQ(θ0)
1/2
]

The linear operator Pu ≡ u
(
uTu

)−1 uT is the projection operator onto the subspace

spanned by the column vectors of u. Therefore, we have

$D
a (θ0) = max

u∈RDΘ×D,Rank(u)=D
tr
[
PuIQ(θ0)

1/2IP(θ0)
−1IQ(θ0)

1/2
]

.
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The projection operator can be equivalently expressed in terms of the orthonormal col-

umn vectors lying in the subspace spanned by u. Thus, without loss of any generality,

we can assume that the column vectors of u are orthonormal vectors, i.e. uTu is a

D-dimensional identity matrix. Therefore,

$D
a (θ0) = max

u∈RDθ×D,Rank(u)=D,uTu=I
tr
[
uuTIQ(θ0)

1/2IP(θ0)
−1IQ(θ0)

1/2
]

= max
u∈RDθ×D,Rank(u)=D,uTu=I

tr
[
uTIQ(θ0)

1/2IP(θ0)
−1IQ(θ0)

1/2u
]

= max
u∈RDθ×D,Rank(u)=D,uTu=I

D

∑
i=1

uT
i IQ(θ0)

1/2IP(θ0)
−1IQ(θ0)

1/2ui

= λ1 + λ2 + · · ·+ λD.

The argmax matrix is u* = [e*1 , e*2 , · · · , e*D] whose column vectors are the corresponding

eigenvectors. Thus, correspondingly, the worst-case matrix is v* = [v*1 , v*2 , · · · , v*D]

with v*i = IQ(θ0)
1/2e*i . Moreover, for i = 1, · · · , D, it holds that

λi =
(v*i )

TIP(θ0)
−1v*i

(v*i )
TIQ(θ0)−1v*i

. (A.51)

A.3.2 Chernoff Rate and Detection Error Probability

Proof of Proposition 11

In the proof, we consider a mathematically more general case where the matrix v for

$v(θ0) is not necessarily a DΘ × DΘ identity matrix. We assume that v is a full-rank

Dv × DΘ matrix with 1 ≤ Dv ≤ DΘ. Similar to the proof of Proposition 9, we can

show that there exists a system of orthonormal basis [ṽ1, · · · , ṽDv ] of the linear space

spanned by the column vectors of IQ(θ0)
−1/2v such that

$v
a (θ0) =

Dv

∑
i=1

ṽT
i IQ(θ0)

1/2IP(θ0)
−1IQ(θ0)

1/2ṽi =
Dv

∑
i=1

v̂T
i IP(θ0)

−1v̂i

v̂T
i IQ(θ0)−1v̂i

, (A.52)
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where v̂i = IQ(θ0)
1/2ṽi. Because IQ(θ0)

1/2IP(θ0)
−1IQ(θ0)

1/2 has exactly the same

eigenvalues as IP(θ0)
−1/2IQ(θ0)IP(θ0)

−1/2, there exist unit vectors ũ1, · · · , ũDv such

that

ṽT
i IQ(θ0)

1/2IP(θ0)
−1IQ(θ0)

1/2ṽi = ũT
i IP(θ0)

−1/2IQ(θ0)IP(θ0)
−1/2ũi. (A.53)

Define ui = IP(θ0)
−1/2ũi/|IP(θ0)

−1/2ũi|, we have

$v
a (θ0) =

Dv

∑
i=1

uT
i IQ(θ0)ui

uT
i IP(θ0)ui

. (A.54)

Now, let’s consider the Chernoff rates for the “perturbed” parameters

θui ≡ θ0 + n−1/2ui, for i = 1, · · · , Dv.

First, we have the following identity

∫
[πP(xn|θ0)]

1−α [πP(xn|θui)]
α dxn =

∫
πP(xn|θ0)eα[ln πP(xn|θui )−ln πP(xn|θ0)]dxn.

(A.55)

According to Lemma 7.6 in van der Vaart (1998), we know that the condition of differ-

entiability in quadratic mean holds for density functions in our case. Then, the Local

Asymptotic Normality (LAN) condition holds, i.e.,

ln πP(xn|θui)− ln πP(xn|θ0)

= uT
i

[
1√
n

n

∑
t=1

∂

∂θ
ln πP(xt; θ0)

]
− 1

2
uT

i IP(θ0)ui + Rn, (A.56)

where EP0 |Rn|2 → 0 because of the Assumption F. Under the regularity conditions,

the following CLT holds, according to Theorem 2.4 of ?,

1√
n

n

∑
t=1

∂

∂θ
ln πP(xt; θ0) N (0, IP(θ0)) . (A.57)
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Define the Moment Generating Function (MGF) of ln πP(xn|θui)− ln πP(xn|θ0):

Mn(α) ≡ EP0

{
eα[ln πP(xn|θui )−ln πP(xn|θ0)]

}
= e−α 1

2 uT
i IP(θ0)uiEP0

{
eαuT

i

[
1√
n ∑n

t=1
∂
∂θ ln πP(xt;θ0)

]}
+ εn(α),

where εn(α) = o(1) for each α ∈ [0, 1]. Therefore, as n goes large,

Mn(α, ui)→ e−
1
2 α(1−α)uT

i IP(θ0)ui , ∀ α ∈ [0, 1]. (A.58)

We denote the Cumulant Generating Function (CGF) as

Λn(α, ui) = ln Mn(α, ui).

The CGF Λn(α, ui) is convex in α. Because the pointwise convergence for a sequence

of convex functions implies their uniform convergence to a convex function(see e.g.,

Rockafellar, 1970), we know that

Λn(α, ui)→ −
1
2

α(1− α)uT
i IP(θ0)ui. (A.59)

Based on the definition of Chernoff information in (3.24) and the identity in (A.55), we

know that

C*(πP(xn|θui) : πP(xn|θ0))

≡ max
α∈[0,1]

− ln
∫

[πP(xn|θ0)]
α [πP(xn|θui)]

1−α dxn

= max
α∈[0,1]

−Λn(α, ui)→ max
α∈[0,1]

1
2

α(1− α)uT
i IP(θ0)ui =

1
8

uT
i IP(θ0)ui. (A.60)

In Equation (A.60) above, the convergence of maxima of −Λn(α, ui) to the maximum

of 1
2α(1− α)uT

i I(θ0)ui is guaranteed by the uniform convergence of Λn(α, ui).
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Similarly, we can show that

C*(πQ(xn, yn|θui) : πQ(xn, yn|θ0)) =
1
8

uT
i IQ(θ0)ui + o(1). (A.61)

Therefore, we have

lim
n→∞

C*(πQ(xn, yn|θui) : πQ(xn, yn|θ0))

C*(πP(xn|θui) : πP(xn|θ0))
=

1
8 uT

i IQ(θ0)ui
1
8 uT

i IP(θ0)ui
=

uT
i IQ(θ0)ui

uT
i IP(θ0)ui

Combining with (A.54), we obtain

$v
a (θ0) = lim

n→∞

Dv

∑
i=1

C*(πQ(xn, yn|θui) : πQ(xn, yn|θ0))

C*(πP(xn|θui) : πP(xn|θ0))
. (A.62)

Detection Error Probability

This subsection is mainly based on Section 12.9 in Cover and Thomas (1991). Assume

X1, · · · , Xn i.i.d. ∼ Q. We have two hypothesis or classes: Q = P1 with prior π1 and

Q = P2 with prior π2. The overall probability of error (detection error probability) is

Pn
e = π1E(n)

1 + π2E(n)
2 ,

where E(n)
1 is the error probability when Q = P1 and E(n)

2 is the error probability when

Q = P2. Define the best achievable exponent in the detection error probability is

D* = lim
n→∞

min
An∈Xn

− 1
n

log2 P(n)
e , where An is the acceptance region.

The Chernoff’s Theorem shows that D* = C*(P1 : P2). More precisely, Chernoff’s

Theorem states that the best achievable exponent in the detection error probability is

D*, where

D* = DKL(Pα* ||P1) = DKL(Pα* ||P2),
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with

Pα =
Pα

1 (x)P1−α
2 (x)∫

X
Pα

1 (x)P1−α
2 (x)dx

and α* is the value of α such that

DKL(Pα* ||P1) = DKL(Pα* ||P2) = C*(P1 : P2).

According to the Chernoff’s Theorem, intuitively, the best achievable exponent in the

detection error probability is

P(n)
e

.
= π12−nDKL(Pα* ||P1) + π22−nDKL(Pα* ||P2) = 2−nC*(P1:P2). (A.63)

A.3.3 Asymptotic Equivalence Theorems

In this section, we prove the main results in Section 3.2 of the paper. We first introduce

necessary notations in Subsection A.3.3. Then, we introduce the standard regularity

conditions in Subsection A.3.3. Thirdly, we prove the basic lemmas in Subsection A.3.3,

which are themselves interesting and general. Fourthly, in Subsection A.3.3, we state

and prove the sequence of propositions which serve as intermediate steps for the proof

of the main results. Finally, the main results are proved in Subsection A.3.3 - Subsection

A.3.3.

Generic Notations and Definitions

First, we introduce some notations for the matrices. For any real symmetric non-

negative definite matrix A, we define λM(A) to be the largest eigenvalue of A and

define λm(A) to be the smallest eigenvalue of A. For a matrix A, we define the spectral

norm of A to be ||A||S. By definition of spectral norm, we know that for any real matrix

A,

||A||S ≡
√

λM(AT A).
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Denote λ(θ) and λ(θ) to be the largest eigenvalue and the smallest eigenvalue of IP(θ),

respectively. That is,

λ(θ) = λm(IP(θ)) and λ(θ) = λM(IP(θ)).

If the matrix IP(θ) is continuous in θ, λ(θ) and λ(θ) are continuous in θ. We define

upper bound and lower bound to be

λ ≡ sup
θ∈Θ

λ(θ), and λ ≡ inf
θ∈Θ

λ(θ). (A.64)

Second, we introduce some notations related to subsets in Euclidean spaces. We

define the “Euclidean distance” between two sets S1, S2 ⊂ RDΘ as follows

dL(S1, S2) ≡ inf{|s1 − s2| : si ∈ Si, i = 1, 2}. (A.65)

For θ ∈ RDΘ , we denote θ(1) to be the first element of θ and denote θ(−1) to be the

DΘ − 1 dimensional vector containing all elements of θ other than θ(1). Define the

open ball centered at θ with radius r to be

Ω(θ, r) ≡ {ϑ : |ϑ− θ| < r} and Ω(θ, r) ≡ {ϑ : |ϑ− θ| ≤ r}

Denote

Ω(1)(θ, r) = Ω(θ(1), r) ⊂ R1, and Ω(−1)(θ, r) = Ω(θ(−1), r) ⊂ RDΘ−1.

In addition, we define

Θ−1(θ(1)) ≡

θ(−1) ∈ RDΘ−1 |

 θ(1)

θ(−1)

 ∈ Θ

 , (A.66)
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and we denote

VΘ ≡ Vol(Θ) < +∞, VΘ(θ(1)) ≡ Vol(Θ−1(θ(1))) < +∞,

and VΘ,1 ≡ sup
θ(1)∈Θ(1)

VΘ(θ(1)) < +∞.

Third, we introduce some notations on metrics of probability measures. Consider

two probability measures P and Q with densities p and q with respect to Lebesgue

measure, respectively. The Hellinger affinity between P and Q is denoted as

αH(P, Q) ≡
∫ √

p(x)q(x)dx.

The total variation distance between P and Q is denoted as

||P−Q||TV ≡
∫
|p(x)− q(x)|dx.

Fourth, we introduce notations for time series. The maximal correlation coefficient

and the uniform mixing coefficient are defined as

ρmax(F1,F2) ≡ sup
f1∈L2

real(F1), f2∈L2
real(F2)

|Corr( f1, f2)| ,

and

φ(F1,F2) ≡ sup
A1∈F1,A2∈F2

|P(A2|A1)− P(A2)| ,

where L2
real(Fi) denote the space of square-integrable. Fi-measurable, real-valued ran-

dom variables, for any sub σ−fields Fi ⊂ F.

At last, we introduce some notations related to generalized method of moments.

For the moment function g(xt, yt, θ) we define

g0(θ) ≡ EQ0 [g(xt, yt, θ)] and G0(θ) ≡ EQ0

[
∂

∂θ
g(xt, yt, θ)

]
. (A.67)
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We simply denote g0(θ0) as g0 and denote G0(θ0) as G0. The J-statistic is

Jn,S0(θ, ψ; xn, yn) ≡ ngn(xn, yn; θ, ψ)TS−1
0 gn(xn, yn; θ, ψ), (A.68)

where S0 has the following explicit formula

S0 =
+∞

∑
`=−∞

EQ0

[
g(xt, yt; θ0, ψ0)g(xt−`, yt−`; θ0, ψ0)

T
]

. (A.69)

The GMM likelihood ratio statistic is

dS0{x
n, yn, θ} = Jn,S0(x

n, yn; θ)− Jn,S0(x
n, yn; θ̂Q), (A.70)

where θ̂Q is the GMM estimator.

The Regularity Conditions

The regularity conditions we choose to impose on the behavior of the data are influ-

enced by three major considerations. First, our assumptions are chosen to allow pro-

cesses of sequential dependence. In particular, the processes allowed should be rel-

evant to inter-temporal asset pricing models. Second, our assumptions are required

to meet the analytical tractability. Third, our assumptions are sufficient conditions in

the sense that we are not trying to provide the weakest conditions or high level con-

ditions to guarantee the results work, but instead, we chose those which are relatively

straightforward to check in practice.

Assumption S

The observed data (xt, yt) for t = 1, 2, · · · , n follow a strictly stationary process and

have a joint stationary distribution Q0,n. Marginally, the sample xt for t = 1, 2, · · · , n

has a stationary distribution P0,n ≡ Pθ0,n within a parametric family {Pθ,n : θ ∈ Θ}.

Assumption MD

The time series xt is first-order Markov. This is without loss of generality, because if
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the original random variable xt is a m0-th order Markov with m0 > 1, we can con-

struct a new random vector xt stacking variables xt with a sufficient number of lags

so that xt is first-order Markov. More precisely, we assume that the underlying time

series xt with t = 1, · · · , n is m-dependent process and the conditional density is

πP(xt|θ, xt−1, · · · , xt−m0) for some positive integer constant m0. For the stacked vec-

tor xt = (xt, · · · , xt−K0)
T with K0 ≥ m0, the conditional density for xt under P can be

rewritten as πP(xt; θ) = πP(xt|θ, xt−1, · · · , xt−m0).

Assumption M 2

There exists constant λ ≥ 2d/(d− 1), where d is the constant in Assumption D, such

that (xt, yt) for t = 1, 2, · · · , n is uniform mixing and there exists a constant φ* such

that the uniform mixing coefficients satisfy

φ(m; θ) ≤ φ*m−λ for all θ ∈ Θ,

where φ(m; θ) is the uniform mixing coefficient under the probability measure Qθ. Its

definition is standard and can be found, for example, in White and Domowitz (1984)

or Bradley (2005).

Assumption D The function g(x, y, θ) is twice continuously differentiable in θ almost

everywhere. There exist dominating measurable functions a1(x, y) and a2(x, y), and

2 Following the literature(see, e.g. White and Domowitz, 1984; Newey, 1985; Newey and West, 1987a),
we adopt the mixing conditions as a convenient way of describing economic and financial data which
allows time dependence and heterogeneity. The mixing conditions basically restrict the memory of a
process to be weak so that large sample properties of the process are close to the case of assuming
ergodicity for strictly stationary processes (see, e.g. Hansen, 1982). In particular, we employ the uni-
form mixing or φ−mixing condition which is discussed in some detail by White and Domowitz (1984)
where definition and its relationship with other type of mixing conditions can be found in the survey by
Bradley (2005).
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constant d > 1, such that almost everywhere

|g(x, y, θ)|2 ≤ a1(x, y), ||∂g(x, y, θ)/∂θ||2S ≤ a1(x, y),

||∂2g(i)(x, y, θ)/∂θ∂θT||2S ≤ a1(x, y), for i = 1, · · · , Dg,

|q0(x, y)| ≤ a2(x, y), |q0(x1, y1, xt, yt)| ≤ a2(x1, y1)a2(xt, yt), for t ≥ 2,∫
[a1(x, y)]d a2(x, y)dxdy < +∞,

∫
a2(x, y)dxdy < +∞.

We assume that the expected observed Fisher information matrix, defined as IQ(θ) ≡

G0(θ)
TS−1

0 G0(θ), is positive definite for all θ ∈ Θ, where G0(θ) ≡ EQ0 [∂g(x, y, θ)/∂θ].

Assumption P

Suppose the parameter set is Θ ⊂ RDΘ with Θ compact3. And, the prior is abso-

lutely continuous with respect to the Lebesgue measure with Radon-Nykodim den-

sity πP(θ), which is twice continuously differentiable and positive on Θ.4 Denote

Mπ ≡ maxθ∈Θ πP(θ) and mπ ≡ minθ∈Θ πP(θ).

Assumption F 5

Suppose θ0 is an interior point of parameter set Θ. The conditional densities πP(xt; θ)

is twice continuously differentiable in parameter set, for almost every xt under P0. For

3Compactness implies total boundness.
4In our diaster risk model, the parameter set is not compact due to the adoption of uninformative

prior. However, in that numerical example, we can truncate the parameter set at very large values which
will not affect the main numerical results.

5There are two information matrices that typically coincide (i.e. Information Equality) and have a
basic role in the analysis. Define

JP(θ) ≡ −EP0

[
∂2

∂θ∂θT ln πP(xt; θ)

]
.

When the Assumption F holds, we have IP(θ0) = JP(θ0) (see e.g. Lehmann and Casella, 1998). Besides,
it should be noted that conditions here are actually implied by Assumption D, because the conditional
score function ∂

∂ϑj
ln πP(xt; θ) are assumed to be included in the moment condition g(xt, yt, θ). The

dominating assumption, together with the uniform mixing assumption and stationarity assumption,
imply the stochastic equicontinuity condition (i) in Proposition 3 of Chernozhukov and Hong (2003),
which is, for some δ > 0, the following function class is a Donsker class:{

ln πP(x; θ)− ln πP(x; θ0)− ∂ ln πP(x; θ0)/∂θ(θ − θ0)

|θ − θ0|
: |θ − θ0| < δ

}
.

.
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each pair of j and k, it holds that for some constant ζ > 0 and large constant C > 0,

EP0 sup
θ∈Θ

∣∣∣∣∣ ∂2

∂θj∂θk
ln πP(xt; θ)

∣∣∣∣∣
2+ζ

< C, and EP0 sup
θ∈Θ

∣∣∣∣∣ ∂

∂θj
ln πP(xt; θ)

∣∣∣∣∣
2+ζ

< C,

and

EP0 sup
θ∈Θ
|ln πP(xt; θ)|1+ζ < C. (A.71)

We define the expected observed Fisher information matrix IP(θ) to be

IP(θ) ≡ EP0

[
∂

∂θ
ln πP(xt; θ)

∂

∂θT ln πP(xt; θ)

]

and assume that IP(θ) is positive definite for all θ ∈ Θ.

Assumption PQ 6

The probability measure defined by the density πQ(θ|xn, yn) is dominated by the prob-

ability measure defined by the density πP(θ|xn), for almost every xn, yn under Q0.7

Assumption ID 8

The parametric family of distributions Pθ is sound, that is, the convergence of a se-

quence of parameter values is equivalent to the weak convergence of the distributions

they index:

θ → θ0 ⇔ Pθ → Pθ0 . (A.72)

6This assumption is just to guarantee that DKL (πQ(θ|xn, yn)||πP(θ|xn)) to be well defined.
7The concept of dominating measure here is the one in measure theory. More precisely, this regularity

condition requires that for any measurable set which has zero measure under πQ(θ|xn, yn), it must also
have zero measure under πP(θ|xn).

8The identification assumption for the baseline model πP(x; θ) is a weak identifiability condition
which implies that θ1 ̸= θ2 ⇒ Pθ1 ̸= Pθ2 . More precisely, the true model θ0 is identified in the sense
that if θ ̸= θ0 and θ ∈ Θ, πP(x; θ) ̸= πP(x; θ0) for on a measurable set with nonzero Lebesgue
measure. By the continuity of R0(θ) ≡ −EP0 ln(πP(x; θ)/πP(x; θ0)) and the compactness of Θ, to-
gether with the identification assumption for the baseline model, we know that for any δ > 0,
maxθ∈Θ,|θ−θ0|≥δ R0(θ) − R0(θ0) < 0. With the uniformly weak convergence of n−1 ∑n

t=1 ln πP(xt; θ)

to R0(θ), it follows that the Assumption 3 of Chernozhukov and Hong (2003) is satisfied according
to the Lemma 1 in Chernozhukov and Hong (2003). By the continuity of J0(θ) ≡ −g0(θ)

TS−1
0 g0(θ)

and the compactness of Θ, together with the identification assumption for the moment condition, we
know that for any δ > 0, maxθ∈Θ,|θ−θ0|≥δ J0(θ) − J0(θ0) < 0. With the uniformly weak convergence
of n−1 ∑n

t=1 g(xt, yt, θ) to g0(θ), it follows that the Assumption 3 of Chernozhukov and Hong (2003) is
satisfied according to the Lemma 1 in Chernozhukov and Hong (2003).
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And, the true parameter θ0 is identified by the moment conditions in the sense that

EQ0 [g(x, y, `)] = 0 only if θ = θ0.

Assumption FF 9

The feature function f : Θ → R is twice continuously differentiable. We assume that

there exist DΘ − 1 twice continuously differentiable functions f2, · · · , fDθ
on Θ such

that F = ( f , f2, · · · , fDθ
) : Θ → RDΘ is a one-to-one mapping (i.e. injection) and F(Θ)

is a connected and compact DΘ-dimensional subset of RDΘ .

Lemmas

As emphasized by ?, the mixing conditions serve as an operating assumption for eco-

nomic and financial processes, because mixing assumptions are difficult to verify or

test. However, ? argues that the restriction is not so restrictive in the sense that a wide

class of transformations of mixing processes are themselves mixing.

Lemma 1. Let zt = Z ((xt+ø0 , yt+ø0), · · · , (xt+ø, yt+ø)) where Z is a measurable function

onto RDz and two integers τ0 < τ. If {xt, yt} is uniform mixing with uniform mixing coeffi-

cients φ(m) ≤ Cm−λ for some λ > 0 and C > 0, then {zt} is uniform mixing with uniform

mixing coefficients φz(m) ≤ Czm−λ for some Cz > 0.

Proof. It can be derived directly from the definition of uniform mixing. �

The following classical result is put here for easy reference. And, it easily leads to a

corollary which will be used repeatedly.

Lemma 2. For any two σ−fields F1 and F2, it holds that

ρmax(F1,F2) ≤ 2 [φ(F1,F2)]
1/2 .

9A simple sufficient condition for Assumption FF to hold is that f is a proper and twice continuously
differentiable function on RDΘ and ∂ f (θ)

∂θ(1)
> 0 at each θ ∈ RDΘ . In this case, we can simply choose

fk(θ) ≡ θ(k) for k = 2, · · · , d. Then, the Jacobian determinant of F is nonzero at each θ ∈ RDΘ and F
is proper and twice differentiable mapping RDΘ → RDΘ . According to the Hadamard’s Global Inverse
Function Theorem (see e.g. Krantz and Parks, 2013), we know that F is a one-to-one mapping and F(Θ)
is a connected and compact DΘ-dimensional subset of RDΘ .
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Proof. The proof can be found in Ibragimov (1962) or Doob (1950, Lemma 7.1). �

Corollary 5. Let {zt} be strictly stationary process satisfying uniform mixing such that

φ(m) ≤ Cm−λ for some λ > 0 and C > 0, then the autocorrelation function satisfies

maxi,j

∣∣∣Corr(z(i),t, z(j),t+m)
∣∣∣ ≤ 2

√
Cm−λ/2 where z(i),t is the i-th element of zt.

Proof. It directly follows from Lemma 1 and Lemma 2. �

Lemma 3. Let {zt} be a sequence of strictly stationary random vectors such that EP0 |zt|2 <

+∞ and it satisfies the uniform mixing condition with φ(m) ≤ Cm−λ for some λ > 2 and

C > 0. Then, limn→∞ nvar0
(
n−1 ∑n

t=1 zt
)
= V0 < +∞.

Proof. Let z(i),t be the i-th element of vector zt. Denote σ2
i ≡ var0(z(i),t) for each i. And,

we denote the cross correlation to be ρi,j(τ) ≡ Corr(z(i),t, z(j),t+ø) for all t, τ, i and j.

Then, we have, for each pair of i and j,

nCov0

(
n−1

n

∑
t=1

z(i),t, n−1
n

∑
t=1

z(j),t

)

= σiσj

[
ρi,j(0) + 2

n− 1
n

ρi,j(1) + · · ·+ 2
1
n

ρi,j(n− 1)
]

.

According to Corollary 5, we know that ρi,j(m) = o(m−1). Thus, by verifying the

Cauchy condition, we know that ρi,j(0) + 2n−1
n ρi,j(1) + · · ·+ 2 1

n ρi,j(n− 1) converges to

a finite constant. �

The following two lemmas are extensions of Propositions 6.1 - 6.2 in Clarke and

Barron (1990, Page 468-470). Lemma 4 shows that analogs of the soundness condi-

tion for certain metrics on probability measures imply the existence of strongly uni-

formly exponentially consistent (SUEC) hypothesis tests. A composite hypothesis

test is called uniformly exponentially consistency (UEC) if its type-I and type-II er-

rors are uniformly upper bounded by e−ξn for some positive ξ, over all alternatively

(see e.g. Barron, 1989). A strongly uniformly exponentially consistent (SUEC) test is

a hypothesis test whose type-I and type-II errors are upper bounded by e−ξn for some

positive constant ξ, uniformly over all alternatives and all null parametric models over
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two subsets in the probability measure space. Lemma 5 shows that metrics with the de-

sirable consistency property exists, which extends Proposition 6.2 in Clarke and Barron

(1990).

Lemma 4. Suppose dG is a metric on the space of probability measures on X with the property

that for any ε > 0, there exists ξ > 0 and C > 0 such that

Pn

{
dG(P̂n, P) > ε

}
≤ Ce−ξn, (A.73)

uniformly over all probability measures Pn, where P̂n is the empirical distribution. And, the

metric dG also satisfies

dG(Pθ′ , Pθ)→ 0 ⇒ θ′ → θ. (A.74)

Then, for any δ > δ1 ≥ 0 and for each θ ∈ Ω(θ0, δ1), there exists a SUEC hypothesis test of

ϑ = θ ∈ Ω(θ0, δ1) versus alternative Ω(θ0, δ)c.

Proof. The proof is an extension based on that of Lemma 6.1 in Clarke and Barron

(1990). From (A.74), for any given δ > δ1 ≥ 0, there exists ε1 > 0 such that it holds

dL({θ}, Ω(θ0, δ)c) > δ − δ1 > 0 implies that dG(Pθ, Pθ′) > ε1 for all θ′ ∈ Ω(θ0, δ)c.

Thus, for any δ > δ1 ≥ 0, there exists ε1 > 0 such that, dG(Pθ, Pθ′) > ε1 for all

θ ∈ Ω(θ0, δ1) and θ′ ∈ Ω(θ0, δ)c. Therefore, if we have a SUEC test of

H0 : P = Pθ versus HA : P ∈ {P̃ : dG(P̃, Pθ) > ε1}, θ ∈ Ω(θ0, δ1).

then we have a SUEC test of

H0 : θ′ = θ versus HA : P ∈ {P̃ : |θ′ − θ| > δ− δ1}, θ ∈ Ω(θ0, δ1).

Let P̂n be the empirical distribution, choose ε = ε1/2 and let

Aθ,n ≡ {xn : dG(P̂n, Pθ) ≤ ε}
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be the acceptance region. By (A.73), we have that the probability of type-I error satisfies

Pθ,nA
c
θ,n ≤ Ce−ξn, for some ξ > 0 and C > 0, uniformly over θ ∈ Ω(θ0, δ1).

We want to show that the probability of type-II error Pθ′Aθ,n is exponentially small

uniformly over θ′ ∈ Ω(θ0, δ)c and θ ∈ Ω(θ0, δ1).

Using triangular inequality, we have for any θ ∈ Ω(θ0, δ1) and θ′ ∈ Ω(θ0, δ)c

2ε ≤ dG(Pθ, Pθ′) ≤ dG(Pθ, P̂n) + dG(P̂n, Pθ′). (A.75)

By definition and inequality (A.75), for each θ ∈ Ω(θ0, δ1), on the acceptance region

Aθ,n, we have

2ε < ε + dG(P̂n, Pθ′) for any θ′ ∈ Ω(θ0, δ)c. (A.76)

and hence, for each θ ∈ Ω(θ0, δ1), on the acceptance region Aθ,n, it holds that

dG(P̂n, Pθ′) > ε.

Therefore, for each θ ∈ Ω(θ0, δ1) and each θ′ ∈ Ω(θ0, δ)c, we have

Pθ′,nAθ,n ≤ Pθ′,n

{
dG(P̂n, Pθ′) > ε

}
≤ Ce−ξn.

�

Lemma 5. For a space of probability measures P on a separable metric space X such that the

mixing coefficient φ(m) ≤ Ψm−λ with Ψ > 0 and λ ≥ 2 being universal constant (inde-

pendent of P), denoted as P(Ψ, λ), there exists a metric dG(P, Q) that satisfies the property

(A.73) and such that convergence in dG implies the weak convergence of the measures. Thus,

in particular, for probability measures in a parametric family

dG(Pθ′ , Pθ)→ 0⇒ Pθ′ → Pθ. (A.77)
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Proof. We extend the proof for the existence result in Proposition 6.2 in Clarke and Bar-

ron (1990) to allow for weak dependence. Let {Fi : i = 1, 2, · · · } be the countable field

of sets generated by balls of the form
{

x : dX(x, sj1) ≤ 1/j2
}

for j1, j2 = 1, 2, · · · , where

dX denotes the metric for the space X and s1, s2, · · · is a countable dense sequence of

points in X. Define a metric on the space of probability measures as follows

dG(P, Q) =
∞

∑
i=1

2−i|PFi −QFi|.

According to Gray (1988, Page 251–253), if dG(Pn, P) → 0, then Pn converges weakly

to P. Now, for any ε > 0, we choose k ≥ 1− ln (ε) / ln(2). Thus,

dG(P̂n, P) ≤
k

∑
i=1

2−i
∣∣∣P̂nFi −PFi

∣∣∣+ ∞

∑
i=k+1

2−i ≤ max
1≤i≤k

∣∣∣P̂nFi −PFi

∣∣∣+ ε/2.

Then, we have

P
{

dG(P̂, P) > ε
}
≤ P

{
max
1≤i≤k

∣∣∣P̂nFi −PFi

∣∣∣ > ε/2
}
≤

k

∑
i=1

P
{∣∣∣P̂nFi −PFi

∣∣∣ > ε/2
}

The Hoeffding-type inequality for uniform mixing process (see, e.g. Roussas, 1996,

Theorem 4.1) guarantees that there exists C1 > 0 and ξ > 0 such that

sup
P∈P(Ψ,λ)

P
{∣∣∣P̂nFi −PFi

∣∣∣ > ε/2
}
≤ C1e−ξn.

Thus,

P
{

dG(P̂n, P) > ε
}
≤ Ce−ξn, (A.78)

with C = kC1. �

Lemma 6 extends the large deviation result of Schwartz (1965, Lemma 6.1) to al-

low time dependence in the data process. Let zn = (z1, · · · , zn) be strictly stationary

and uniform mixing with φ(m) = O
(
m−λ

)
for some positive λ. The process zn have

the joint density Pθ,n. Denote the mixture distribution of the parametric family Pθ,n
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with respect to the conditional prior distribution πP(·|Nc) to be PNc,n with density

πP(zn|Nc). More precisely, we define

πP(zn|Nc) ≡
∫
Nc

πP(zn|θ)πP(θ|Nc)dθ. (A.79)

Lemma 6. Assume that the mixing coefficient power λ > 2. Suppose there exist strongly

uniformly exponentially consistent (SUEC) tests of hypothesis θ ∈ N0 against the alternative

θ ∈ Nc such that N0 ⊂ N with dL(N0,Nc) ≥ δ for some δ > 0. Then, there exists ξ > 0 and

a positive integer k such that, for all θ ∈ N0,

||Pθ,n −PNc,n||TV ≥ 2(1− 2e−ξm), where m + k ≤ n.

Proof. We assume that there exists a sequence of SUEC tests, denoted by {An}, for any

sample with size n. Then, there exists a positive integer k such that for all n ≥ k

Pθ,nAn <
1
8

for all θ ∈ N0 and (A.80)

Pθ′,nAn > 1− 1
8

for all θ′ ∈ Nc. (A.81)

For each j = 1, 2, · · · , we define

Ak,j = Ak
(
zj+1, · · · , zj+k

)
, (A.82)

then, according to Lemma 1,

Ym =
1
m

m

∑
j=1

Ak,j (A.83)

is an average of strictly stationary and uniform mixing such that φ(m) ≤ φ*m−λ. The

expectation of Ym, under distribution Pθ,n, is µ(θ) with

µ(θ) =

 < 1
8 if θ ∈ N0

> 7
8 if θ ∈ Nc.

(A.84)
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By Corollary 5 and the uniform mixing conditions with λ > 2, together with the fact

that Ak,j ∈ [0, 1], we know that the assumptions of Theorem 2.4 in ? holds and hence

the CLT for the time series holds, i.e.

m1/2Ym
d−→ N(µ(θ), V(θ)), (A.85)

where V(θ) = limm→+∞ Pθ,n

[
m1/2 ∑m

j=1(Ak,j − µ(θ))
]2

. From Lemma 3, we know that

V(θ) ≤ V* < ∞. Therefore, the moment generating functions converge

m−1 ln Pθ,netmYm → 1
2

t2V(θ). (A.86)

On the one hand, when θ ∈ Nc, we have µ(θ) > 1
4 , according to Theorem 8.1.1 of

Taniguchi and Kakizawa (2000), we can achieve the following large deviation result

lim
m→+∞

m−1 ln Pθ,n

{
Ym ≤

1
4

}
= − 1

32V(θ)
≤ − 1

32V*
. (A.87)

Therefore, there exists ξ1 > 0 such that

Pθ,n

{
Ym ≤

1
4

}
≤ e−ξ1m for all θ ∈ Nc. (A.88)

Thus,

PNc,n

{
Ym ≤

1
4

}
=
∫
Nc

Pθ,n

{
Ym ≤

1
4

}
πP(θ|Nc)dθ ≤ e−ξ1m, for n ≥ m + k. (A.89)

On the other hand, when θ ∈ N0, we have µ(θ) < 1
4 , according to Theorem 8.1.1 of

Taniguchi and Kakizawa (2000), we obtain the large deviation result

lim
m→+∞

m−1 ln Pθ,n

{
Ym ≥

1
4

}
= − 1

32V(θ)
≤ − 1

32V*
. (A.90)
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Therefore, there exists ξ2 > 0 such that

Pθ,n

{
Ym ≥

1
4

}
≤ e−ξ2m. (A.91)

For ξ = min(ξ1, ξ2), it follows that

||Pθ,n −PNc,n||TV = 2 sup
A∈F
|Pθ,n A−PNc,n A| ≥ 2(1− 2e−ξm) (A.92)

for m + k ≤ n by considering A = {Ym ≤ 1
4}. �

The Intermediary Propositions

First, we introduce the generalized information equality. The information equality is

known to hold for regular and correctly specified likelihood functions. The following

proposition shows that the generalized information equality also holds for regular and

correctly specified optimal generalized method of moments. This result is directly bor-

rowed from Kim (2002, Theorem 2) and the proof can be found there. We introduce it

here just for convenient references.

Proposition 14. Suppose that the regularity assumptions in Subsection A.3.3 hold. Then, it

is true that

lim
n→∞

EQ0

[
1
n

(
∂ ln πQ(xn, yn|θ0)

∂θT

)(
∂ ln πQ(xn, yn|θ0)

∂θT

)T
]

= lim
n→∞
−EQ0

[
1
n

∂2 ln πQ(xn, yn|θ0)

∂θ∂θT

]
.

The following two propositions on asymptotic normality of conditional MLE and

GMM estimators for time series are general and based on standard results. We intro-

duce them mainly for easy references.

Proposition 15. Suppose that the regularity assumptions in Subsection A.3.3 hold. Let θ̂P to

be the conditional MLE estimator for the m-dependent sequence xt with t = 1, · · · , n. Then,
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we have
√

n(θ̂P − θ0) N(0, IP(θ0)
−1).

Proof. The proof is based on the classical results in van der Vaart (1998, Theorem 5.41)

and ?, Theorem 2.3 & 2.4. Let

ψθ(xt) =
∂

∂θ
ln πP(xt; θ).

Then, we have ψ̇θ(xt) =
∂2

∂θ∂θT ln πP(xt; θ). We know that

EP0ψθ0(xt) =
∫

πP(xt, xt−1, · · · , xt−m0 |θ0)

× ∂πP(xt|θ, xt−1, · · · , xt−m0)

πP(xt|θ, xt−1, · · · , xt−m0)
d(xt, xt−1, · · · , xt−m0)

=
∫

πP(xt−1, · · · , xt−m0 |θ0)d(xt−1, · · · , xt−m0)

×
∫

∂πP(xt|θ0, xt−1, · · · , xt−m0)dxt

Because
∫

∂πP(xt|θ0, xt−1, · · · , xt−m0)dxt = 0 almost everywhere, we have the rela-

tionship EP0ψθ0(xt) = 0. Thus, the assumption A(i) of Theorem 2.4 in White and

Domowitz (1984) is satisfied for ψθ(xt).

Assumption F, together with Assumption M and Lemma 2, the assumptions A(ii)

and A(iii) of Theorem 2.4 in White and Domowitz (1984) are satisfied for ψθ(xt). It

also guarantees that the dominating assumption in Theorem 2.3 of White and Do-

mowitz (1984) for ψ̇θ(xt). Thus, the uniform law of large numbers (ULLN) holds, i.e.

n−1 ∑n
t=1 ψ̇θ(xt) → EP0 [ψ̇θ(xt)] uniformly on Θ. According to Assumption F, the ma-

trix IP(θ0) ≡ EP0

[
ψ̇θ0(xt)

]
is positive definite.

By definition, the conditional MLE θ̂P sets

1
n

n

∑
t=1

ψ
θ̂P
(xt) = 0.
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By Taylor expansion, we have

√
n(θ̂P − θ0) = −

[
n−1

n

∑
t=1

ψ̇θ̃(xt)

]−1 [
1√
n

n

∑
t=1

ψθ0(xt)

]
, (A.93)

where θ̃ is on the segment between θ̂P and θ0. Now, let’s first show that θ̂P con-

verges to θ0. Because θ0 is identified according to Assumption ID and the condition

EP0 [ln πP(xt; θ)] < ∞ for all θ ∈ Θ according to Assumption F, by Jensen’s inequal-

ity, we have LP(θ) − LP(θ0) > 0 with inequality holds for all θ ̸= θ0. We define

LP(θ) ≡ EP0 [− ln πP(xt; θ)]. Besides, according to Theorem 2.3 in White and Do-

mowitz (1984), we have n−1 ∑n
t=1 ln πP(xt; θ) → LP(θ) a.s. uniformly in θ ∈ Θ. The

uniform convergence and identification of θ0 guarantees that θ̂P → θ0 in P0,n. There-

fore, we have

n−1
n

∑
t=1

ψ̇θ̃(xt)→ IP(θ0) in P0,n.

In the end, by Theorem 2.4 of White and Domowitz (1984), we have the asymptotic

normality result for the mixing process:

1√
n

n

∑
t=1

ψθ0(xt) N(0, IP(θ0)).

Therefore, from Equation (A.93), we have

√
n(θ̂P − θ0) N(0, IP(θ0)

−1).

�

Proposition 16. Suppose that the regularity assumptions in Subsection A.3.3 hold. Let θ̂Q to

be the GMM estimator for the sequence (xt, yt) with t = 1, · · · , n. Then, we have

√
n(θ̂Q − θ0) N(0, IQ(θ0)

−1).

Proof. All the assumptions of Lemma 1 in Newey (1985) are satisfied under the regu-
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larity conditions in Subsection A.3.3. Then, we have

√
n(θ̂Q − θ0) = −(GT

0 S−1
0 G0)

−1GT
0 S−1

0
1√
n

n

∑
t=1

g(xt, yt, θ0) + op(1)

where
1√
n

n

∑
t=1

g(xt, yt, θ0) N(0, S0).

�

Proposition 17. Denote θ(1) to be the first element in θ. Then, we have

DKL(πQ(θ(1)|xn, yn)||πP(θ(1)|xn)) ≤ DKL(πQ(θ|xn, yn)||πP(θ|xn)). (A.94)

Proof. Denote θ(−1) to be the vector containing all parameters other than θ(1) in θ. Then,

we have

DKL (πQ(θ|xn, yn)||πP(θ|xn))

= E
θ(1)DKL

(
πQ(θ(−1)|xn, yn, θ(1))||πP(θ(−1)|xn, θ(1))

)
(A.95)

+ DKL

(
πQ(θ(1)|xn, yn)||πP(θ(1)|xn)

)
.

Because the term (A.95) is nonnegative, the result of the proposition is proved. �

Definition 10. We define the following quantities which are expected negative log (limited

information) likelihood will be used repeatedly in the proofs.

HQ(θ) ≡
1
2

g0(θ)
TS−1

0 g0(θ), and HP(θ) ≡ −
∫

πP(x|θ0) ln πP(x; θ)dx. (A.96)

Define the sample correspondences as

ĤQ,n(θ) ≡
1
2

[
1
n

n

∑
t=1

g(xt, yt, θ)

]
S−1

0

[
1
n

n

∑
t=1

g(xt, yt, θ)

]
(A.97)
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and

ĤP,n(θ) ≡ −
1
n

n

∑
t=1

ln πP(xt; θ). (A.98)

Proposition 18. Under the regularity conditions in Subsection A.3.3, we have

ĤQ,n(θ)→ HQ(θ) and ĤP,n(θ)→ HP(θ) a.s. uniformly in θ ∈ Θ.

Proof. Simply follows the uniform law of large numbers (ULLN) in White and Do-

mowitz (1984, Theorem 2.3). �

Proposition 19. Under the assumptions in Subsection A.3.3, it holds that

DKL(πP(θ|xn)||N(θ̂P, n−1IP(θ0)
−1))→ 0 in P0,n.

Proof. Our proof is mainly based on Theorem 2.1 in Clarke (1999) which is under the

i.i.d. condition. In particular, we need to adjust two parts of the proof there, in order to

extend the result to the case that the observations are time series with uniform mixing.

First, we consider the quantity ĤP,n(θ) defined in (A.98). When n is large enough, we

obtain that

sup
θ∈Θ
|ĤP,n(θ)| ≤ 1 +

1
n

n

∑
t=1

sup
θ∈Θ
| ln πP(xt; θ)|.

According to Assumption F and Assumption M, it follows from Theorem 2.3 of White

and Domowitz (1984) that

1
n

n

∑
t=1

sup
θ∈Θ
| ln πP(xt; θ)| → EP0 sup

θ∈Θ
| ln πP(xt; θ)| a.s.

Thus, we have supθ∈Θ |ĤP,n(θ)| = Op(1).

The second part is to show that

∫
uTu

∣∣∣πP(θ̂
P + u/

√
n|xn)− ϕP(u)

∣∣∣du→ 0 in P0,n (A.99)
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where ϕP(u) =

√
detIP(θ0)

(2π)DΘ
exp

[
−1

2 uTIP(θ0)u
]
.

In Clarke (1999), it shows that when x1, · · · , xn are i.i.d., the limit result (A.100)

is satisfied under the regularity conditions in Subsection A.3.3. To extend this limit

result to allow weak dependence, we appeal to Theorem 1 and Proposition 3 of Cher-

nozhukov and Hong (2003) whose conditions are implied by the regularity assump-

tions in Subsection A.3.3. �

Proposition 20. Under the assumptions in Subsection A.3.3, it holds that

DKL(πQ(θ|xn, yn)||N(θ̂Q, n−1IQ(θ0)
−1))→ 0 in Q0,n.

Proof. Our proof is mainly based on Theorem 2.1 in Clarke (1999) which is under the

i.i.d. condition and likelihood setting. In particular, we need to adjust two parts of the

proof there, in order to extend the result to uniform mixing time series in GMM setting.

First, we consider the quantity ĤQ,n(θ) defined in (A.97). Then, it follows that

sup
θ∈Θ
|ĤQ,n(θ)| ≤

1
2λm(S0)n

n

∑
t=1

a1(xt, yt) = Op(1),

where the inequality is due to the definition of the smallest eigenvalue λm(S0) and the

regularity condition D in Section A.3.3, and the Op(1) probabilistic control is due to

the Law of Large Numbers.

The second part is to show that

∫
uTu

∣∣∣πQ(θ̂
Q + u/

√
n|xn)− ϕQ(u)

∣∣∣du→ 0 in Q0,n, (A.100)

where ϕQ(u) =

√
detIQ(θ0)

(2π)DΘ
exp

[
−1

2 uTIQ(θ0)u
]
.

In Clarke (1999), it shows that when x1, · · · , xn are i.i.d., the limit result (A.100)

is satisfied under the regularity conditions in Subsection A.3.3. To extend this limit

result to allow weak dependence, we appeal to Theorem 1 and Proposition 1 of Cher-

nozhukov and Hong (2003) whose conditions are implied by the regularity assump-
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tions in Subsection A.3.3. �

Corollary 6. Denote v ≡ ∇ f (θ0). Under the assumptions in Subsection A.3.3, we have

DKL

(
πP( f (θ)|xn)||N( f (θ̂P), n−1vTIP(θ0)

−1v)
)
→ 0 in P0,n, (A.101)

and

DKL

(
πQ( f (θ)|xn, yn)||N( f (θ̂Q), n−1vTIQ(θ0)

−1v)
)
→ 0 in Q0,n, (A.102)

Proof. Because of Assumption FF and the assumptions in Subsection A.3.3 are invari-

ant under invertible and second-order smooth transformations, without loss of gener-

ality, we assume that f (θ) = (θ(1), θ(2), · · · , θ(D f )
). Applying Proposition 17, Proposi-

tion 19 and Proposition 20, we know that the results hold. �

Definition 11. We define the observed Fisher information matrices as

ÎP,n(θ) ≡ −
1
n

∂2

∂θ∂θT ln πP(xn|θ) = − 1
n

n

∑
t=1

∂2

∂θ∂θT ln πP(xt; θ) + op(1), (A.103)

and

ÎQ,n(θ) ≡
[

1
n

n

∑
t=1

∂

∂θ
g(xt, yt, θ)

]T

S−1
0

[
1
n

n

∑
t=1

∂

∂θ
g(xt, yt, θ)

]
. (A.104)

Definition 12. The empirical score functions are

sP,n(θ) ≡
1
n

∂

∂θ
ln πP(xn|θ) = 1

n

n

∑
i=1

∂

∂θ
ln πP(xt; θ),
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and

sQ,n(θ) ≡
1
n

∂

∂θ
ln πQ(xn, yn|θ)

= −1
2

∂

∂θ


[

1
n

n

∑
t=1

g(xt, yt, θ)

]T

S−1
0

[
1
n

n

∑
t=1

g(xt, yt, θ)

]
= −

[
1
n

n

∑
t=1

∂

∂θ
g(xt, yt, θ)

]T

S−1
0

[
1
n

n

∑
t=1

g(xt, yt, θ)

]
.

The standardized empirical score functions are

SP,n(θ) =
√

nsP,n(θ), and SQ,n(θ) =
√

nsQ,n(θ).

Proposition 21. Under the assumptions in Subsection A.3.3, the uniform law of large num-

bers (ULLN) holds:

sup
θ∈Θ

∣∣∣∣∣∣̂IQ,n(θ)− IQ(θ)
∣∣∣∣∣∣
S
→ 0 in Q0,n, (A.105)

where

IQ(θ) ≡ G0(θ)
TS−1

0 G0(θ).

Proof. Recall

ÎQ,n(θ) =

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]
.

Thus, we need to show that

sup
θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣
[

1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]
− IQ(θ)

∣∣∣∣∣∣
∣∣∣∣∣∣
S

= op(1).
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We first consider the following decomposition

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]
− IQ(θ)

=
1
2

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
+ G0

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0

]

+
1
2

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
+ G0

]

By the triangular inequality of spectrum norm, it follows that∣∣∣∣∣∣
∣∣∣∣∣∣
[

1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]
− IQ(θ)

∣∣∣∣∣∣
∣∣∣∣∣∣
S

≤ 1
2

∣∣∣∣∣∣
∣∣∣∣∣∣
[

1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
+ G0

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0

]∣∣∣∣∣∣
∣∣∣∣∣∣
S

+
1
2

∣∣∣∣∣∣
∣∣∣∣∣∣
[

1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
+ G0

]∣∣∣∣∣∣
∣∣∣∣∣∣
S

=

∣∣∣∣∣∣
∣∣∣∣∣∣
[

1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
+ G0

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0

]∣∣∣∣∣∣
∣∣∣∣∣∣
S
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Now, by using Cauchy-Schwarz inequality, we have∣∣∣∣∣∣
∣∣∣∣∣∣
[

1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ

]
− IQ(θ)

∣∣∣∣∣∣
∣∣∣∣∣∣
S

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
[

1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
+ G0

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
+ G0

]∣∣∣∣∣∣
∣∣∣∣∣∣
1/2

S

×

∣∣∣∣∣∣
∣∣∣∣∣∣
[

1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0

]T

S−1
0

[
1
n

n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0

]∣∣∣∣∣∣
∣∣∣∣∣∣
1/2

S

≤
∣∣∣∣∣
∣∣∣∣∣ 1n n

∑
t=1

∂g(xt, yt, θ)

∂θ
+ G0(θ)

∣∣∣∣∣
∣∣∣∣∣
S

∣∣∣∣∣
∣∣∣∣∣ 1n n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0(θ)

∣∣∣∣∣
∣∣∣∣∣
S

/λm(S0)

≤
[

1
n

n

∑
t=1

∣∣∣∣∣∣∣∣∂g(xt, yt, θ)

∂θ

∣∣∣∣∣∣∣∣
S

+ ||G0(θ)||S

] ∣∣∣∣∣
∣∣∣∣∣ 1n n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0(θ)

∣∣∣∣∣
∣∣∣∣∣
S

/λm(S0)

≤
[

1
n

n

∑
t=1

a1(xt, yt)
1/2 + EQ0 a1(x, y)1/2

] ∣∣∣∣∣
∣∣∣∣∣ 1n n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0(θ)

∣∣∣∣∣
∣∣∣∣∣
S

/λm(S0)

By Theorem 2.3 of White and Domowitz (1984), the ULLN implies that

sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣ 1n n

∑
t=1

∂g(xt, yt, θ)

∂θ
− G0(θ)

∣∣∣∣∣
∣∣∣∣∣
S

→ 0 in Q0,n.

Thus, we complete the proof. �

Proposition 22. Under the assumptions in Subsection A.3.3, the uniform law of large num-

bers (ULLN) holds:

sup
θ∈Θ

∣∣∣∣∣∣̂IP,n(θ)− IP(θ)
∣∣∣∣∣∣
S
→ 0 in P0,n, (A.106)

where

IP(θ) ≡ −EP0

[
∂2

∂θ∂θT ln πP(x; θ)

]
.

Proof. By applying Theorem 2.3 of White and Domowitz (1984), the ULLN gives

− 1
n

n

∑
t=1

∂2

∂θ∂θT ln πP(xt; θ)→ IP(θ) a.s. uniformly in Θ.
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Corollary 7. Under the assumptions in Subsection A.3.3, for any sequence of random variables

θ̃n such that θ̃n → θ0 in Q0,n, we have

ÎQ,n(θ̃n)→ IQ(θ0) in Q0,n, and ÎP,n(θ̃n)→ IP(θ0) in P0,n,

where ÎP,n(θ̃) and ÎQ,n(θ̃) are observed Fisher Information matrixes defined in (A.103) and

(A.104), respectively.

Proposition 23. Under the assumptions in Subsection A.3.3, it holds that the Hausman test

statistic based on GMM estimation satisfies

n(θ̂P − θ̂Q)T
[
IP(θ0)

−1 − IQ(θ0)
−1
]−1

(θ̂P − θ̂Q) χ2
DΘ

Proof. The estimator θ̂Q is GMM estimator under constrained model and θ̂P is MLE

under unconstrained model. Under the constrained model Q0, the estimator θ̂Q is

asymptotic efficient with asymptotic variance n−1IQ(θ0)
−1, while the estimator θ̂P is

asymptotic normal but not asymptotic efficient. The estimator θ̂Q becomes inconsis-

tent when Q0 is false, while the estimator θ̂P is always consistent since P0 is assumed

always to be true. Thus, the statistic

n(θ̂P − θ̂Q)T
[
IP(θ0)

−1 − IQ(θ0)
−1
]−1

(θ̂P − θ̂Q)

is effectively the Hausman specification test statistic based on GMM for subset of mo-

ments. In fact, the result directly follows from Theorem 3 of Newey (1985) with DΘ to

be the rank of IP(θ0)
−1 − IQ(θ0)

−1. �

Proposition 24. Denote v ≡ ∇ f (θ0). Under the assumptions in Subsection A.3.3, it holds

that the Hausman test statistic based on MLEs satisfies

n( f (θ̂P)− f (θ̂Q))T
[
vTIP(θ0)

−1v− vTIQ(θ0)
−1v

]−1
( f (θ̂P)− f (θ̂Q)) χ2

D f
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Proof. By using the Delta method and Proposition 23, it follows that
√

n( f (θ̂P)− f (θ̂Q))

has asymptotic normal distribution with the asymptotic covariance matrix

vTIP(θ0)
−1v− vTIQ(θ0)

−1v.

According to continuous mapping theorem, we know that the result holds. �

Proposition 25. Suppose that the assumptions in Subsection A.3.3 are satisfied. Define the

sets

I1,n(δ, η) ≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣∣∣IP(θ)
−1
∣∣∣∣∣∣−1

S
, ∀ θ ∈ Ω(θ0, δ) and θ̃ ∈ Ω(θ, δ)

}
,

and

I2,n(θ, δ, η) ≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣∣∣IP(θ)
−1
∣∣∣∣∣∣−1

S
, ∀ θ̃ ∈ Ω(θ, δ)

}
.

Then, for any η > 0 there exists small enough positive constants δ1 and δ such that

P0,nI1,n(δ, η)c = o
(

1
n

)
and sup

θ∈Ω(θ0,δ1)

Pθ,nI2,n(θ, δ, η)c = o
(

1
n

)
.

Proof. Appealing to the fact that the Spectral norm and the Frobenius norm are equiv-

alent for the DΘ × DΘ matrixes and following the argument on page 49 of Clarke and

Barron (1994) or page 465 of Clarke and Barron (1990), we can prove the results very

similarly. We omit the detailed proofs to avoid tedious repetition of the proofs in Clarke

and Barron (1990) and Clarke and Barron (1994). �

Corollary 8. Suppose that the assumptions in Subsection A.3.3 are satisfied. Define the sets

I3,n(δ, η) ≡
{

1− η ≤
∣∣∣∣∣∣IP(θ)

−1/2ÎP,n(θ̃)IP(θ)
−1/2

∣∣∣∣∣∣
S
≤ 1 + η,

∀ θ ∈ Ω(θ0, δ) and θ̃ ∈ Ω(θ, δ)
}

,
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and

I4,n(θ, δ, η) ≡
{

1− η ≤
∣∣∣∣∣∣IP(θ)

−1/2ÎP,n(θ̃)IP(θ)
−1/2

∣∣∣∣∣∣
S
≤ 1 + η, ∀ θ̃ ∈ Ω(θ, δ)

}
.

Then, for any η > 0 there exists small enough positive constants δ1 and δ such that

P0,nI3,n(δ, η)c = o
(

1
n

)
, and sup

θ∈Ω(θ0,δ1)

Pθ,nI4,n(θ, δ, η)c = o
(

1
n

)
.

Proof. We have

∣∣∣∣∣∣∣∣∣IP(θ)
−1/2ÎP,n(θ̃)IP(θ)

−1/2
∣∣∣∣∣∣
S
− 1
∣∣∣

≤
∣∣∣∣∣∣IP(θ)

−1/2ÎP,n(θ̃)IP(θ)
−1/2 − I

∣∣∣∣∣∣
S

=
∣∣∣∣∣∣IP(θ)

−1/2
[
ÎP,n(θ̃)− IP(θ)

]
IP(θ)

−1/2
∣∣∣∣∣∣
S

≤
∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S

∣∣∣∣∣∣IP(θ)
−1
∣∣∣∣∣∣
S

(A.107)

The first inequality is due to the triangular inequality for spectral norm. The second

inequality is because for each unit vector v inRd,

vTIP(θ)
−1/2

[
ÎP,n(θ̃)− IP(θ)

]
IP(θ)

−1/2v

≤ λM

(
ÎP,n(θ̃)− IP(θ)

) ∣∣∣vTIP(θ)
−1/2

∣∣∣2
=
∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S

vTIP(θ)
−1v

≤
∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S

∣∣∣∣∣∣IP(θ)
−1
∣∣∣∣∣∣
S

.

Therefore, the results of this corollary follow directly from the inequality (A.107) and

the results of Proposition 25. �

Proposition 26. Under the assumptions in Subsection A.3.3, for any η > 0 there exists δ > 0

such that

P0,n

{
sup

θ∈Ω(θ0,δ)
sP,n(θ)

TIP(θ)
−1sP,n(θ) < η

}c

= o(1).
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Proof. Due to the continuity, we know that there exists δ1 > 0 such that for all θ ∈

Ω(θ0, δ1),

1
2
< λm

(
IP(θ)

−1/2IP(θ0)IP(θ)
−1/2

)
≤ λM

(
IP(θ)

−1/2IP(θ0)IP(θ)
−1/2

)
< 2.

It follows that for all θ ∈ Ω(θ0, δ1)

sP,n(θ)
TIP(θ)

−1sP,n(θ) ≤ 2sP,n(θ)
TIP(θ0)

−1sP,n(θ)

≤ 4sP,n(θ0)
TIP(θ0)

−1sP,n(θ0)

+ 4 [sP,n(θ)− sP,n(θ0)]
T IP(θ0)

−1 [sP,n(θ)− sP,n(θ0)] .

By Taylor’s expansion of the score function sP,n(θ) around θ0, we know that there

exists θ̃ between θ0 and θ such that

[sP,n(θ)− sP,n(θ0)]
T IP(θ0)

−1 [sP,n(θ)− sP,n(θ0)]

= (θ − θ0)
T ÎP,n(θ̃)IP(θ0)

−1ÎP,n(θ̃)(θ − θ0)

≤ λ−1(θ − θ0)
T ÎP,n(θ̃)

2(θ − θ0). (A.108)

where the inequality above is due to the fact that λ ≤ λ(θ0). According to Proposition

25, there exists δ2 ∈ (0, δ1) such that

P0,nI1,n(δ2, 1)c = o
(

1
n

)
,

where

I1,n(δ2, 1)

≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤
∣∣∣∣∣∣IP(θ)

−1
∣∣∣∣∣∣−1

S
, ∀ θ ∈ Ω(θ0, δ2) and θ̃ ∈ Ω(θ, δ2)

}
.

Therefore, we only need to focus on the big probability set I1,n(δ2, 1). Thus, by the
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triangular inequality, for any θ ∈ Ω(θ0, δ2), we know that

∣∣∣∣∣∣̂IP,n(θ̃)
∣∣∣∣∣∣
S
≤ ||IP(θ)||S +

∣∣∣∣∣∣IP(θ)
−1
∣∣∣∣∣∣−1

S
≤ λ + λ.

Then, following the inequality (A.108), if we restrict on the big probability set

I1,n(δ2, 1), it follows that

[sP,n(θ)− sP,n(θ0)]
T IP(θ0)

−1 [sP,n(θ)− sP,n(θ0)] ≤ λ−1(λ + λ)2|θ − θ0|2.

Therefore, we choose

δ = min

{
δ1, δ2,

√
η

8λ−1(λ + λ)2

}
,

and when θ ∈ Ω(θ0, δ) and xn ∈ I1,n(δ, 1),

sP,n(θ)
TIP(θ)

−1sP,n(θ) ≤ 4sP,n(θ0)
TIP(θ0)

−1sP,n(θ0) +
η

2
.

By Markov’s inequality, it is straightforward to see that

sP,n(θ0)
TIP(θ0)

−1sP,n(θ0)→ 0 in P0,n.

Therefore, we have shown that

P0,n

{
sup

θ∈Ω(θ0,δ)
sP,n(θ)

TIP(θ)
−1sP,n(θ) < η

}c

= o(1).

�

Proposition 27. Let’s define

Sn(δ, η) ≡
{∣∣∣∣∫Ω(θ0,δ)

πP(θ|xn)SP,n(θ)
TIP(θ)

−1SP,n(θ)dθ − DΘ

∣∣∣∣ < η

}
.

Suppose that the assumptions in Subsection A.3.3 hold. For any η > 0, there exists δ > 0 such
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that

P0,nSn(δ, η)c = o(1).

Proof. We first show that for any η > 0

P0,n

{∫
Ω(θ0,δ)

πP(θ|xn)SP,n(θ)
TIP(θ)

−1SP,n(θ)dθ > DΘ + η

}
= o(1). (A.109)

According to Corollary 8, we know that there exists δ1 > 0 such that

P0,nI3,n

(
δ1,

η

2DΘ

)c
= o

(
1
n

)
,

where

I3,n

(
δ1,

η

2DΘ

)
≡
{(

1− η

2DΘ

)1/2

≤
∣∣∣∣∣∣IP(θ)

−1/2ÎP,n(θ̃)IP(θ)
−1/2

∣∣∣∣∣∣
S
≤
(

1 +
η

2DΘ

)1/2

,

∀ θ ∈ Ω(θ0, δ1) and θ̃ ∈ Ω(θ, δ1)
}

.

By Proposition 15, the set An(δ1) ≡
{

θ̂P ∈ Ω(θ0, δ1)
}

has probability going to 1.

Thus, on the big probability event I3,n

(
δ1, η

2DΘ

)
∩ An(δ1), by Taylor’s expansion, we

have

SP,n(θ)
TIP(θ)

−1SP,n(θ)

= n(θ − θ̂P)T ÎP,n(θ̃)IP(θ)
−1ÎP,n(θ̃)(θ − θ̂P)

= n(θ − θ̂P)TIP(θ)
1/2
[
IP(θ)

−1/2ÎP,n(θ̃)IP(θ)
−1/2

]2
IP(θ)

1/2(θ − θ̂P)

≤ n
(

1 +
η

2DΘ

)1/2

(θ − θ̂P)TIP(θ)(θ − θ̂P)

where θ̃ is between θ and θ̂P.
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By the continuity, we know that there exists δ2 > 0 such that for all θ ∈ Ω(θ0, δ2)

∣∣∣∣∣∣IP(θ0)
−1/2IP(θ)IP(θ0)

−1/2
∣∣∣∣∣∣
S
≤
(

1 +
η

2DΘ

)1/2

.

Choose δ ≡ min{δ1, δ2}. Thus, when considering θ ∈ Ω(θ0, δ) and restricting on

the event I3,n

(
δ, η

2DΘ

)
∩An(δ), we have

SP,n(θ)
TI−1

P (θ)SP,n(θ) ≤
(

1 +
η

2DΘ

)
n(θ − θ̂P)TIP(θ0)(θ − θ̂P).

Therefore, we have

∫
Ω(θ0,δ)

πP(θ|xn)SP,n(θ)
TI−1

P (θ)SP,n(θ)dθ

≤
(

1 +
η

2DΘ

) ∫
Ω(θ0,δ)

πP(θ|xn)n(θ − θ̂P)TIP(θ0)(θ − θ̂P)dθ.

According to Theorem 1 and Proposition 3 of Chernozhukov and Hong (2003), we

know that

(
1 +

η

2DΘ

) ∫
Ω(θ0,δ)

πP(θ|xn)n(θ − θ̂P)TIP(θ0)(θ − θ̂P)dθ → DΘ +
η

2
in P0,n.

Therefore, the limit result in (A.109) holds.

The proof of the following limit result is quite similar, ∀ η > 0

P0,n

{∫
Ω(θ0,δ)

πP(θ|xn)SP,n(θ)
TIP(θ)

−1SP,n(θ)dθ > DΘ − η

}
= o(1). (A.110)

So, we ignore the detailed proof. �

Proposition 28. Let’s define

Sv,n(δ, η) ≡
{∣∣∣∣∫Ω(θ0,δ)

πP(θ|xn)
vTIP(θ)

−1SP,n(θ)SP,n(θ)
TIP(θ)v

vTIP(θ)−1v
dθ − 1

∣∣∣∣ < η

}
.

Suppose that the assumptions in Subsection A.3.3 hold. For any η > 0, there exists δ > 0 such
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that

P0,nSv,n(δ, η)c = o(1).

Proof. The proof is similar to that of Proposition 27. �

Proposition 29. Under the assumptions in Subsection A.3.3, for any open subset N ⊂ Θ and

open set N0 ⊂ N such that dL(N
c,N0) > δ for some δ > 0, there exist positive constants C,

ξ1 and ξ2 such that

sup
θ∈N0

Pθ,n

{
πP(xn|θ) ≤ eξ1n

∫
Nc

πP(ϑ)πP(xn|ϑ)dϑ

}
≤ Ce−ξ2n.

Proof. According to Lemma 4 and Lemma 5 at the end of Section A.3.3, the assump-

tions in Subsection A.3.3 guarantee the existence of strongly uniformly exponentially

consistent (SUEC) hypothesis tests.

In particular, for any open subset N ⊂ Θ and N0 ⊂ N such that dL(N,N0) > δ for

some δ > 0, for each θ ∈ N0, there exists a sequence of tests with acceptance region

Aθ,n for null hypothesis θ′ = θ versus θ′ ∈ Nc such that

sup
θ∈N0

Pθ,nA
c
θ,n ≤ Ce−ξn and sup

θ∈N0

sup
θ′∈Nc

Pθ′,nAθ,n < Ce−ξn, for some ξ > 0.

Denote the mixture distribution of Pθ,n with respect to the conditional prior distribu-

tion πP(·|Nc) by PNc,n with density πP(xn|Nc). More precisely, we define

πP(xn|Nc) ≡
∫
Nc

πP(xn|θ)πP(θ|Nc)dθ. (A.111)

Following Lemma 6, we can show that there exist a real number r > 0 such that

||Pθ,n −PNc,n||TV ≥ 2(1− 2e−rn), ∀ θ ∈ N0.
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For any positive sequence εn, by Markov’s inequality, it follows that for each θ ∈ N0

Pθ,n

{
πP(xn|Nc)

πP(xn|θ) > εn

}
≤ 1

ε1/2
n

∫
πP(xn|θ)1/2πP(xn|Nc)1/2dxn

=
1

ε1/2
n

αH(Pθ,n, PNc,n) ≤
1

ε1/2
n

√
1−

(
1
2
||Pθ,n −PNc,n||TV

)2

≤ 1

ε1/2
n

√
1− (1− 2e−rn)2 =

2e−
rn
2

ε1/2
n

√
1− e−rn ≤ 2e−

rn
2

ε1/2
n

.

If we choose εn = e−
rn
4 , then we have

sup
θ∈N0

Pθ,n

{
πP(xn|Nc)

πP(xn|θ) > e−
rn
4

}
≤ 2e−

rn
4 .

�

Proposition 30. Under the assumptions in Subsection A.3.3, for any open subset N ⊂ Θ and

open set N0 ⊂ N such that dL(N
c,N0) > δ for some δ > 0, then there exist positive constants

C, ξ1, ξ2 such that

sup
θ∈N0

Pθ,n

{
πP(xn|θ) ≤ eξ1n

∫
N−1(θ(1))

c
πP(θ

′
(−1)|θ(1))πP(xn|θ(1), θ′(−1))dθ′(−1)

}
≤ Ce−ξ2n. (A.112)

Proof. The proof is the same as that of Proposition 29. �

Proposition 31. Under the assumptions in Subsection A.3.3, for any open neighborhood N ⊂

Θ of θ0 there exist positive constants C and ξ such that

Q0,n

{
πQ(xn, yn|θ0) ≤ eξn

∫
Nc

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
= o(1). (A.113)

Proof. For any open neighborhood N of θ0, from the identification assumption (i.e. As-

sumption ID) and the compactness of Θ, it follows that there exists ε > 0 such that

minθ∈Nc HQ(θ) ≥ ε where HQ(θ) is defined in (A.96). Consider the large probability
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set

An ≡
{

sup
θ∈Θ
|ĤQ,n(θ)− HQ(θ)| < ε/2

}
,

where ĤQ,n(θ) is defined in (A.97).

From Proposition 18, we know that Q0,nAn → 1 as n → ∞. Thus, we only need to

focus on event An. Then, we have

Q0,nAn

{
πQ(xn, yn|θ0) ≤ enε/4

∫
Nc

πP(θ
′)πQ(xn, yn|θ′)dθ′

}
= Q0,nAn

{
e−nĤQ,n(θ0) ≤ enε/4

∫
Nc

πP(θ
′)e−nĤQ,n(θ)dθ′

}
≤ Q0,n

{
e−nĤQ,n(θ0) ≤ enε/4

∫
Nc

πP(θ
′)e−n[HQ(θ

′)−ε/2]dθ′
}

≤ Q0,n

{
e−nĤQ,n(θ0) ≤ enε/4

∫
Nc

πP(θ
′)e−nε/2dθ′

}
≤ Q0,n

{
e−nĤQ,n(θ0) ≤ e−nε/4

}
≤ e−nε/16EQ0enĤQ,n(θ0)/4

Because nĤQ,n(θ0) converges to a chi-squire random variable with degree of freedom

DΘ in distribution, we know that EQ0enĤQ,n(θ0)/4 → 2DΘ/2. Thus,

Q0,nAn

{
πQ(xn, yn|θ0) ≤ enε/4

∫
Nc

πP(θ
′)πQ(xn, yn|θ′)dθ′

}
≤ Ce−nε/16

for some constant C > 0. Therefore, if we take ξ = ε/4, the proof is completed. �

We introduce Le Cam’s theory on hypothesis testing (see, e.g. Le Cam and Yang,

2000, Chapter 8).

Proposition 32. Under the regularity conditions in Subsection A.3.3, there are test func-

tions An and positive coefficients C, ξ, ε and K such that P0,n(1−An) → 0 and Pθ,nAn ≤

Ce−nξ|θ−θ0|2/2 for all θ such that K/
√

n ≤ |θ − θ0| ≤ ε.

Proof. For all z ∈ RK(Dx+Dy), define the rectangular Fz ≡ (−∞, z1]× (−∞, z2]× · · · ×

(−∞, zK(Dx+Dy)]. The empirical process is defined as Π̂n(z) ≡ P̂nFz = n−1 ∑n
t=1 1{zt∈Fz}.

We define Πθ(z) ≡ Pθ Fz. According to Le Cam and Yang (2000, Page 250), there exists
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positive constants c and ε such that supx

∣∣Πθ0(x)−Πθ(x)
∣∣ > c|θ − θ0| for |θ − θ0| ≤ ε.

Denote the expectation to be

µn(θ) ≡ EPθ
sup

x

∣∣Πθ0(x)−Πθ(x)
∣∣ .

By the classical result of weak convergence for the Kolmogorov-Smirnov statistic

√
n sup

x

∣∣Πθ0(x)−Πθ(x)
∣∣ ,

we know that there exists a large constant M such that µn(θ) ≤ M
2c
√

n for all |θ − θ0| ≤

ε. We choose K ≡ 4M
c . Consider the test functions An = {supz

∣∣Πθ0(z)−Πθ(z)
∣∣ <

K/
√

n}. Using triangular inequality, we obtain

Pθ,nAn ≤ Pθ,n

{
c
2
|θ − θ0| ≤ sup

z

∣∣∣Π̂n(z)−Πθ(z)
∣∣∣− µn(θ)

}

Using DvoretzkyŰ-KieferŰ-Wolfowitz type inequality for uniform mixing variables in

Samson (2000, Theorem 3), we can show there exists ξ > 0 such that

Pθ,n

{
c
2
|θ − θ0| ≤ sup

z

∣∣∣Π̂n(z)−Πθ(z)
∣∣∣− µn(θ)

}
≤ e−ξ|θ−θ0|2/2

for all K/
√

n ≤ |θ − θ0| ≤ ε. Thus, Pθ,nAn ≤ e−ξ|θ−θ0|2/2 for all K/
√

n ≤ |θ − θ0| ≤ ε.

By the same inequality, it is straightforward to get P0,n(1−An)→ 0. �

Proposition 33. Under the assumptions in Subsection A.3.3, for any open subsets N ⊂ Θ

and any positive constant ξ, there exists a neighborhood N0 of θ0 such that

sup
θ∈N0

Pθ,n

{
πP(xn|θ) ≥ eξn

∫
N

πP(ϑ)πP(xn|ϑ)dϑ

}
= o

(
1
n

)
. (A.114)

Proof. Let rn = 1/
√

n and it is sufficient to show that

sup
θ∈N0

Pθ,n

{
πP(xn|θ) ≥ eξn

∫
Ω(θ,rn)

πP(ϑ)πP(xn|ϑ)dϑ

}
= o

(
1
n

)
.
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It is equivalent to show that

sup
θ∈N0

Pθ,n

{
ln

πP(xn|θ)
πP(xn|Ω(θ, rn))

≥ ξnn
}

= o
(

1
n

)
,

where

ξn ≡ ξ − 1
n

ln πP(Ω(θ, rn))

with

πP(xn|Ω(θ, rn)) ≡
∫

Ω(θ,rn)

πP(ϑ)

πP(Ω(θ, rn))
πP(xn|ϑ)dϑ.

In fact, we have

πP(Ω(θ, rn)) =
∫

Ω(θ,rn)
πP(ϑ)dϑ ≥ mπΓDΘ

(
1
n

)DΘ/2

,

where ΓDΘ is the volume of the unit ball in RDΘ . Thus,

ξn = ξ −O(n−1 ln n).

Therefore, for all large n, ξn ≥ ξ/2 and hence it suffices to show that

sup
θ∈N0

Pθ,n

{
ln

πP(xn|θ)
πP(xn|Ω(θ, rn))

≥ ξn/2
}

= o
(

1
n

)
.

For each θ ∈ Θ, by Markov’s inequality, we have

Pθ,n

{
ln

πP(xn|θ)
πP(xn|Ω(θ, rn))

≥ ξn/2
}
≤ 4

n2ξ2 EPθ

[
ln

πP(xn|θ)
πP(xn|Ω(θ, rn))

]2

(A.115)

We consider the set

I4,n(θ, δ, 1) ≡
{∣∣∣∣∣∣IP(θ)

−1/2ÎP,n(θ̃)IP(θ)
−1/2

∣∣∣∣∣∣
S
≤ 2, ∀ θ̃ ∈ Ω(θ, δ)

}
.

According to Corollary 8, it follows that there exist positive constants δ and δ0 such
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that

sup
θ∈Ω(θ0,δ0)

Pθ,nI4,n(θ, δ, 1)c = o
(

1
n

)
.

Therefore, we only need to focus on the big probability set I4,n(θ, δ, 1) for each θ ∈

Ω(θ0, δ0).

We choose N0 = Ω(θ0, δ0). We have for each θ ∈ N0 the following equality holds

ln
πP(xn|Ω(θ, rn))

πP(xn|θ) = ln
∫

Ω(θ,rn)
πP(ϑ|Ω(θ, rn))

πP(xn|ϑ)
πP(xn|θ)dϑ

= ln
∫

Ω(θ,rn)
πP(ϑ|Ω(θ, rn))e

√
nSP,n(θ)

T(ϑ−θ)− 1
2 n(ϑ−θ)T ÎP,n(θ̃)(ϑ−θ)dϑ,

where θ̃ is between θ and ϑ.

On the one hand, on the event I4,n(θ, δ, 1), we have

ln
πP(xn|Ω(θ, rn))

πP(xn|θ) ≤ ln
∫

Ω(θ,rn)
πP(ϑ|Ω(θ, rn))e|SP,n(θ)|+||IP(θ)||Sdϑ

= |SP,n(θ)|+ ||IP(θ)||S .

Thus, on the other hand, on the event I4,n(θ, δ, 1), we have by Jensen’s inequality

ln
πP(xn|Ω(θ, rn))

πP(xn|θ)

≥
∫

Ω(θ,rn)

[√
nSP,n(θ)

T(ϑ− θ)− 1
2
(ϑ− θ)T ÎP,n(θ̃)(ϑ− θ)

]
πP(ϑ|Ω(θ, rn))dϑ

≥
∫

Ω(θ,rn)

[√
nSP,n(θ)

T(ϑ− θ)− (ϑ− θ)TIP(θ)(ϑ− θ)
]

πP(ϑ|Ω(θ, rn))dϑ

≥ −|SP,n(θ)| − ||IP(θ)||S

Therefore, we have

[
ln

πP(xn|θ)
πP(xn|Ω(θ, rn))

]2

≤ [|SP,n(θ)|+ ||IP(θ)||S]
2 ≤ 2|SP,n(θ)|2 + 2 ||IP(θ)||2S . (A.116)
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Combining (A.115) and (A.116), we know that

Pθ,n

{
ln

πP(xn|θ)
πP(xn|Ω(θ, rn))

≥ ξn/2
}
≤ 8

n2ξ2

[
EPθ
|SP,n(θ)|2 + EPθ

||IP(θ)||2S
]

≤ 8
n2ξ2

[
tr (IP(θ)) + λM (IP(θ))

2
]
≤ 8(DΘλ + λ

2
)

n2ξ2 .

�

Proposition 34. Under the assumptions in Subsection A.3.3, for any open subsets N ⊂ Θ

and any positive constant ξ, we have

Q0,n

{
πQ(xn, yn|θ) ≥ eξn

∫
N

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
= o

(
1
n

)
, for every θ ∈ N.

Proof. Let rn = 1/
√

n and it is sufficient to show that

Q0,n

{
πQ(xn, yn|θ) ≥ eξn

∫
Ω(θ,rn)

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
= o

(
1
n

)
.

It is equivalent to show that

Q0,n

{
ln

πQ(xn, yn|θ)
πQ(xn, yn|Ω(θ, rn))

≥ ξnn
}

= o
(

1
n

)
,

where

ξn ≡ ξ − 1
n

ln πP(Ω(θ, rn))

with

πQ(xn, yn|Ω(θ, rn)) ≡
∫

Ω(θ,rn)

πP(ϑ)

πP(Ω(θ, rn))
πQ(xn, yn|ϑ)dϑ.

Thus, we have

πP(Ω(θ, rn)) =
∫

Ω(θ,rn)
πP(ϑ)dϑ ≥ mπΓDΘ

(
1
n

)DΘ/2

,
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where ΓDΘ is the volume of the unit ball in RDΘ . Thus,

ξn = ξ −O(n−1 ln n).

Therefore, for all large n, ξn ≥ ξ/2 and hence it suffices to show that

Q0,n

{
ln

πQ(xn, yn|θ)
πQ(xn, yn|Ω(θ, rn))

≥ ξn/2
}

= o
(

1
n

)
.

By Markov’s inequality, we have

Q0,n

{
ln

πQ(xn, yn|θ)
πQ(xn, yn|Ω(θ, rn))

≥ ξn/2
}

≤ 4
n2ξ2 EQ0

[
ln

πQ(xn, yn|θ)
πQ(xn, yn|Ω(θ, rn))

]2

(A.117)

We consider the set

In ≡
{∣∣∣∣∣∣IQ(θ0)

−1/2ÎQ,n(θ̃)IQ(θ0)
−1/2

∣∣∣∣∣∣
S
≤ 2, ∀ θ̃ ∈ Ω(θ0, rn)

}
.

According to Proposition 21, it follows that Q0,nI
c
n = o (1). Therefore, we only need to

focus on the big probability set In. It holds that

ln
πQ(xn, yn|Ω(θ0, rn))

πQ(xn, yn|θ0)
= ln

∫
Ω(θ0,rn)

πP(θ|Ω(θ0, rn))
πQ(xn, yn|θ)
πQ(xn, yn|θ0)

dθ

= ln
∫

Ω(θ0,rn)
πP(θ|Ω(θ0, rn))enĤQ,n(θ0)−nĤQ,n(θ)dθ. (A.118)

Now, because

√
n

[
1
n

n

∑
t=1

g(xn, yn, θ)

]
=
√

n

[
1
n

n

∑
t=1

g(xt, yt, θ0)

]
+
√

n

[
1
n

n

∑
t=1

∂g(xt, yt, θ̃)

∂θ

]
(θ − θ0),
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where θ̃ is between θ0 and θ. Thus,we have

∣∣∣nĤQ,n(θ0)− nĤQ,n(θ)
∣∣∣ ≤ 1

2
n(θ − θ0)

TĜn(θ̃)
TS−1

0 Ĝn(θ̃)(θ − θ0)

+ n


[

1
n

n

∑
t=1

g(xt, yt, θ0)

]T

S−1
0

[
1
n

n

∑
t=1

g(xt, yt, θ0)

]
1/2

×
{
(θ − θ0)

TĜn(θ̃)
TS−1

0 Ĝn(θ̃)(θ − θ0)
}1/2

=
1
2

n(θ − θ0)
T ÎQ,n(θ0)(θ − θ0) +

{
nĤQ,n(θ0)

}1/2 {
n(θ − θ0)

T ÎQ,n(θ0)(θ − θ0)
}1/2

.

Thus, on the event In, we have

∣∣∣nĤQ,n(θ0)− nĤQ,n(θ)
∣∣∣

≤ n(θ − θ0)
TIQ(θ0)(θ − θ0)

+
{

nĤQ,n(θ0)
}1/2 {

n(θ − θ0)
TIQ(θ0)(θ − θ0)

}1/2

≤ ||IQ(θ0)||S +
{

nĤQ,n(θ0)
}1/2

||IQ(θ0)||1/2
S

.

Combining (A.118), we know that on the event In, it holds that

[
πQ(xn, yn|Ω(θ0, rn))

πQ(xn, yn|θ0)

]2

≤ ||IQ(θ0)||2S + ||IQ(θ0)||S
[
nĤQ,n(θ0)

]
.

In fact, it easy to see that

EQ0

[
nĤQ,n(θ0)

]
→ DΘ, as n→ ∞.

Combining (A.117) and (A.118), we know that

lim sup
n→∞

Q0,n

{
ln

πP(xn, yn|θ)
πP(xn, yn|Ω(θ, rn))

≥ ξn/2
}
≤ 8

n2ξ2

[
DΘ ||IQ(θ0)||S + ||IQ(θ0)||2S

]
.

�

Proposition 35. Assume the regularity conditions in Subsection A.3.3 hold. For any open
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neighborhood N of θ0, there is an ξ > 0 and a open neighborhood N0 of θ0 such that

sup
θ∈N0

Pθ,n

{∫
N

πP(ϑ)πP(xn|ϑ)dϑ ≥ eξn
∫
Nc

πP(ϑ)πP(xn|ϑ)dϑ

}
= o(1).

Proof. According to Proposition 33, for any positive constant ξ1, there exists a neigh-

borhood N0 of θ0 such that dL(N
c,N0) > δ for some δ > 0 and

sup
θ∈N0

Pθ,nAn(θ, ξ1) = o
(

1
n

)
,

with

An(θ, ξ1) ≡
{

πP(xn|θ) ≥ eξ1n
∫
N

πP(ϑ)πP(xn|ϑ)dϑ

}
.

By Proposition 29, there exist positive constants C, ξ ′ and ξ2 such that

sup
θ∈N0

Pθ,n

{
πP(xn|θ) ≤ eξ ′n

∫
Nc

πP(ϑ)πP(xn|ϑ)dϑ

}
≤ Ce−ξ2n.

We take a constant 0 < ξ < ξ ′ and let ξ ′′ = ξ ′ − ξ. Then,

sup
θ∈N0

Pθ,n

{∫
N

πP(ϑ)πP(xn|ϑ)dϑ ≤ eξn
∫
Nc

πP(ϑ)πP(xn|ϑ)dϑ

}
≤ sup

θ∈N0

Pθ,nAn(θ, ξ ′′)

{∫
N

πP(ϑ)πP(xn|ϑ)dϑ ≤ eξn
∫
Nc

πP(ϑ)πP(xn|ϑ)dϑ

}
+ sup

θ∈N0

Pθ,nAn(θ, ξ ′′)c

≤ sup
θ∈N0

Pθ,n

{
πP(xn|θ) ≤ en(ξ−ξ ′′)

∫
Nc

πP(ϑ)πP(xn|ϑ)dϑ

}
+ o(1)

≤ sup
θ∈N0

Pθ,n

{
πP(xn|θ) ≤ enξ ′

∫
Nc

πP(ϑ)πP(xn|ϑ)dϑ

}
+ o(1)

≤ Ce−ξ2n + o(1) = o(1).

�

Proposition 36. Assume the regularity conditions in Subsection A.3.3 hold. For any open
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neighborhood N of θ0, there is an ξ > 0 such that

Q0,n

{∫
N

πP(ϑ)πQ(xn, yn|ϑ)dθ ≥ eξn
∫
Nc

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
= o(1).

Proof. According to Proposition 34, for any positive constant ξ1, there exists a neigh-

borhood N0 of θ0 such that dL(N
c,N0) > δ for some δ > 0 and

Q0,nAn(ξ1) = o
(

1
n

)
,

with

An(ξ1) ≡
{

πQ(xn, yn|θ0) ≥ eξ1n
∫
N

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
.

By Proposition 31, there exist positive constants C and ξ ′ such that

Q0,n

{
πQ(xn, yn|θ0) ≤ eξ ′n

∫
Nc

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
= o(1).

We take a constant 0 < ξ < ξ ′ and let ξ ′′ = ξ ′ − ξ. Then,

Q0,n

{∫
N

πP(ϑ)πQ(xn, yn|ϑ)dϑ ≤ eξn
∫
Nc

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
≤ Q0,nAn(ξ

′′)

{∫
N

πP(ϑ)πQ(xn, yn|ϑ)dϑ ≤ eξn
∫
Nc

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
+ Q0,nAn(ξ

′′)c

≤ Q0,n

{
πQ(xn, yn|θ0) ≤ en(ξ−ξ ′′)

∫
Nc

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
+ o(1)

≤ Q0,n

{
πQ(xn, yn|θ0) ≤ enξ ′

∫
Nc

πP(ϑ)πQ(xn, yn|ϑ)dϑ

}
+ o(1) = o(1).

�

Proof of Theorem 1 in the Paper

Due to Assumption FF, together with the fact that the definition of our “dark mat-

ter” measure and other assumptions in Subsection A.3.3 are invariant under invertible
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and second-order smooth transformations, without loss of generality, we assume that

f (θ) = θ1 ≡ (θ(1), · · · , θ(D f )
)T and hence ∂ f (θ)/∂θT ≡ v =

[
ID f , 0DΘ−D f

]T
. Therefore,

under the restriction for optimization in constrained GMM, the free parameters are ac-

tually θ2 which is the vector θ2 ≡ (θD f +1, · · · , θDΘ). Denote the inverse mapping to be

θ = a(θ2) and it is trivial to see that ∂a(θ2)/∂θ2 ≡
[
0DΘ−D f , ID f

]T
.

From Proposition 35 and
√

n−consistency of θ̂P, we know that we only need to

focus on the large probability event A1,n on which θ0 ∈ Ω(θ̂P, M) and

∫
Ω(θ̂P,M)c

πP(θ|xn)dθ < e−ξn for some M > 0 and ξ > 0.

Thus, based on the dominating assumptions on moment functions, we know that

∫
Ω(θ̂P,M)c

dS0{x
n, yn, f (θ)}πP(θ|xn)dθ ≤ n

∣∣∣∣∣ 1n n

∑
t=1

a1(xt, yt)

∣∣∣∣∣
2

λm(S0)
−1e−ξn → 0, in P0.

Now, we define

hS0{x
n, yn} ≡ n

[
f (θ̂Q)− f (θ̂P)

]T [
vTIQ(θ0)

−1v
]−1 [

f (θ̂Q)− f (θ̂P)
]

= n(θ̂Q − θ̂P)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ̂Q − θ̂P).

According to Newey (1985), we know that hS0{xn, yn} converges in distribution to h∞

which has the following expression

XT
[
vTIP(θ0)

−1v− vTIQ(θ0)
−1v

]1/2 [
vTIQ(θ0)

−1v
]−1

×
[
vTIP(θ0)

−1v− vTIQ(θ0)
−1v

]1/2
X

where X is a DΘ dimensional standard multivariate normal random variable. The limit

distribution has mean

tr
{[

vTIQ(θ0)
−1v

]−1 [
vTIP(θ0)

−1v
]}
− D f .
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We denote the demeaned random variable to be

ε ≡ h∞ −
[

tr
{[

vTIQ(θ0)
−1v

]−1 [
vTIP(θ0)

−1v
]}
− D f

]
.

Let’s define

∆d,n ≡
∫
|θ−θ̂P|≤M

dS0{x
n, yn, f (θ)}πP(θ|xn)dθ − hS0{x

n, yn}.

It is sufficient for us to show that for any ε > 0 such that when n is large enough

Q0,n

{∣∣∣∣∆d,n − tr
{[

vTIQ(θ0)
−1v

]−1 [
vTIP(θ0)

−1v
]}∣∣∣∣ > ε

}
< ε. (A.119)

We know that, for any K > 0, the triangular inequality implies∣∣∣∣∆d,n − tr
{[

vTIQ(θ0)
−1v

]−1 [
vTIP(θ0)

−1v
]}∣∣∣∣

≤
∣∣∣∣∆d,n,K − tr

{[
vTIQ(θ0)

−1v
]−1 [

vTIP(θ0)
−1v

]}∣∣∣∣ (A.120)

+
∫

K√
n<|θ−θ̂P|≤M

dS0{x
n, yn, f (θ)}πP(θ|xn)dθ, (A.121)

where

∆d,n,K ≡
∫
|θ−θ̂P|≤ K√

n

dS0{x
n, yn, f (θ)}πP(θ|xn)dθ − hS0{x

n, yn}.

Based on (A.120)and (A.121), we complete our proof in the following two steps. First,

we show that for any ε > 0, there exists K1 such that for each K ≥ K1, for large enough n

Q0,n

{∫
K√

n<|θ−θ̂P|≤M
dS0{x

n, yn, f (θ)}πP(θ|xn)dθ >
ε

2

}
<

ε

2
. (A.122)

By definition, we know that 0 ≤ dS0(x
n, yn, f (θ)) ≤ dS0(x

n, yn, θ). Thus, it suffices to
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prove that for any ε > 0, there exists K1 such that for each K ≥ K1,

Q0,n

{∫
K√

n<|θ−θ̂P|≤M
dS0{x

n, yn, θ}πP(θ|xn)dθ >
ε

2

}
<

ε

2
for large enough n.

By triangular inequality, we have

dS0{x
n, yn, θ} ≤

∣∣2Jn,S0(x
n, yn; θ)− 2Jn,S0(x

n, yn; θ0)
∣∣

+ 2Jn,S0(x
n, yn; θ0)− 2Jn,S0(x

n, yn; θ̂Q).

Now, because 2Jn,S0(x
n, yn; θ0)− 2Jn,S0(x

n, yn; θ̂Q) = Op(1) and, by Proposition 19 or

Chernozhukov and Hong (2003, Theorem 1 and Proposition 3),

∫
K√

n<|θ−θ̂P|≤M
πP(θ|xn)dθ →

∫
|u|>K

ϕP(u)du,

with ϕP(u) =

√
detIP(θ0)

(2π)DΘ
exp

[
−1

2 uTIP(θ0)u
]
, we know that there exists K′1 > 0 such

that for each K ≥ K′1, it follows that, for large enough n,

Q0,n

{∫
K√

n<|θ−θ̂P|≤M

[
2Jn,S0(x

n, yn; θ0)− 2Jn,S0(x
n, yn, θ̂Q)

]
πP(θ|xn)dθ >

ε

4

}
<

ε

4
.

Because10

√
n

[
1
n

n

∑
t=1

g(xn, yn, θ)

]

=
√

n

[
1
n

n

∑
t=1

g(xt, yt, θ̂P)

]
+
√

n

[
1
n

n

∑
t=1

∂g(xt, yt, θ̃)

∂θ

]
(θ − θ̂P), (A.123)

for some θ̃ between θ and θ̂P. We denote Ĝn(θ) ≡ 1
n ∑n

t=1
∂g(xt, yt, θ)

∂θ
. It holds that, by

10Rigorously speaking, the values of θ̃ are usually different for different elements of the vector-valued
function

√
n
[

1
n ∑n

t=1 g(xn, yn, θ)
]
. Here, we follow the tradition in GMM literature and write the Mean

Value Theorem in a less-rigorous yet simple way in hope of significantly simplifying the exposition of
the algebras.
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triangular inequality and Cauchy-Schwarz inequality,

∣∣2Jn,S0(x
n, yn; θ)− 2Jn,S0(x

n, yn; θ0)
∣∣

≤
∣∣∣2Jn,S0(x

n, yn; θ̂P)− 2Jn,S0(x
n, yn; θ0)

∣∣∣+ n(θ − θ̂P)TĜn(θ̃)
TS−1

0 Ĝn(θ̃)(θ − θ̂P)

+ 2n


[

1
n

n

∑
t=1

g(xt, yt, θ̂P)

]T

S−1
0

[
1
n

n

∑
t=1

g(xt, yt, θ̂P)

]
1/2

×
{
(θ − θ̂P)TĜn(θ̃)

TS−1
0 Ĝn(θ̃)(θ − θ̂P)

}1/2

≤ Op(1)
[
1 +
√

n|θ − θ̂P|+ n|θ − θ̂P|2
]

.

Thus, by changing variable θ = θ̂P + u/
√

n, we have

∫
K√

n<|θ−θ̂P|≤M

∣∣2Jn,S0(x
n, yn; θ)− 2Jn,S0(x

n, yn; θ0)
∣∣πP(θ|xn)dθ

≤Op(1)
∫
|u|>K

[
1 + |u|+ |u2|

]
πP(θ̂

P + u/
√

n|xn)du.

According to Chernozhukov and Hong (2003, Theorem 1 and Proposition 3), we know

that

∫
K√

n<|θ−θ̂P|≤M

[
1 +
√

n|θ − θ̂P|+ n|θ − θ̂P|2
]

πP(θ|xn)dθ (A.124)

→
∫
|u|>K

[
1 + |u|+ |u|2

]
ϕP(u)du,

with ϕP(u) =

√
detIP(θ0)

(2π)DΘ
exp

[
−1

2 uTIP(θ0)u
]
. Therefore, it follows that there exists

K′′1 > 0 such that for each K ≥ K′′1 , it follows that, for large enough n,

Q0,n

{∫
K√

n<|θ−θ̂P|≤M

∣∣2Jn,S0(x
n, yn; θ)− 2Jn,S0(x

n, yn, θ0)
∣∣πP(θ|xn)dθ >

ε

4

}
<

ε

4
.

By taking K1 ≡ max(K′1, K′′1 ), the condition (A.122) holds.
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Second, we show that for any ε, when K and n are large enough, it holds that

Q0,n

{∣∣∣∣∆d,n,K − tr
{[

vTIQ(θ0)
−1v

]−1 [
vTIP(θ0)

−1v
]}∣∣∣∣ > ε

4

}
<

ε

4
.

We define the “Wald test statistic” to be

wS0{x
n, yn, f (θ)} ≡ n

[
f (θ̂Q)− f (θ)

]T [
vTIQ(θ0)

−1v
]−1 [

f (θ̂Q)− f (θ)
]

= n(θ̂Q − θ)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ̂Q − θ).

According to Newey and West (1987b) and Lee (2005), under the regularity conditions

in Subsection A.3.3 and using uniform law of large numbers, we know that

αn(K) ≡ sup
|ϑ|≤K

∣∣∣dS0{x
n, yn, f (θ̂P + ϑ/

√
n)} − wS0{x

n, yn, f (θ̂P + ϑ/
√

n)}
∣∣∣→ 0 in Q0,n.

Thus, for each K > 0 we have, in Q0,n, the following stochastic integral converges to

zero,

∫
|ϑ|≤K

∣∣∣dS0{x
n, yn, f (θ̂P + ϑ/

√
n)} − wS0{x

n, yn, f (θ̂P + ϑ/
√

n)}
∣∣∣

× πP(θ̂
P + ϑ/

√
n|xn)dϑ.

Therefore, we only need to show that there exists a constant K2 > 0 such that for every

K ≥ K2 it holds that when n is large enough

Q0,n

{∣∣∣∣∆w,n,K − tr
{[

vTIQ(θ0)
−1v

]−1 [
vTIP(θ0)

−1v
]}∣∣∣∣ > ε

8

}
<

ε

8
(A.125)

with

∆w,n,K ≡
∫
|θ−θ̂P|≤ K√

n

wS0{x
n, yn, f (θ)}πP(θ|xn)dθ − hS0{x

n, yn}.
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We consider the decomposition

wS0{x
n, yn, f (θ)} =n(θ − θ̂P)Tv

[
vTIQ(θ0)

−1v
]−1

vT(θ − θ̂P) (A.126)

+ 2n(θ̂P − θ̂Q)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ − θ̂P) (A.127)

+ n(θ̂P − θ̂Q)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ̂P − θ̂Q). (A.128)

For the term (A.173), according to Theorem 1 and Proposition 3 of Chernozhukov and

Hong (2003), it follows that, in P0,

∫
|θ−θ̂P|≤ K√

n

n(θ − θ̂P)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ − θ̂P)πP(θ|xn)dθ

→ tr
{[

vTIQ(θ0)
−1v

]−1 [
vTIP(θ0)

−1v
]}

− tr
{[

vTIQ(θ0)
−1v

]−1
vT
∫
|ϑ|>K

ϑϑT ϕP(ϑ)dϑv
}

.

with ϕP(ϑ) =

√
detIP(θ0)

(2π)DΘ
exp

[
−1

2 ϑTIP(θ0)ϑ
]
. We know that

∣∣∣∣∣∣∣∣∫|ϑ|>K
ϑϑT ϕP(ϑ)dϑ

∣∣∣∣∣∣∣∣
S

→ 0 as K → +∞.

Thus, there exists K′2 > 0 such that for each K ≥ K′2, it holds that for large enough n,

Q0,n

{∣∣∣∣∣
∫
|θ−θ̂P|≤ K√

n

n(θ − θ̂P)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ − θ̂P)πP(θ|xn)dθ

− tr
{[

vTIQ(θ0)
−1v

]−1 [
vTIP(θ0)

−1v
]}∣∣∣∣ > ε

24

}
<

ε

24
. (A.129)

For the term (A.174), according to Theorem 1 and Proposition 3 of Chernozhukov and
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Hong (2003), it follows that

∫
|θ−θ̂P|≤K

n(θ̂P − θ̂Q)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ − θ̂P)

× πP(θ|xn)dθ  X̃T
∫
|ϑ|≤K

ϑϕP(ϑ)dϑ.

with ϕP(ϑ) =

√
detIP(θ0)

(2π)DΘ
exp

[
−1

2 ϑTIP(θ0)ϑ
]

and X̃ to be an multivariate normal

random variable with zero mean and covariance matrix

v
[
vTIQ(θ0)

−1v
]−1

vT
[
IP(θ0)

−1 − IQ(θ0)
−1
]−1

v
[
vTIQ(θ0)

−1v
]−1

vT.

We know that ∫
|ϑ|≤K

ϑϕP(ϑ)dϑ→ 0, as K → +∞.

Thus, there exists K′′2 > 0 such that for each K ≥ K′′2 , it holds that for large enough n,

the following probability is strictly bounded by ε
24,

Q0,n

{∣∣∣∣∣
∫
|θ−θ̂P|≤ K√

n

n(θ̂Q − θ̂P)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ − θ̂P)πP(θ|xn)dθ

∣∣∣∣∣ > ε

24

}
.

For the term (A.175), according to Theorem 1 and Proposition 3 of Chernozhukov and

Hong (2003), it follows that

n(θ̂P − θ̂Q)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ̂P − θ̂Q)

×
[∫
|θ−θ̂P|≤K

πP(θ|xn)− 1
]
 −h∞

∫
|ϑ|>K

ϕP(ϑ)dϑ.

We know that ∫
|ϑ|>K

ϕP(ϑ)dϑ→ 0, as K → +∞.
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Thus, there exists K′′′2 > 0 such that for each K ≥ K′′′2 , it holds that for large enough n,

Q0,n

{∫
|θ−θ̂P|≤ K√

n

n(θ̂P − θ̂Q)Tv
[
vTIQ(θ0)

−1v
]−1

vT(θ̂P − θ̂Q) (A.130)

×
∣∣∣∣∫|θ−θ̂P|≤K

πP(θ|xn)− 1
∣∣∣∣ > ε

24

}
<

ε

24
.

Combining the inequalities (A.129) - (A.130), by taking K2 = max{K′2, K′′2 , K′′′2 }, we

know that the condition (A.125) is satisfied. Now, we have shown that

$ f (xn, yn) 2$v
a (θ0)− D f + ε, EQ0 [ε] = 0. (A.131)

In the following, we shall use the Dominated Convergence Theorem (see, e.g. Serfling,

1980, Section 1.4) to show the convergence of expectations, i.e.

EQ0

[
$ f (xn, yn)

]
→ 2$v

a (θ0)− D f , as n→ ∞. (A.132)

According to Assumption D, we can find a dominating random variable for $ f (xn, yn):

|$ f (xn, yn)| ≤ 1
λm(S0)n

n

∑
t=1

a1(xt, yt). (A.133)

The dominating random variable is integrable, due to Assumption D. That is,

EQ0

∣∣∣∣∣ 1
λm(S0)n

n

∑
t=1

a1(xt, yt)

∣∣∣∣∣ = 1
λm(S0)

EQ0 a1(x1, y1) < ∞. (A.134)

Proof of Proposition 12 in the Paper

Because of Assumption FF and the assumptions in Subsection A.3.3 are invariant under

invertible and second-order smooth transformations, without loss of generality, we
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assume that f (θ) = θ(1) and hence v = (1, 0, · · · , 0)T. 11. Let us denote

ϕP(θ(1)|xn) =
1√

2π 1
n vTIP(θ0)−1v

exp

{
− 1

2 1
n vTIP(θ0)−1v

(θ(1) − θ̂P
(1))

2

}

ϕQ(θ(1)|xn, yn) =
1√

2π 1
n vTIQ(θ0)−1v

exp

{
− 1

2 1
n vTIQ(θ0)−1v

(θ(1) − θ̂Q

(1))
2

}

where θ̂P and θ̂Q are MLE estimator and GMM estimator, respectively, and θ̂P
(1) and

θ̂Q

(1) are the first elements of θ̂P and θ̂Q, respectively.

Let’s now focus on the decomposition of the relative entropy between constrained

and unconstrained posterior distributions:

DKL

(
πQ(θ(1)|xn, yn)||πP(θ(1)|xn)

)
= An + Bn + Cn (A.135)

where

An =
∫

πQ(θ(1)|xn, yn) ln
πQ(θ(1)|xn, yn)

ϕQ(θ(1)|xn, yn)
dθ(1), (A.136)

Bn =
∫

πQ(θ(1)|xn, yn) ln
ϕQ(θ(1)|xn, yn)

ϕP(θ(1)|xn)
dθ(1), (A.137)

Cn =
∫

πQ(θ(1)|xn, yn) ln
ϕP(θ(1)|xn)

πP(θ(1)|xn)
dθ(1). (A.138)

We show that

An → 0 in Q0,n, (A.139)

11A traditional result is Theorem 3 in Lin, Pittman, and Clarke (2007). The contributions of our results
and proofs can be mainly illustrated from four aspects. First, our results extend the traditional results
to the more general GMM framework (see Hansen, 1982) leveraging on the Bayesian GMM formulation
(see e.g. Kim, 2002; Chernozhukov and Hong, 2003). Second, our results allow for general weak depen-
dence among the observations, which makes our results suitable for studying time series data in finance
and economics. Third, another major advantage of our results relative to the traditional results is that
our results are adapted to “Bayesian learning” framework, because we allow the “prior” in each time
period to be updated with extra data according to Bayesian rule. This extension poses nontrivial theo-
retical challenges since we have to establish some probabilistic inequalities that hold uniformly over a
group of probabilistic models. At last, although some of our proofs are similar to the proof of Theorem
3 in Lin, Pittman, and Clarke (2007), their proof contains mistakes and non-rigorous arguments which
are corrected and made rigorous in our proofs.
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and

Bn −
n

2vTIP(θ0)−1v

(
θ̂P
(1) − θ̂Q

(1)

)2

→ 1
2

ln
vTIP(θ0)

−1v
vTIQ(θ0)−1v

+
1
2

vTIQ(θ0)
−1v

vTIP(θ0)−1v
− 1

2
in Q0,n, (A.140)

and

Cn → 0 in Q0,n. (A.141)

Step 1: we prove the weak convergence of An in (A.139).

In fact, An = DKL

(
πQ(θ(1)|xn, yn)||ϕQ(θ(1)|xn, yn)

)
. And, according to Corollary

6, we know An → 0 in Q0,n.

Step 2: we prove the weak convergence of Bn in (A.140).

We know that

Bn =
1
2

∫
πQ(θ(1)|xn, yn)× (A.142)ln

vTIP(θ0)
−1v

vTIQ(θ0)−1v
− n

(θ(1) − θ̂Q

(1))
2

vTIQ(θ0)−1v
+ n

(θ(1) − θ̂P
(1))

2

vTIP(θ0)−1v

dθ(1)

Now let’s define

∆B,n ≡Bn −
n

2vTIP(θ0)−1v

(
θ̂P
(1) − θ̂Q

(1)

)2
(A.143)

− 1
2

ln
vTIP(θ0)

−1v
vTIQ(θ0)−1v

− 1
2

vTIQ(θ0)
−1v

vTIP(θ0)−1v
+ 1/2.
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We consider the following decomposition for ∆B,n:

∆B,n =
1
2

∫ [
πQ(θ(1)|xn, yn)− ϕQ

(
θ(1)|xn, yn

)]
dθ(1) ln

vTIP(θ0)
−1v

vTIQ(θ0)−1v
(A.144)

− 1
2

∫ [
πQ(θ(1)|xn, yn)− ϕQ

(
θ(1)|xn, yn

)]
n
(θ(1) − θ̂Q

(1))
2

vTIQ(θ0)−1v
dθ(1) (A.145)

+
1
2

∫ [
πQ(θ(1)|xn, yn)− ϕQ

(
θ(1)|xn, yn

)]
n
(θ(1) − θ̂P

(1))
2

vTIP(θ0)−1v
dθ(1) (A.146)

The term in (A.144) is denoted as Bn,1, the term in (A.145) is denoted as Bn,2, and the

term (A.146) is denoted as Bn,3.

Step 2.1: we show that Bn,1 → 0 in Q0,n.

We know that, in Q0,n,

|Bn,1| ≤
1
2

ln
vTIP(θ0)

−1v
vTIQ(θ0)−1v

∫ ∣∣∣πQ(θ(1)|xn, yn)− ϕQ(θ(1)|xn, yn)
∣∣∣dθ(1) → 0 (A.147)

where the convergence result in (A.147) is due to the fact that the squared total vari-

ation distance12 is upper bounded by the relative entropy (i.e. Kullback-Leibler dis-

tance) (see e.g. Kullback, 1967) and due to the result in Proposition 6.

Step 2.2: we show that Bn,2 → 0 in Q0,n. Equivalently, we show that

∫
Θ
[πQ(θ|xn, yn)− ϕQ (θ|xn, yn)] n

(θ(1) − θ̂Q

(1))
2

vTIQ(θ0)−1v
dθ → 0 in Q0,n.

This is actually a direct implication from Theorem 1 and Proposition 1 of Chernozhukov

and Hong (2003).

Step 2.3: Similar argument can be used to prove that Bn,3 → 0 in Q0,n. More pre-

cisely, it is equivalent to show that

1
2

∫ [
πQ(θ(1)|xn, yn)− ϕQ

(
θ(1)|xn, yn

)]
n
(θ(1) − θ̂P

(1))
2

vTIP(θ0)−1v
dθ(1) → 0 in Q0,n,

12The total variation distance between the constrained posterior on θ(1) and normal distribution is∫ ∣∣∣πQ(θ(1)|xn, yn)− ϕQ(θ(1)|xn, yn)
∣∣∣dθ(1).
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and

1
2

∫ [
πQ(θ(1)|xn, yn)− ϕQ

(
θ(1)|xn, yn

)]
n

2(θ(1) − θ̂Q

(1))(θ
Q

(1) − θ̂P
(1))

vTIP(θ0)−1v
dθ(1) → 0 in Q0,n,

and

1
2

∫ [
πQ(θ(1)|xn, yn)− ϕQ

(
θ(1)|xn, yn

)]
n
(θQ

(1) − θ̂P
(1))

2

vTIP(θ0)−1v
dθ(1) → 0 in Q0,n.

According to Chernozhukov and Hong (2003, Theorem 1 and Proposition 1), all the

three limiting conditions above are satisfied.

Step 3: we prove the weak convergence of Cn in (A.141).

For a constant r > 0, we decompose the term Cn as follows

Cn = Cn,1 + Cn,2 − Cn,3, (A.148)

where

Cn,1 =
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn, yn) ln

ϕP(θ(1)|xn)

πP(θ(1)|xn)
dθ(1) (A.149)

Cn,2 =
∫

Ω(θ0,(1),r)c
πQ(θ(1)|xn, yn) ln ϕP(θ(1)|xn)dθ(1) (A.150)

Cn,3 =
∫

Ω(θ0,(1),r)c
πQ(θ(1)|xn, yn) ln πP(θ(1)|xn)dθ(1). (A.151)

Step 3.1: we show that Cn,3 → 0 in Q0,n. Equivalently, we show that for any ε > 0

lim sup
n→+∞

Q0,n {|Cn,3| > ε} < ε. (A.152)

Let

An(η) ≡


∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πP(θ(1), θ(−1))πP(xn|θ(1), θ(−1))dθ(1)dθ(−1)∫
Ω(θ0,(1),r)

∫
Θ−1(θ(1))

πP(θ(1), θ(−1))πP(xn|θ(1), θ(−1))dθ(1)dθ(−1)
< η

 .
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By Proposition 35, we know that for any η > 0

Q0,nAn(η)
c = o(1).

Define the set

Bn(η) ≡
{

sup
θ∈Θ

∣∣∣ĤP,n(θ)− HP(θ)
∣∣∣ < η

}
,

where HP(θ) and ĤP,n(θ) are defined in (A.96) and (A.98), respectively.

By Proposition 18, we know that for any η > 0

Q0,nBn(η)
c = o(1).

Define the set

I1,n(δ, η)

≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣∣∣IP(θ)
−1
∣∣∣∣∣∣−1

S
, ∀ θ ∈ Ω(θ0, δ) and θ̃ ∈ Ω(θ, δ)

}
,

By Proposition 25, we know that for any η > 0 there exists δ > 0 such that

Q0,nI1,n(δ, η)c = o
(

1
n

)
.

Define the set

En(δ) ≡
{

θ̂P ∈ Ω(θ0, δ)
}

.

By Proposition 15, we know that

Q0,nEn(δ)
c = o(1).

Let

Kn(δ, η) ≡
{

πP(xn) ≤ (1 + η)
∫

Ω(θ0,δ)
πP(θ)πP(xn|θ)dθ

}
.
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According to Proposition 35, we know that for any δ > 0 and η > 0 we have

Q0,nKn(δ, η)c → 0.

We define

Mn(δ, η) ≡ An(η) ∩Bn(η) ∩ I1,n(δ, η) ∩ En(δ) ∩Kn(δ, η),

then, we have

Q0,nMn(δ, η)c = o(1).

Let’s consider the decomposition

Q0,n {|Cn,3| > ε} ≤ Q0,nMn(δ, η) ∩ {|Cn,3| > ε}+ Q0,nMn(δ, η)c.

Our strategy of proving the result (A.152) is to find random variables Cn,3 and Cn,3

such that

Cn,3 ≤ Cn,3 ≤ Cn,3 on An(η) (of course on) Mn(δ, η)

and

Cn,3 → 0 in Q0,n and Cn,3 → 0 in Q0,n.

Thus, we have

lim sup
n→+∞

Q0,n {|Cn,3| > ε} ≤ lim sup
n→+∞

Qn
0Mn(δ, η) ∩ {|Cn,3| > ε}

≤ lim sup
n→+∞

Q0,nMn(δ, η) ∩
{

max{|Cn,3|, |Cn,3|} > ε
}

≤ lim sup
n→+∞

Q0,nMn(δ, η) ∩
{
|Cn,3| > ε

}
+ lim sup

n→+∞
Q0,nMn(δ, η) ∩

{
|Cn,3| > ε

}
= 0.
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Now, let’s figure out the limits of Cn,3 and Cn,3. On the event Mn(δ, η), we have that

πP(θ(1)|xn) =

∫
Θ−1(θ(1))

πP(θ)πP(θ|xn)dθ(−1)∫
Θ πP(θ)πP(xn|θ)dθ

(A.153)

=

∫
Θ−1(θ(1))

πP(θ)πP(θ|xn)dθ(−1)∫
Ω(θ0,(1),r)

πP(θ)πP(xn|θ)dθ

(
1 +

∫
Ω(θ0,(1) ,r)c πP(θ)πP(xn|θ)dθ∫
Ω(θ0,(1) ,r) πP(θ)πP(xn|θ)dθ

) (A.154)

≥

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)

(1 + η)
∫

Ω(θ0,(1),r)
πP(θ)πP(xn|θ)dθ

(A.155)

Because θ̂P is the MLE under Pθ, we have

πP(xn|θ) ≤ πP(xn|θ̂P) = exp

{
− ln

1
πP(xn|θ̂P)

}
= exp

{
−nĤP,n(θ̂

P)
}

(A.156)

Thus, we have

πP(θ(1)|xn) ≥

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)

(1 + η)πP(Ω(θ0,(1), r)) exp{−nĤP,n(θ̂P)}
(A.157)
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Plug (A.157) into the expression for Cn,3, we have

Cn,3 ≥
∫

Ω(θ0,(1),r)c
πQ(θ(1)|xn, yn)

× ln

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)

(1 + η)πP(Ω(θ0,(1), r)) exp{−nĤP,n(θ̂P)}
dθ(1)

≥
∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πQ(θ(1)|xn, yn)πP(θ(−1)|θ(1))

× ln
[
πP(θ(1))πP(xn|θ)

]
dθ(1)dθ(−1)

−
∫

Ω(θ0,(1),r)c
πP(θ(1)|xn, yn)

×
[
ln(1 + η) + ln πP(Ω(θ0,(1), r))− nHP,n(θ̂

P)
]

dθ(1)

=
∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πQ(θ(1)|xn, yn)πP(θ(−1)|θ(1))

× ln πP(θ(1))πP(xn|θ)dθ(1)dθ(−1)

− πP(Ω(θ0,(1), r)c|xn, yn) (A.158)

×
[
ln(1 + η) + ln πP(Ω(θ0,(1), r))− nĤP,n(θ̂

P)
]

We define the term in (A.158) to be Cn,3. Thus, we can further decompose Cn,3 as

follows,

Cn,3 = Cn,3,1 − Cn,3,2

where

Cn,3,1 =
∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πQ(θ(1)|xn, yn)πP(θ(−1)|θ(1)) (A.159)

× ln
[
πP(θ(1))πP(xn|θ)

]
dθ(1)dθ(−1)

and

Cn,3,2 = πQ(Ω(θ0,(1), r)c|xn, yn)
[
ln(1 + η) + ln πP(Ω(θ0,(1), r))− nĤP,n(θ̂

P)
]

.
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We have

|Cn,3,1| ≤
∣∣∣∣∣
∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πQ(θ(1)|xn, yn)πP(θ(−1)|θ(1)) ln πP(θ(1))dθ(1)dθ(−1)

∣∣∣∣∣
+

∣∣∣∣∣
∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πQ(θ(1)|xn, yn)πP(θ(−1)|θ(1))

× ln πP(xn|θ)dθ(1)dθ(−1)

∣∣∣
≤
∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πQ(θ(1)|xn, yn)πP(θ(−1)|θ(1))
∣∣∣ln πP(θ(1))

∣∣∣dθ(1)dθ(−1) (A.160)

+
∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πQ(θ(1)|xn, yn)πP(θ(−1)|θ(1))

× n|ĤP,n(θ)− HP(θ)|dθ(1)dθ(−1) (A.161)

+
∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πQ(θ(1)|xn, yn)πP(θ(−1)|θ(1))n|HP(θ)|dθ(1)dθ(−1) (A.162)

+ op(1).

The term (A.160) can be bounded from above by

M1

∫
Ω(θ0,(1),r)c

πQ(θ(1)|xn, yn)dθ(1)

= M1πQ(Ω(θ0,(1), r)c|xn, yn)→ 0 in Q0,n,

where the existence of such constant M1 is due to the compactness of Θ ⊂ Rd and the

continuity of πP(θ(−1)|θ(1))| ln πP(θ(1))| and we have

∫
Θ−1(θ(1))

πP(θ(−1)|θ(1))| ln πP(θ(1))|dθ(−1) ≤ M1. (A.163)

The term (A.161), for large enough n, is bounded from above by

n
∫

Ω(θ0,(1),r)c

∫
Θ−1(θ(1))

πQ(θ(1)|xn, yn)πP(θ(−1)|θ(1))dθ(1)dθ(−1), (A.164)
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because

sup
θ∈Θ
|ĤP,n(θ)− HP(θ)| < 1 for large enough n. (A.165)

The term (A.164) can be further bounded from above by

M2n
∫

Ω(θ0,(1),r)c
πQ(θ(1)|xn, yn)dθ(1) (A.166)

= M2nπQ(Ω(θ0,(1), r)c|xn, yn)→ 0 in Q0,n,

where the existence of such constant M2 is due to the compactness of the Θ ⊂ Rd and

the continuity of πP(θ(−1)|θ(1)) =
πP(θ(1),θ(−1))

πP(θ(1))
,

∫
Θ−1(θ(1))

πP(θ(−1)|θ(1))dθ(−1) ≤ M2. (A.167)

The term (A.162) is bounded from above by

M3n
∫

Ω(θ0,(1),r)c
πQ(θ(1)|xn, yn) (A.168)

= M3nπQ(Ω(θ0,(1), r)|xn, yn)→ 0 in Q0,n.

Therefore, the term Cn,3,1 → 0 in Q0,n. It is straightforward to see that Cn,3,2 converges

to zero in probability, because nπQ(Ω(θ0,(1), r)|xn, yn) → 0 in Q0,n and ĤP,n(θ̂
P) →

HP(θ0) in Q0,n. Now, let’s construct Cn,3 and show it indeed converges to zero in

probability. By restricting the domain to Ω(θ0, δ), we have

πP(θ|xn) ≤

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)∫
Ω(θ0,δ) πP(θ)πP(xn|θ)dθ

. (A.169)
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By Taylor expansion of ln πP(xn|θ) around θ̂P, we have

πP(θ|xn) ≤

∫
Θ−1(θ(1))

πP(θ)πP(xn|θ)dθ(−1)

mππP(xn|θ̂P)
∫

Ω(θ0,δ) exp{−n(θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P)}dθ

≤

∫
Θ−1(θ(1))

πP(θ)dθ(−1)

mπ

∫
Ω(θ0,δ) exp{−n(θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P)}dθ

≤ M4∫
Ω(θ0,δ) exp{−n(θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P)}dθ

where θ̃ is on the segment between θ̂P and θ. And, the existence of the constant M4

such that ∫
Θ−1(θ(1))

πP(θ)dθ(−1)

mπ
≤ M4. (A.170)

Thus, we have

Cn,3 ≤
∫

Ω(θ0,(1),r)c
πQ(θ(1)|xn, yn) (A.171)

× ln
M4dθ(1)∫

Ω(θ0,δ) exp{−n
2 (θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P)}dθ

We define Cn,3 to be the term on the right hand side of the inequality (A.171). On the

event Mn(δ, η), we have

(θ − θ̂P)T ÎP,n(θ̃)(θ − θ̂P) ≤ 2(θ − θ̂P)TIP(θ0)(θ − θ̂P)

and

Cn,3 ≤
∫

Ω(θ0,(1),r)c
πQ(θ(1)|xn, yn) ln

M4dθ(1)∫
Ω(θ0,δ) exp{−n(θ − θ̂P)TIP(θ0)(θ − θ̂P)}dθ

By the normal distribution and the
√

n− consistency of MLE θ̂P, we know that for
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any ν > 0, it follows that

Q0,n


∫

Ω(θ0,δ) exp{−n(θ − θ̂P)TIP(θ0)(θ − θ̂P)}dθ∫
RDΘ exp{−n(θ − θ̂P)TIP(θ0)(θ − θ̂P)}dθ

< 1− ν

→ 0. (A.172)

Thus, we have

lim sup
n→+∞

Q0,n{|Cn,3| > ε}

≤ lim sup
n→+∞

Q0,n

{∫
Ω(θ0,(1),r)c

πQ(θ(1)|xn, yn)

× ln
(1− ν)−1M4dθ(1)∫

RDΘ exp{−n(θ − θ̂P)TIP(θ0)(θ − θ̂P)}dθ
> ε

}

= lim sup
n→+∞

Q0,n

{∫
Ω(θ0,(1),r)c

πQ(θ(1)|xn, yn)

∣∣∣∣∣ln M4(2π)DΘ/2

(1− ν)|2nIP(θ0)|1/2

∣∣∣∣∣ > ε

}

= lim sup
n→+∞

Q0,n

{
πQ(Ω(θ0,(1), r)c|xn, yn)

∣∣∣∣∣ln M4(2π)DΘ/2

(1− ν)|2nIP(θ0)|1/2

∣∣∣∣∣ > ε

}
= 0,

where the last limiting result is a direct implication of Proposition 31. Thus, Cn,3 → 0

in Q0,n. Therefore, we have Cn,3 → 0 in Q0,n.

Step 3.2: we show Cn,2 goes to zero in Q0,n. The expression (A.150) for Cn,2 can be

rewritten as

Cn,2 =πQ(Ω(θ0,(1), r)c|xn, yn) ln
|nvTIP(θ0)v|1/2

(2π)1/2

−
∫

Ω(θ0,(1),r)c
πQ(θ(1)|xn, yn)

n(θ(1) − θ̂P
(1))

2

2vTIP(θ0)−1v
dθ(1)
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Thus, the term Cn,2 can be decomposed as follows

Cn,2 = πQ(Ω(θ0,(1), r)c|xn, yn) ln
|nvTIP(θ0)v|1/2

(2π)1/2 (A.173)

−
∫

Ω(θ0,(1),r)c

[
πQ(θ(1)|xn, yn)− ϕQ(θ(1)|xn, yn)

]
(A.174)

n(θ(1) − θ̂P
(1))

2

2vTIP(θ0)v
dθ(1)

−
∫

Ω(θ0,(1),r)c
ϕQ(θ(1)|xn, yn)

n(θ(1) − θ̂P
(1))

2

2vTIP(θ0)−1v
dθ(1) (A.175)

It is easy to see that the first term (A.173) goes to zero in Q0,n. The second term (A.174)

and the third term (A.175) go to zero in probability according to Theorem 1 and Propo-

sition 1 in Chernozhukov and Hong (2003) and the fact that n(θ̂Q − θ̂P)2 = Op(1).

Therefore, we have shown that Cn,2 → 0 in Q0,n.

Step 3.3: we need to prove Cn,1 goes to zero in Q0,n. According to Corollary 8, we know

that for any η > 0 there exists δ0 > 0 such that

P0,nIn(δ0, η)→ 1, as n→ ∞,

with

In(δ0, η) ≡
{

1− η ≤
∣∣∣∣∣∣IP(θ0)

−1/2ÎP,n(θ̃)IP(θ0)
−1/2

∣∣∣∣∣∣
S
≤ 1 + η, for all θ̃ ∈ Ω(θ0, δ0)

}
.

Also, by the continuity and positivity of the prior density πP(θ), we know that for any

η > 0, there exists δ1 small enough it holds that 1− η ≤ πP(θ)/πP(θ
′) ≤ 1 + η for all

θ, θ′ ∈ Ω(θ0, δ1). According to the consistency of MLE θ̂P, we shall only focus on the

event An(δ) ≡ θ̂P ∈ Ω(θ0, δ) with δ = min(δ0, δ1). On the joint large probability event
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In(δ, η) ∩An(η), we have for each θ ∈ Ω(θ0, r) with r < δ, when n is large enough,

πP(θ|xn) ≤ πP(θ)πP(xn|θ)∫
Ω(θ0,r) πP(ϑ)πP(xn|ϑ)dϑ

≤ (1 + η)2
[

n(1 + η)

2π

]DΘ/2

[detIP(θ0)]
1/2 e−

1
2 (1−η)n(θ−θ̂P)TIP(θ0)(θ−θ̂P)

On the event In(δ, η) ∩An(η) we have

Cn,1 ≥
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn, yn) ln

1√
2πn−1|vTIP(θ0)−1v|

dθ(1)

−
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn, yn)

n(θ(1) − θ̂P
(1))

2

2vTIP(θ0)−1v
dθ(1)

−
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn, yn) ln

[∫
Θ−1(θ(1))

e−
n
2 (1−η)(θ−θ̂P)TIP(θ0)(θ−θ̂P) ×

[(1− η)n]DΘ/2 [detIP(θ0)]
1/2

(2π)DΘ/2 dθ(−1)

]
dθ(1)

−
[

DΘ

2
+ 2
]

ln (1 + η) +
DΘ

2
ln (1− η) .

There exists open square centered at θ0 which is denoted as

O = Ω(θ0,(1), r)⊗Ω(θ0,(−1), δ).

First, we have

∫
Θ−1(θ(1))

e−
n
2 (1−η)(θ−θ̂P)TIP(θ0)(θ−θ̂P) [(1− η)n]DΘ/2 [detIP(θ0)]

1/2

(2π)DΘ/2 dθ(−1)

≤ e
−(1−η)

n(θ(1)−θ̂P
(1))

2

2vT IP(θ0)
−1v√

2πn−1vTIP(θ0)−1v/(1− η)
.
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Thus, on the large probability event In(δ, η) ∩An(η) we have, when n is large

Cn,1 ≥−
[

DΘ

2
+ 2
]

ln(1 + η) +

[
DΘ − 1

2

]
ln(1− η)

+ η
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn, yn)

n(θ(1) − θ̂P
(1))

2

2vTIP(θ0)−1v
dθ(1).

According to Theorem 1 and Proposition 1 of Chernozhukov and Hong (2003), we

know that ∫
Ω(θ0,(1),r)

πQ(θ(1)|xn, yn)
n(θ(1) − θ̂P

(1))
2

2vTIP(θ0)−1v
dθ(1) = Op(1).

Therefore, it follows that

Cn,1 ≥ −
[

DΘ

2
+ 2
]

ln(1 + η) +

[
DΘ − 1

2

]
ln(1− η) + ηOp(1). (A.176)

On the other hand, by Proposition 35, we know that for any η′ > 0 and δ′ > 0

P0,nXn(δ
′, η′)→ 1, as n→ ∞,

with

Xn(δ
′, η′) ≡

{
πP(xn) ≤ (1 + η′)

∫
Ω(θ0,δ′)

πP(θ)πP(xn|θ)dθ

}
.

Then, on the large probability event In(δ, η) ∩ An(η) ∩ Xn(δ, η) and taking r < δ, it
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holds that

Cn,1 =
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn, yn)

ln
ϕP(θ(1)|xn)πP(xn)∫

Θ−1(θ(1))
πP(θ)πP(xn|θ)dθ(−1)

dθ(1)

≤
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn, yn)

× ln

 (2π)−1/2|n−1vTIP(θ0)
−1v|−1/2e

−
n(θ(1)−θ̂P

(1))
2

2vT IP(θ0)
−1v∫

Θ−1(θ(1))
(1− η)e−(1+η) n

2 (θ−θ̂P)TIP(θ0)(θ−θ̂P)dθ(−1)

dθ(1)

+
∫

Ω(θ0,(1),r)
πQ(θ(1)|xn, yn)

× ln
[∫

Ω(θ0,δ)
(1 + η)e−(1−η) n

2 (ϑ−θ̂P)TIP(θ0)(ϑ−θ̂P)dϑ

]
dθ(1).

Calculating the integrations, we have

Cn,1 ≤
DΘ + 1

2
ln(1 + η)− DΘ + 2

2
ln(1− η)

− inf
θ(1)∈Ω(θ0,(1),r)

ln Φn(Θ−1(θ(1))|θ(1))

+ η
∫

πQ(θ(1)|xn, yn)
n(θ(1) − θ̂P

(1))
2

2vTIP(θ0)v
dθ.

where Φn(·|θ(1)) is the multivariate normal probability measure on RDΘ−1 and effec-

tively it is the conditional distribution of θ(−1) given θ(1) where θ = (θ(1), θ(−1)) ∼

N(θ̂P, (1 + η)−1n−1IP(θ0)
−1). In fact, Φn(·|θ(1)) is multivariate normal with distribu-

tion

N
(

θ̂P
(−1) + Σ21Σ−1

11 (θ(1) − θ̂P
(1)), (1 + η)−1n−1(Σ22 − Σ21Σ−1

11 Σ12)
)

with

IP(θ0)
−1 =

 Σ11 Σ12

Σ21 Σ22

 .

We choose δ and r small enough such that θ̂P
(−1)+Σ21Σ−1

11 (θ(1)− θ̂P
(1)) is in the interior of

Θ−1(θ(1)) and there exists τ0 > 0 such that dL(θ̂
P
(−1)+Σ21Σ−1

11 (θ(1)− θ̂P
(1)), ∂Θ−1(θ(1))) >
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τ0 for all θ(1) ∈ Ω(θ0,(1)). Thus,

inf
θ(1)∈Ω(θ0,(1),r)

Φn(Θ−1(θ(1))|θ(1))→ 1.

Therefore, when n is large enough, we have

inf
θ(1)∈Ω(θ0,(1),r)

Φn(Θ−1(θ(1))|θ(1)) >
1
2

ln(1− η).

And hence, we have

Cn,1 ≤
DΘ + 1

2
ln(1 + η)− DΘ + 3

2
ln(1− η) + η

∫
πQ(θ(1)|xn, yn)

n(θ(1) − θ̂P
(1))

2

2vTIP(θ0)v
dθ.

According to Theorem 1 and Proposition 1 of Chernozhukov and Hong (2003), we

know that
∫

πQ(θ(1)|xn, yn)
n(θ(1)−θ̂P

(1))
2

2vTIP(θ0)v
dθ = Op(1). Therefore, we can get

Cn,1 ≤
DΘ + 1

2
ln(1 + η)− DΘ + 3

2
ln(1− η) + ηOp(1). (A.177)

Combine the bounds in (A.176) and (A.177) where the constant η can be arbitrarily

small, we know that Cn,1 → 0 in Q0,n.

Proposition 37. Consider the feature function f : RDΘ → R with v = ∂ f (θ0)/∂θ. Under

the assumptions in Subsection A.3.3, if we define

λ ≡ vTIP(θ0)
−1v

vTIQ(θ0)−1v
,

then it follows that

n
vTIQ(θ0)−1v

( f (θ̂P)− f (θ̂Q))2  (1− λ−1)χ2
1. (A.178)
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Moreover,

DKL(πQ( f (θ)|xn, yn)||πP( f (θ)|xn)) 
1− λ−1

2
(χ2

1 − 1) +
1
2

ln(λ), (A.179)

Proof. The asymptotic distribution result in (A.178) is directly from Proposition 24. The

asymptotic result in (A.179) is based on Proposition 12, limit result (A.178), and the

Slutsky Theorem. �

Proof of Proposition 13 in the Paper

Because of Assumption FF and the assumptions in Subsection A.3.3 are invariant under

invertible and second-order smooth transformations, without loss of generality, we

assume that f (θ) = θ(1) and hence v = (1, 0, · · · , 0)T.

We want to show when m and n go to infinity and m/n→ $, we have for any ε > 0

that

lim sup
n→+∞

P0,n

{∣∣∣∣∣
∫

πP(θ|xn)
∫

π(x̃m|θ) ln
πP(x̃m|xn)

πP(x̃m|θ(1))
dx̃mdθ − 1

2
ln

n
m + n

∣∣∣∣∣ > ε

}
< ε.

Denote

Rn ≡
∫

πP(θ|xn)
∫

π(x̃m|θ) ln
πP(x̃m|xn)

πP(x̃m|θ(1))
dx̃mdθ − 1

2
ln

n
m + n

.

Then, we are going to show for any ε > 0 it holds that

lim sup
n→+∞

P0,n {|Rn| > ε} < ε (A.180)
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We can further decompose Rn as follows:

Rn =
∫

πP(θ(1)|xn) ln
πP(θ(1)|xn)

πP(θ(1))
dθ(1) (A.181)

+
∫

πP(θ|xn)
∫

πP(x̃m|θ) ln

∫
πP(x̃m, xn|θ′)πP(θ

′)dθ′

πP(x̃m, xn|θ) dx̃mdθ (A.182)

−
∫

πP(θ|xn)
∫

πP(x̃m|θ) (A.183)

× ln

∫
πP(x̃m, xn|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ) dx̃mdθ

− 1
2

ln
n

m + n
.

We denote the term in (A.181) as Rn,1, denote the term in (A.182) as Rn,2, and denote

the term in (A.183) as Rn,3.

For the term Rn,1, we can further decompose it as follows

Rn,1 =
∫

πP(θ(1)|xn) ln
πP(θ(1)|xn)

ϕ(θ(1)|xn)
dθ(1) +

1
2

ln (n)− 1
2

ln
(

2πvTIP(θ0)
−1v

)
−
∫

πP(θ(1)|xn)
n(θ(1) − θ̂P

(1))
2

2vTIP(θ0)−1v
dθ(1) −

∫
πP(θ(1)|xn) ln πP(θ(1))dθ(1),

where

ϕP(θ(1)|xn) =
1√

2π 1
n vTIP(θ0)−1v

exp

{
− 1

2 1
n vTIP(θ0)−1v

(θ(1) − θ̂P
(1))

2

}
.

According to Corollary 6, we know that

∫
πP(θ(1)|xn) ln

πP(θ(1)|xn)

ϕ(θ(1)|xn)
dθ(1) → 0 in P0,n. (A.184)

The same argument as in proving the weak convergence of the term involving Bn

in (A.142) can be used to show that

∫
πP(θ(1)|xn)

n(θ(1) − θ̂P
(1))

2

2vTIP(θ0)−1v
dθ(1) →

1
2

in P0,n. (A.185)
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Note that the prior πP(θ(1)) is assumed to be continuous on the compact domain.

Again, because of Corollary 6 and the fact that total variation distance is bounded by

relative entropy, we know that

∫
πP(θ(1)|xn) ln πP(θ(1))dθ(1) → ln πP(θ0,(1)) in P0,n. (A.186)

Thus, following (A.184) - (A.186), it holds that

Rn,1 −
1
2

ln(n)− 1
2

ln (2π)− 1
2

ln
(

vTIP(θ0)
−1v

)
− 1

2
− ln πP(θ0,(1))→ 0 in P0,n. (A.187)

We shall also show that, in P0,n,

Rn,2 +
DΘ

2
ln(n + m)− DΘ

2
ln (2π)− 1

2
ln det

[
IP(θ0)

−1
]

− ln πP(θ0)−
DΘ

2
→ 0. (A.188)

and

Rn,3 +
DΘ − 1

2
ln(n + m)− DΘ − 1

2
ln (2π) (A.189)

− 1
2

ln
det

[
IP(θ0)

−1]
vTIP(θ0)−1v

− ln πP(θ0,(−1)|θ0,(1))−
DΘ − 1

2
→ 0 in P0,n.

Combining the weak convergence results (A.187) - (A.189), we can achieve the weak

convergence of Rn, or equivalently the result in (A.180).

The proofs of the result (A.188) and the result (A.189) are quite similar, though the

proof of the result (A.189) is a little bit more involving. Without tedious repeating the

same proofs, we shall only provide the proof for the result (A.189). We further define
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the left-hand side of (A.189) as R*n,3, that is,

R*n,3 ≡ Rn,3 +
DΘ − 1

2
ln(n + m)− DΘ − 1

2
ln (2π) (A.190)

− 1
2

ln
det

[
IP(θ0)

−1]
vTIP(θ0)−1v

− ln πP(θ0,(−1)|θ0,(1))−
DΘ − 1

2
.

In the rest of the proof, we shall show that for any ε > 0, it holds that

lim sup
n→+∞

P0,n
{
|R*n,3| > ε

}
< ε (A.191)

Step 1: We first define the big probability events which we shall focus on in order

to show (A.191). We define the big probability event

An(θ0, δ, ξ) ≡
{

πP(Ω(θ0, δ)c|xn) ≤ e−ξn
}

. (A.192)

According to Theorem 1 and Proposition 3 in Chernozhukov and Hong (2003), we

know that it suffices to show that

lim sup
n→+∞

P0,nAn(θ0, δ, ξ)
{
|R*n,3| > ε

}
< ε. (A.193)

Define the sets

I1,n(δ, η) ≡
{∣∣∣∣∣∣̂IP,n(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣∣∣IP(θ)
−1
∣∣∣∣∣∣−1

S
, ∀ θ ∈ Ω(θ0, δ) and θ̃ ∈ Ω(θ, δ)

}
,

I2,m(θ, δ, η) ≡
{∣∣∣∣∣∣̂IP,m(θ̃)− IP(θ)

∣∣∣∣∣∣
S
≤ η

∣∣∣∣∣∣IP(θ)
−1
∣∣∣∣∣∣−1

S
, ∀ θ̃ ∈ Ω(θ, δ)

}
.

Appealing to Propositions 25, we know that for any η > 0 there exists small enough

positive constants δ1 and δ such that

P0,nI1,n(δ, η)c = o
(

1
n

)
and sup

θ∈Ω(θ0,δ1)

Pθ,mI2,m(θ, δ, η)c = o
(

1
m

)
.
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Define

H1,n(δ) ≡
{∣∣∣ĤP,n(θ̂

P)− H(θ0)
∣∣∣ < δ

}
,

and H2,n(δ) ≡
{

sup
θ∈Θ

∣∣∣ĤP,n(θ)− H(θ)
∣∣∣ < δ

}
.

According to Proposition 18, we know that

P0,nH1,n(δ)
c = o(1) and P0,nH2,n(δ)

c = o(1).

Define

Bm(θ, δ, ξ)

≡
{

πP(xm|θ) > eξm
∫

Ω(−1)(θ,δ)c
πP(θ

′
(−1)|θ(1))πP(xm|θ(1), θ′(−1))dθ′(−1)

}
. (A.194)

According to Proposition 29, for any δ0 ∈ (0, δ), there exists ξ > 0 such that

sup
θ∈Ω(θ0,δ0)

Pθ,mBm(θ, δ, ξ)c = O(e−ξm).

Define

Cm(θ, δ, ξ)

≡
{

πP(xm|θ) < eξm
∫

Ω(θ,δ)
πP(θ

′
(−1)|θ(1))πP(xm|θ(1), θ′(−1))dθ′(−1)

}
. (A.195)

According to Proposition 33, for any δ0 ∈ (0, δ), there exists ξ > 0 such that

sup
θ∈Ω(θ0,δ0)

Pθ,mCm(θ, δ0, ξ)c = o
(

1
n

)
.
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We define

Ln(δ, η) ≡
{

sP,n(θ)
TIP(θ)

−1sP,n(θ) < η, ∀ θ ∈ Ω(θ0, δ)
}

. (A.196)

According to Proposition 26, we know that for any η > 0, there exists δ > 0 such that

P0,nLn(δ, η)c = o(1).

Step 2: We capture the asymptotically essential component in Rn,3.

For any η ∈ (0, 1/2), according to the discussion in Step 1, we know that there

exists δ, δ1 ∈ (0, η) such that

P0,nI1,n(δ, η)c = o
(

1
n

)
and sup

θ∈Ω(θ,δ1)

Pθ,mI2,m(θ, δ, η)c = o
(

1
m

)
.

For the given δ above, we know that there exist positive constants δ2 < δ, ξ1 and ξ2

such that

sup
θ∈Ω(θ0,δ2)

Pθ,mBm(θ, δ, ξ1/$)c ≤ e−ξ2m and sup
θ∈Ω(θ0,δ2)

Pθ,mCm(θ, δ, ξ1/8)c = o
(

1
m

)

where Bm(θ, δ, ξ1) and Cm(θ, δ, ξ1) are defined in (A.194) and (A.195), respectively.

Because HP(θ) is continuous in θ, then there exists δ3 > 0 such that

sup
θ∈Ω(θ0,δ3)

|HP(θ)− HP(θ0)| < ξ1/8.

For the given δ, according to Proposition 26, we know that there exists δ4 > 0 such

that

P0,nLn(δ0,
1
2

λδ2η)c = o(1).

We choose δ0 ≡ min{δ1, δ2, δ3, δ4}. According to Proposition 29, there exist ξ0 > 0

such that P0,nAn(δ0, ξ0)
c ≤ e−ξ0n.
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By restricting on the event

Mn ≡ An(θ0, δ0, ξ0) ∩H1,n(ξ1/8) ∩H2,n(ξ1/8) ∩ I1,n(δ, η) ∩Ln(δ0,
1
2

λδ2η)

and then focusing on the event, for a given θ ∈ Ω(θ0, δ0),

Nm(θ) ≡ Bm(θ, δ, ξ1) ∩ I2,m(θ, δ, η) ∩ Cm(θ, δ, ξ1).

We show that the following term, denoted as Re
n,3, is the asymptotically essential

term of Rn,3

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)× (A.197)

ln

∫
Ω(−1)(θ,δ) πP(x̃m, xn|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ) dx̃mdθ.

That is, there exists a function a(η) with limη→0 a(η) = 0 such that on the event Mn

|Rn,3 − Re
n,3| ≤ a(η) + op(1).

We consider the decomposition

ln

∫
πP(x̃m, xn|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ)

= ln

∫Ω(−1)(θ,δ) πP(x̃m, xn|θ(1), θ′(−1))πP(θ
′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ)

+

∫
Ω(−1)(θ,δ)c πP(x̃m, xn|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ)

 (A.198)

On the event Mn and Nm(θ), we know that the second term in the log term of
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(A.198) can be upper bounded by

πP(xn|θ(1), θ′(−1))

πP(xn|θ(1), θ(−1))
= e−n

[
ĤP,n(θ(1),θ

′
(−1))−ĤP,n(θ(1),θ(−1))

]

≤ e−n
[

HP(θ(1),θ
′
(−1))−HP(θ(1),θ(−1))

]
+nξ1/4

≤ e−n
[

HP(θ(1),θ
′
(−1))−HP(θ0,(1),θ0,(−1))

]
+nξ13/8 ≤ enξ13/8.

Thus, we have on the event Mn and Nm(θ)∫
Ω(−1)(θ,δ)c πP(x̃m, xn|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ)

≤ enξ13/8

∫
Ω(−1)(θ,δ)c πP(x̃m|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m|θ(1), θ(−1))
≤ e−nξ15/8.

On the other hand, we have on the event Mn and Nm(θ)

πP(xn|θ(1), θ′(−1))

πP(xn|θ(1), θ(−1))
= e−n

[
ĤP,n(θ(1),θ

′
(−1))−ĤP,n(θ(1),θ(−1))

]

≥ e−n
[

HP(θ(1),θ
′
(−1))−HP(θ(1),θ(−1))

]
−nξ1/4 ≥ e−nξ13/8.

Thus, we have on the event Mn and Nm(θ)∫
Ω(−1)(θ,δ) πP(x̃m, xn|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ)

≥ e−nξ13/8

∫
Ω(−1)(θ,δ) πP(x̃m|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m|θ(1), θ(−1))
≥ e−nξ1/2.

Therefore, on the event Mn and Nm(θ), for the positive constant η > 0, we know
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that when n is large enough, it holds that∫
πP(x̃m, xn|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ)

≤ (1 + η)

∫
Ω(−1)(θ,δ) πP(x̃m, xn|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ)

Because HP(θ) is continuous on Θ, we can define

MH ≡ sup
θ∈Θ

HP(θ)− inf
θ∈Θ

HP(θ). (A.199)

Then, on the event Mn, we have |Rn,3 − Re
n,3| is upper bounded by

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)c

πP(x̃m|θ)×∣∣∣∣∣∣ln
∫

Ω(−1)(θ,δ) πP(x̃m, xn|θ(1), θ′(−1))πP(θ
′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ)

∣∣∣∣∣∣dx̃mdθ

+ ln(1 + η) + πP(Ω(θ0, δ0)
c|xn)(m + n)MH.

The first term in the long expression above is upper bounded by

(m + n)MH sup
θ∈Ω(θ0,δ0)

Pθ,mNm(θ)
c

≤ (m + n)MH

[
sup

θ∈Ω(θ0,δ0)

Pθ,mBm(θ, δ, ξ1/$)c

+ sup
θ∈Ω(θ0,δ0)

Pθ,mI2,m(θ, δ, η)c + sup
θ∈Ω(θ0,δ0)

P0,mCm(θ, δ, ξ1/8)c

]
= o(1).
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On the set Mn, we know that

πP(Ω(θ0, δ0)
c|xn)(m + n)MH = O

(
ne−ξ0n

)
. (A.200)

Therefore, by the arbitrariness of positive constant η, we know that the asymptotically

essential component of Rn,3 is Re
n,3 with expression

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)×

ln

∫
Ω(−1)(θ,δ) πP(x̃m, xn|θ(1), θ′(−1))πP(θ

′
(−1)|θ(1))dθ′(−1)

πP(x̃m, xn|θ) dx̃mdθ

Step 3: We first show that the term R*n,3 is upper-bounded, asymptotically, by zero.

Step 3.1: We find the upper bound for the log term in the expression of Re
n,3 when

xn ∈Mn, θ ∈ Ω(θ0, δ0) and x̃m ∈ Nm(θ). By Taylor’s expansion, we have

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

= ln
∫

Ω(−1)(θ,δ)
e(θ
′−θ)T [nsP,n(θ)+msP,m(θ)]− 1

2 (θ
′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ

′−θ)

× πP(θ
′
(−1)|θ(1))dθ′(−1),

where θ̃ is between θ′ and θ, and

θ′ ≡

 θ(1)

θ′(−1)

 , (A.201)

and

sP,n(θ) ≡
1
n

n

∑
t=1

∂

∂θ
ln πP(xt; θ), and sP,m(θ) ≡

1
m

m

∑
t=1

∂

∂θ
ln πP(x̃t; θ),

and

ÎP,n(θ) ≡ −
1
n

n

∑
t=1

∂2

∂θ∂θT ln πP(xt; θ), and ÎP,m(θ) ≡ −
1
m

m

∑
t=1

∂2

∂θ∂θT ln πP(x̃t; θ).
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Let’s define

ρ(δ) ≡ sup
θ∈Ω(θ0,2δ)

∣∣∣∣∣ln πP(θ(−1)|θ(1))
πP(θ0,(−1)|θ0,(1))

∣∣∣∣∣ . (A.202)

Because θ ∈ Ω(θ0, δ0) and θ′(−1) ∈ Ω(−1)(θ, δ) imply that θ′ ∈ Ω(θ0, 2δ), we know that

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

≤ ln
∫

Ω(−1)(θ,δ)
e(θ
′−θ)T [nsP,n(θ)+msP,m(θ)]− 1

2 (θ
′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ

′−θ)dθ′(−1)

+ ln πP(θ0,(−1)|θ0,(1)) + ρ(δ).

It is obvious that ρ(·) is increasing a univariate increasing function. Then, it holds that

ρ(δ) ≤ ρ(η) since δ < η. Thus, we have

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

≤ ln
∫

Ω(−1)(θ,δ)
e(θ
′−θ)T [nsP,n(θ)+msP,m(θ)]− 1

2 (θ
′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ

′−θ)dθ′(−1)

+ ln πP(θ0,(−1)|θ0,(1)) + ρ(η),

where the function ρ(η) is defined in (A.202).

On the event I1,n(δ, η), we have for all θ ∈ Ω(θ0, δ0)

(θ′ − θ)T ÎP,n(θ
′ − θ) ≥ (1− η)(θ′ − θ)TIP(θ)(θ

′ − θ).

On the event I2,m(θ, δ, η), we have

(θ′ − θ)T ÎP,m(θ
′ − θ) ≥ (1− η)(θ′ − θ)TIP(θ)(θ

′ − θ).
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Thus, it follows that

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

≤ ln
∫

Ω(−1)(θ,δ)
e(θ
′−θ)T [nsP,n(θ)+msP,m(θ)]− 1

2 (1−η)(θ′−θ)T [nIP(θ)+mIP(θ)](θ
′−θ)dθ′(−1)

+ ln πP(θ0,(−1)|θ0,(1)) + ρ(η),

where the function ρ(η) is defined in (A.202).

Denote

α =
n

n + m
.

Let’s consider the following identities

(θ′ − θ)T[αsP,n(θ) + (1− α)sP,m(θ)]−
1
2
(1− η)(θ′ − θ)TIP(θ)(θ

′ − θ)

= −1− η

2
(θ′ − u)TIP(θ)(θ − u)

+
1

2(1− η)
[αsP,n(θ) + (1− α)sP,m(θ)]

TIP(θ)
−1[αsP,n(θ) + (1− α)sP,m(θ)]

where

u ≡ θ +
1

1− η
IP(θ)

−1[αsP,n(θ) + (1− α)sP,m(θ)]. (A.203)

Therefore, we have

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1) + ln πP(θ0,(−1)|θ0,(1)) + ρ(η)

≤ ln
∫

Ω(−1)(θ,δ)
e−

m+n
2 (1−η)(θ′−u)TIP(θ)(θ

′−u)dθ′(−1)

+
m + n

2(1− η)
[αsP,n(θ) + (1− α)sP,m(θ)]

TIP(θ)
−1[αsP,n(θ) + (1− α)sP,m(θ)],

where the function ρ(η) is defined in (A.202).
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Further, we have

∫
Ω(−1)(θ,δ)

e−
m+n

2 (1−η)(θ′−u)TIP(θ)(θ
′−u)dθ′(−1) ≤

∫
Rd−1

e−
m+n

2 (1−η)(θ′−u)TIP(θ)(θ
′−u)dθ′(−1)

=
(2π)DΘ/2|(1− η)−1IP(θ)

−1|1/2

(m + n)DΘ/2 ×∫
RDΘ−1

(m + n)DΘ/2

(2π)DΘ/2|(1− η)−1IP(θ)−1|1/2 e−
m+n

2 (1−η)(θ′−u)TIP(θ)(θ
′−u)dθ′(−1)

Thus, we can obtain

∫
Ω(−1)(θ,δ)

e−
m+n

2 (1−η)(θ′−u)TIP(θ)(θ
′−u)dθ′(−1)

≤
(2π)DΘ/2 [detIP(θ)

−1]1/2

(1− η)DΘ/2(m + n)DΘ/2
(m + n)1/2

(2π)1/2|(1− η)−1vTIP(θ)−1v|1/2 e
−m+n

2 (1−η)

(
θ′
(1)−u(1)

)2

vT IP(θ)−1v

=

(
2π

m + n

)DΘ−1
2
[
detIP(θ)

−1]1/2

|vTIP(θ)−1v|1/2 e
−m+n

2 (1−η)

(
θ′
(1)−u(1)

)2

vT IP(θ)−1v (1− η)−
DΘ−1

2 .

Therefore,

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

≤ DΘ − 1
2

ln
(

2π

m + n

)
+

1
2

ln
det

[
IP(θ)

−1]
|vTIP(θ)−1v| −

m + n
2

(1− η)

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

+
m + n

2(1− η)
[αsP,n(θ) + (1− α)sP,m(θ)]

TIP(θ)
−1[αsP,n(θ) + (1− α)sP,m(θ)]

+ ln πP(θ0,(−1)|θ0,(1)) + ρ(η)− DΘ − 1
2

ln(1− η), (A.204)

where ρ(η) is the function defined in (A.202).

Step 3.2: We find the upper bound for the asymptotically essential term of Re
n,3.

We take integrations over θ and x̃m in (A.197) over each term on the right hand side

of the inequality (A.204).
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∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)DΘ − 1
2

ln
(

2π

m + n

)
dx̃mdθ

≤ DΘ − 1
2

ln
(

2π

m + n

)

and

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)1
2

ln
det

[
IP(θ)

−1]
|vTIP(θ)−1v|dx̃mdθ

≤ 1
2

ln
det

[
IP(θ0)

−1]
|vTIP(θ0)−1v| + η

and

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ

=
∫

Ω(θ0,δ0)
πP(θ|xn)

∫
Xm

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ

−
∫

Ω(θ0,δ0)
πP(θ|xn)

∫
Nm(θ)c

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ

=
∫

Ω(θ0,δ0)
πP(θ|xn)

∫
Xm

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ + o(1),

and recall the definition of θ′ in (A.201) which implies that θ
′
(1) ≡ θ(1) and remember
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the definition of u in (A.203), we have

∫
Xm

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃m

= −vTIP(θ)
−1
{∫

Xm
πP(x̃m|θ) [αsP,n(θ) + (1− α)sP,m(θ)]

× [αsP,n(θ) + (1− α)sP,m(θ)]
T dx̃m

}
IP(θ)

−1v

×
[
2(m + n)−1(1− η)2vTIP(θ)

−1v
]−1

= −
vTIP(θ)

−1 {α2sP,n(θ)sP,n(θ)
T + (1− α)2IP(θ)/m

}
IP(θ)

−1v
2(m + n)−1(1− η)2vTIP(θ)−1v

= − α

(1− η)2
vTIP(θ)

−1SP,n(θ)SP,n(θ)
TIP(θ)

−1v
2vTIP(θ)−1v

− 1− α

2(1− η)2 ,

Thus,

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)

−m + n
2

(1− η)

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ

= − α

2(1− η)

∫
Ω(θ0,δ0)

πP(θ|xn)
vTIP(θ)

−1SP,n(θ)SP,n(θ)
TIP(θ)

−1v
vTIP(θ)−1v

dθ

− 1− α

2(1− η)
+ o(1)

≤ −α

2
− 1− α

2(1− η)
+ o(1) ≤ −1

2
+ o(1),
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and

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ) m + n
2(1− η)

× [αsP,n(θ) + (1− α)sP,m(θ)]
TIP(θ)

−1[αsP,n(θ) + (1− α)sP,m(θ)]dx̃mdθ

=
α

2(1− η)

∫
Ω(θ0,δ0)

πP(θ|xn)SP,n(θ)
TIP(θ)

−1SP,n(θ)dθ +
1− α

2(1− η)
DΘ + o(1)

≤ α

2(1− η)

∫
Ω(θ0,δ0)

πP(θ|xn)SP,n(θ)
TIP(θ)

−1SP,n(θ)dθ

+
1− α

2
DΘ + DΘη + o(1)

≤ α(DΘ + η)

2(1− η)
+

1− α

2
DΘ + DΘη + o(1)

≤ DΘ

2
+ (α + DΘ + αDΘ)η + o(1).

and

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)

×
[

ln πP(θ0,(−1)|θ0,(1)) + ρ(η)− DΘ − 1
2

ln(1− η)

]
dx̃mdθ

= ln πP(θ0,(−1)|θ0,(1)) + ρ(η)− DΘ − 1
2

ln(1− η) + o(1),

where ρ(η) is defined in (A.202).

Therefore, we know that the asymptotically essential component (A.197) of the term

Rn,3 is upper bounded by

DΘ − 1
2

ln
(

2π

m + n

)
+

1
2

ln
det

[
IP(θ0)

−1]
|vTIP(θ0)−1v| +

DΘ − 1
2

+ ln πP(θ0,(−1)|θ0,(1))

+ ρ(η) + (1 + α + DΘ + αDΘ)η −
DΘ − 1

2
ln(1− η) + o(1),

where the function ρ(η) is defined in (A.202).

Because of the fact that limx→0 ρ(x) = 0 and the arbitrariness of η, we know that

R*n,3 defined in (A.190) is asymptotically upper bounded by zero.
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Step 4: We then show that the difference R*n,3 is lower-bounded, asymptotically, by

zero.

Step 4.1: We find the lower bound for the log term in the expression of Re
n,3 when

xn ∈Mn(θ0), θ ∈ Ω(θ0, δ0) and x̃m ∈ Nm(θ).

By Taylor’s expansion, we have

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

= ln
∫

Ω(−1)(θ,δ)
e(θ
′−θ)T [nsP,n(θ)+msP,m(θ)]− 1

2 (θ
′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ

′−θ)

× πP(θ
′
(−1)|θ(1))dθ′(−1),

where θ̃ is between θ′ and θ, and

θ′ ≡

 θ(1)

θ′(−1)

 .

Because θ ∈ Ω(θ0, δ0) and θ′(−1) ∈ Ω(−1)(θ, δ) imply that θ′ ∈ Ω(θ0, 2δ), we know that

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

≥ ln
∫

Ω(−1)(θ,δ)
e(θ
′−θ)T [nsP,n(θ)+msP,m(θ)]− 1

2 (θ
′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ

′−θ)dθ′(−1)

+ ln πP(θ0,(−1)|θ0,(1))− ρ(δ),

where the function ρ(η) is defined in (A.202).

It is obvious that ρ(·) is increasing a univariate increasing function. Then,

ρ(δ) ≤ ρ(η) since δ < η.
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Thus, we have

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

≥ ln
∫

Ω(−1)(θ,δ)
e(θ
′−θ)T [nsP,n(θ)+msP,m(θ)]− 1

2 (θ
′−θ)T [nÎP,n(θ̃)+mÎP,m(θ̃)](θ

′−θ)dθ′(−1)

+ ln πP(θ0,(−1)|θ0,(1))− ρ(η),

where the function ρ(η) is defined in (A.202).

On the event I1,n(δ, η), we have for all θ ∈ Ω(θ0, δ0)

(θ′ − θ)T ÎP,n(θ̃)(θ
′ − θ) ≤ (1 + η)(θ′ − θ)TIP(θ)(θ

′ − θ).

On the event I2,m(θ, δ, η), we have

(θ′ − θ)T ÎP,m(θ̃)(θ
′ − θ) ≤ (1 + η)(θ′ − θ)TIP(θ)(θ

′ − θ).

Thus, it follows that

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

≥ ln
∫

Ω(−1)(θ,δ)
e(θ
′−θ)T [nsP,n(θ)+msP,m(θ)]− 1

2 (1+η)(θ′−θ)T [nIP(θ)+mIP(θ)](θ
′−θ)dθ′(−1)

+ ln πP(θ0,(−1)|θ0,(1))− ρ(η),

where the function ρ(η) is defined in (A.202).

Denote

α =
n

n + m
.
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Let’s consider the following identities

(θ′ − θ)T[αsP,n(θ) + (1− α)sP,m(θ)]−
1
2
(1 + η)(θ′ − θ)TIP(θ)(θ

′ − θ)

= −1 + η

2
(θ′ − v)TIP(θ)(θ − v) +

1
2(1 + η)

[αsP,n(θ)

+ (1− α)sP,m(θ)]
TIP(θ)

−1[αsP,n(θ) + (1− α)sP,m(θ)]

where

v ≡ θ +
1

1 + η
IP(θ)

−1[αsP,n(θ) + (1− α)sP,m(θ)].

Therefore, we have

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

≥ ln
∫

Ω(−1)(θ,δ)
e−

m+n
2 (1+η)(θ′−v)TIP(θ)(θ

′−v)dθ′(−1)

+
m + n

2(1 + η)
[αsP,n(θ) + (1− α)sP,m(θ)]

TIP(θ)
−1[αsP,n(θ) + (1− α)sP,m(θ)]

+ ln πP(θ0,(−1)|θ0,(1))− ρ(η),

where the function ρ(η) is defined in (A.202). Further, we have

∫
Ω(−1)(θ,δ)

e−
m+n

2 (1+η)(θ′−v)TIP(θ)(θ
′−v)dθ′(−1)

=
∫

RDΘ−1
e−

m+n
2 (1+η)(θ′−v)TIP(θ)(θ

′−v)dθ′(−1)

−
∫

Ω(−1)(θ,δ)c
e−

m+n
2 (1+η)(θ′−v)TIP(θ)(θ

′−v)dθ′(−1)
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and

∫
RDΘ−1

e−
m+n

2 (1+η)(θ′−v)TIP(θ)(θ
′−v)dθ′(−1)

=
(2π)DΘ/2 [detIP(θ)

−1]1/2

(1 + η)DΘ/2(m + n)DΘ/2 ×∫
RDΘ−1

(m + n)DΘ/2(1 + η)DΘ/2

(2π)DΘ/2 [IP(θ)−1]
1/2 e−

m+n
2 (1+η)(θ′−v)TIP(θ)(θ

′−v)dθ′(−1)

=
(2π)DΘ/2 [detIP(θ)

−1]1/2

(1 + η)DΘ/2(m + n)DΘ/2
(m + n)1/2

(2π)1/2|(1 + η)−1vTIP(θ)−1v|1/2

× e
−m+n

2 (1+η)

(
θ′
(1)−u(1)

)2

vT IP(θ)−1v

=

(
2π

m + n

)DΘ−1
2
[
detIP(θ)

−1]1/2

|vTIP(θ)−1v|1/2

× e
−m+n

2 (1+η)

(
θ′
(1)−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ−1

2 .

Using the definition of v, we know that for any θ′ such that θ′(−1) ∈ Ω(−1)(θ, δ)c

(θ′ − v)TIP(θ)(θ
′ − v)

=

[
θ′ − θ − 1

1 + η
IP(θ)

−1sP,n(θ)

]T
IP(θ)

[
θ′ − θ − 1

1 + η
IP(θ)

−1sP,n(θ)

]
≥ 1

2
(θ′ − θ)TIP(θ)(θ

′ − θ)− 1
(1 + η)2 sP,n(θ)

TIP(θ)
−1sP,n(θ)

≥ λδ2

2(1 + η)2 −
λδ2η

2(1 + η)2 because of Ln(θ0, δ0,
1
2

λδ2η)

=
λδ2(1− η)

2(1 + η)2 .
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Thus,

−
∫

Ω(−1)(θ,δ)c
e−

m+n
2 (1+η)(θ′−v)TIP(θ)(θ

′−v)dθ′(−1)

≥ −
∫

Ω(−1)(θ,δ)c
e−

(m+n)(1−η)
8(1+η)

λδ2
e−

m+n
4 (1+η)(θ′−v)TIP(θ)(θ

′−v)dθ′(−1)

≥ −e−
(m+n)(1−η)

8(1+η)
λδ2
∫

RDΘ−1
e−

m+n
4 (1+η)(θ′−v)TIP(θ)(θ

′−v)dθ′(−1)

= −e−
(m+n)(1−η)

8(1+η)
λδ2

2
DΘ−1

2

(
2π

m + n

)DΘ−1
2
[
detIP(θ)

−1]1/2

|vTIP(θ)−1v|1/2

× e
−m+n

4 (1+η)

(
θ′
(1)−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ−1

2

≥ −e−
(m+n)(1−2η)

8(1+η)
λδ2

2
DΘ−1

2

(
2π

m + n

)DΘ−1
2
[
detIP(θ)

−1]1/2

|vTIP(θ)−1v|1/2

× e
−m+n

2 (1+η)

(
θ′
(1)−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ−1

2

where the last inequality is due to the fact that

(
θ′(1) − u(1)

)2

vTIP(θ)−1v
=

1
(1 + η)2

vTIP(θ)
−1sP,n(θ)sP,n(θ)

TIP(θ)
−1v

vTIP(θ)−1v
.

and

vTIP(θ)
−1sP,n(θ)sP,n(θ)

TIP(θ)
−1v

vTIP(θ)−1v

≤ sup
|u|=1

uTIP(θ)
−1sP,n(θ)sP,n(θ)

TIP(θ)
−1u

uTIP(θ)−1u

= λm

[
IP(θ)

−1/2sP,n(θ)sP,n(θ)
TIP(θ)

−1/2
]

≤ tr
[
IP(θ)

−1/2sP,n(θ)sP,n(θ)
TIP(θ)

−1/2
]

= sP,n(θ)
TIP(θ)

−1sP,n(θ) <
λδ2η

2(1 + η)2 because of Ln(θ0, δ0,
1
2

λδ2η).
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and hence

∫
Ω(−1)(θ,δ)

e−
m+n

2 (1+η)(θ′−v)TIP(θ)(θ
′−v)dθ′(−1)

≥
[

1− e−
(m+n)(1−2η)

8(1+η)
λδ2

2
DΘ−1

2

] (
2π

m + n

)DΘ−1
2
[
detIP(θ)

−1]1/2

|vTIP(θ)−1v|1/2

× e
−m+n

2 (1+η)

(
θ′
(1)−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ−1

2

≥
(

2π

m + n

)DΘ−1
2
[
detIP(θ)

−1]1/2

|vTIP(θ)−1v|1/2 e
−m+n

2 (1+η)

(
θ′
(1)−u(1)

)2

vT IP(θ)−1v (1 + η)−
DΘ

2 ,

for large n, m.

Therefore,

ln
∫

Ω(−1)(θ,δ)

πP(x̃m, xn|θ(1), θ′(−1))

πP(x̃m, xn|θ(1), θ(−1))
πP(θ

′
(−1)|θ(1))dθ′(−1)

≥ DΘ − 1
2

ln
(

2π

m + n

)
+

1
2

ln
|IP(θ)

−1|
|vTIP(θ)−1v|

− m + n
2

(1 + η)

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

+
m + n

2(1 + η)
[αsP,n(θ) + (1− α)sP,m(θ)]

TIP(θ)
−1[αsP,n(θ) + (1− α)sP,m(θ)]

+ ln πP(θ0,(−1)|θ0,(1))− ρ(η)− DΘ

2
ln(1 + η), (A.205)

where the function ρ(η) is defined in (A.202).

Step 4.2: We find the lower bound for the asymptotically essential term Re
n,3. We take

integrations over θ and x̃m over each term on the right hand side of the inequality
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(A.205).

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)DΘ − 1
2

ln
(

2π

m + n

)
dx̃mdθ

≥ DΘ − 1
2

ln
(

2π

m + n

)
πP (Ω(θ0, δ0)|xn)

[
1− sup

θ∈Ω(θ0,δ0)

Pm
θ Nm(θ)

]

=
DΘ − 1

2
ln
(

2π

m + n

)
+ o(1), due to An(θ0, δ0, ξ0).

and

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)1
2

ln
det

[
IP(θ)

−1]
|vTIP(θ)−1v|dx̃mdθ

≥
[

1
2

ln
det

[
IP(θ0)

−1]
|vTIP(θ0)−1v| − η

]
πP (Ω(θ0, δ0)|xn)

[
1− sup

θ∈Ω(θ0,δ0)

Pm
θ Nm(θ)

]

=
1
2

ln
det

[
IP(θ0)

−1]
|vTIP(θ0)−1v| − η + o(1), due to An(θ0, δ0, ξ0).

and

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ

=
∫

Ω(θ0,δ0)
πP(θ|xn)

∫
Xm

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ

−
∫

Ω(θ0,δ0)
πP(θ|xn)

∫
Nm(θ)c

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ

=
∫

Ω(θ0,δ0)
πP(θ|xn)

∫
Xm

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ + o(1),
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and

∫
Xm

πP(x̃m|θ)

−m + n
2

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃m

= −vTIP(θ)
−1
{∫

Xm
πP(x̃m|θ) [αsP,n(θ) + (1− α)sP,m(θ)]

× [αsP,n(θ) + (1− α)sP,m(θ)]
T dx̃m

}
IP(θ)

−1v

×
[
2(m + n)−1(1 + η)2vTIP(θ)

−1v
]−1

= −
vTIP(θ)

−1 {α2sP,n(θ)sP,n(θ)
T + (1− α)2IP(θ)/m

}
IP(θ)

−1v
2(m + n)−1(1 + η)2vTIP(θ)−1v

= − α

(1 + η)2
vTIP(θ)

−1SP,n(θ)SP,n(θ)
TIP(θ)

−1v
2vTIP(θ)−1v

− 1− α

2(1 + η)2 ,

Thus,

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)

−m + n
2

(1− η)

(
θ′(1) − u(1)

)2

vTIP(θ)−1v

dx̃mdθ

= − α

2(1 + η)

∫
Ω(θ0,δ0)

πP(θ|xn)
vTIP(θ)

−1SP,n(θ)SP,n(θ)
TIP(θ)

−1v
vTIP(θ)−1v

dθ

− 1− α

2(1 + η)
+ o(1)

≥ −α

2
− 1− α

2(1 + η)
+ o(1) ≥ −1

2
+ o(1).
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and

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ) m + n
2(1 + η)

× [αsP,n(θ) + (1− α)sP,m(θ)]
TIP(θ)

−1[αsP,n(θ) + (1− α)sP,m(θ)]dx̃mdθ

=
α

2(1 + η)

∫
Ω(θ0,δ0)

πP(θ|xn)SP,n(θ)
TIP(θ)

−1SP,n(θ)dθ +
1− α

2(1 + η)
DΘ + o(1)

≥ α

2(1 + η)

∫
Ω(θ0,δ0)

πP(θ|xn)SP,n(θ)
TIP(θ)

−1SP,n(θ)dθ +
1− α

2
DΘ − DΘη + o(1)

≥ α(DΘ − η)

2(1 + η)
+

1− α

2
DΘ − DΘη + o(1) ≥ DΘ

2
− (DΘ + αDΘ)η + o(1).

and

∫
Ω(θ0,δ0)

πP(θ|xn)
∫
Nm(θ)

πP(x̃m|θ)

×
[

ln πP(θ0,(−1)|θ0,(1))− ρ(η)− DΘ

2
ln(1 + η)

]
dx̃mdθ

= ln πP(θ0,(−1)|θ0,(1))− ρ(η)− DΘ

2
ln(1 + η) + o(1),

where the function ρ(η) is defined in (A.202).

Therefore, we know that the asymptotically essential component (A.197) of the term

Rn,3 is lower bounded by

DΘ − 1
2

ln
(

2π

m + n

)
+

1
2

ln
det

[
IP(θ0)

−1]
|vTIP(θ0)−1v| +

DΘ − 1
2

+ ln πP(θ0,(−1)|θ0,(1))

− ρ(η)− (DΘ + αDΘ)η −
DΘ

2
ln(1 + η) + o(1),

where the function ρ(η) is defined in (A.202).

Because of the fact that limx→0 ρ(x) = 0 and the arbitrariness of η, we know that

R*n,3 defined in (A.190) is asymptotically lower bounded by zero.

322



Proof of Theorem 2 in the Paper

It follows immediately from the results in Proposition 37 implied by Proposition 12

and Proposition 13.
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Appendix B

Appendix: The Volatility of

International Capital Flows and Foreign

Assets

This appendix presents additional theoretical results on the expectation correspon-

dence in Section B.1, the proof of Proposition 4 in Section B.2, the proof of Theorem

3 in Section B.3, two simple cases with analytical solutions in Section B.4, a description

of the numerical algorithm in Section B.5, and some additional empirical results on the

data in Section ?? and the model in Section B.6.

B.1 Equations of Expectation Correspondence Φ

The optimization problem of each country i ∈ {1, 2} can be re-formulated using La-

grangian multipliers, for each s ∈ S and e ∈ R+,

Ui(Wi) = min
µ

j
i≥0,µb

i≥0,µb
i,s̃≥0

max
cj

i ,ϑ
j
i ,b

j
i

C
1−ψ−1

i
i

1− ψ−1
i

+ βE
[
Ui(W̃i)

θi |s, e
]1/θi

+
2

∑
j=1

µ
j
iϑ

j
i − µb

i bi
i + ∑̃

s∈S
µb

i,s̃Ci(st, s̃)
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subject to the intra-termporal “budget constraint”

Ci = Gi(c1
i , c2

i ),

the inter-temporal budget constraint

Wi =
2

∑
j=1

pjc
j
i +

2

∑
j=1

ϑ
j
i qj +

2

∑
j=1

bj
i q

b
j ,

W̃i = p̃iω̃i +
2

∑
j=1

ϑ
j
i
(
q̃j + p̃jd̃j

)
+

2

∑
j=1

bj
i p̃j.

Using textbook arguments, we can show that each value function Ui(Wi) is concave,

continuous, and increasing. Then, the standard variational argument leads to the en-

velop condition:

Ui,W(Wi) = C
−ψ−1

i
i Gi,c2

(
c1

i , c2
i

)
, (B.1)

where Ui,W is the partial derivative of Ui w.r.t. W and Gi,c2 is the partial derivative of

Gi w.r.t. c2.

For notational simplicity, we denote E[·|s, e] ≡ Es,e[·]. The first-order condition for

ϑ
j
i , with i, j ∈ {1, 2}, gives

qjC
−ψ−1

1
1 G1,c2

(
c1

1, c2
1

)
= βEs,e

[(
Ũ1
)θ1
]1/θ1−1

Es,e

[
Ũ1,W

(
Ũ1
)θ1−1

(q̃j + p̃jd̃j)
]

+ µ
j
1 + ∑̃

s∈S
µb

1,s̃ηj
(
q̃j + p̃jd̃j

)
, (B.2)
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and

qjC
−ψ−1

2
2 G2,c2

(
c1

2, c2
2

)
= βEs,e

[(
Ũ2
)θ2
]1/θ2−1

Es,e

[
Ũ2,W

(
Ũ2
)θ2−1

(q̃j + p̃jd̃j)
]

+ µ
j
2 + ∑̃

s∈S
µb

2,s̃
(
q̃j + p̃jd̃j

)
. (B.3)

If we plug the Envelop condition (B.1) into the FOC in (B.3), we can get

qjC
−ψ−1

i
i Gi,c2

(
c1

i , c2
i

)
= βEs,e

[(
Ũi
)θi
]1/θi−1

Es,e

[(
C̃i
)−ψ−1

i Gi,c2

(
c̃1

i , c̃2
i

) (
Ũi
)θi−1

(q̃j + p̃jd̃j)

]
+ µ

j
i + ∑̃

s∈S
µb

i,s̃
(
q̃j + p̃jd̃j

)
. (B.4)

Note that when θi = 1, the condition above is simplified as

qjC
−ψ−1

i
i Gi,c2 (ci,1, ci,2) (B.5)

= βEs,e

[(
C̃i
)−ψ−1

i Gi,c2

(
c̃1

i , c̃2
i

)
(q̃j + p̃jd̃j)

]
+ µ

j
i + ∑̃

s∈S
µb

i,s̃
(
q̃j + p̃jd̃j

)
.

This is simply the first-order condition for CRRA utility functions. Similar equation is

derived in Stepanchuk and Tsyrennikov (2015).

Similarly, the first-order condition for bond holdings of agent 1 (i.e. bj
1) and Envelop

condition together lead to

qb
1C−ψ−1

1
1 G1,c2

(
c1

1, c2
1

)
= βEs,e

[(
Ũ1
)θ1
]1/θ1−1

Es,e

[(
C̃1
)−ψ−1

1 G1,c2

(
c̃1

1, c̃2
1

) (
Ũ1
)θ1−1 p̃1

]
− µb

1 + ∑̃
s∈S

µb
1,s̃ p̃1. (B.6)
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and

qb
2C−ψ−1

1
1 G1,c2

(
c1

1, c2
1

)
= βEs,e

[(
Ũ1
)θ1
]1/θ1−1

Es,e

[(
C̃1
)−ψ−1

1 G1,c2

(
c̃1

1, c̃2
1

) (
Ũ1
)θ1−1 p̃2

]
. (B.7)

Also, the first-order condition for bond holdings of agent 2 (i.e. bj
2) and Envelop

condition together lead to, for j = 1, 2,

qb
1C
−ψ−1

i
2 G2,c2

(
c1

2, c2
2

)
= βEs,e

[(
Ũi
)θ2
]1/θ2−1

Es,e

[(
C̃2
)−ψ−1

2 G2,c2

(
c̃1

2, c̃2
2

) (
Ũ2
)θ2−1 p̃1

]
+ ∑̃

s∈S
µb

2,s̃ p̃1. (B.8)

and

qb
2C
−ψ−1

i
2 G2,c2

(
c1

2, c2
2

)
= βEs,e

[(
Ũi
)θ2
]1/θ2−1

Es,e

[(
C̃2
)−ψ−1

2 G2,c2

(
c̃1

2, c̃2
2

) (
Ũ2
)θ2−1 p̃2

]
+ ∑̃

s∈S
µb

2,s̃ p̃2

− µb
2. (B.9)

The intra-temporal Euler conditions for country i ∈ {1, 2} is

p1Gi,c2

(
c1

i , c2
i

)
= p2Gi,c1

(
c1

i , c2
i

)
. (B.10)

Therefore, the expectation correspondence Φ̂ consists of the following five groups

of conditions for all i, j ∈ {1, 2}:

(1) The intra-temporal Euler equations in (B.10);

(2) The inter-temporal Euler equations about equity holdings in (B.2) and (B.3);
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(3) The inter-temporal Euler equations about bond holdings in (B.6), (B.7), (B.8) and (B.9)

and the feasibility conditions, for all s̃ ∈ S,

2

∑
j=1

ηjϑ
j
1

(
q̃j + p̃jd̃j

)
+ b1

1 p̃1 ≥ 0

and p̃2ω̃2 +
2

∑
j=1

ϑ
j
2
(
q̃j + p̃jd̃j

)
+

2

∑
j=1

bj
2 p̃j ≥ 0,

and slackness conditions, for all s̃ ∈ S,

µb
1,s̃

[
2

∑
j=1

ϑ
j
1ηj
(
q̃j + p̃jd̃j

)
+ b1

1 p̃1

]
= 0

and µb
2,s̃

[
p̃2ω̃2 +

2

∑
j=1

ϑ
j
2
(
q̃j + p̃jd̃j

)
+

2

∑
j=1

bj
2 p̃j

]
= 0;

(4) The inter-temporal budget constraints, for all s̃ ∈ S,

w̃

(
2

∑
i=1

p̃i ẽi +
2

∑
j=1

q̃j

)
= p̃1ω̃1 +

2

∑
j=1

ϑ
j
1

(
q̃j + p̃jd̃j

)
+

2

∑
j=1

bj
1 p̃j (B.11)

and

w̃

(
2

∑
i=1

p̃i ẽi +
2

∑
j=1

q̃j

)
=

2

∑
j=1

p̃j c̃
j
1 +

2

∑
j=1

ϑ̃
j
1q̃j +

2

∑
j=1

b̃j
1q̃b

j ; (B.12)

(5) The commodity market clearing conditions, for all s̃ ∈ S,

c̃j
1 + c̃j

2 = (cj
1 + cj

2)ζ(s̃). (B.13)
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B.2 Proof of Proposition 4

Suppose that when e = 1, a wealth-recursive equilibrium exists and has the policy

functions with the following form

Π(w, s, 1) ≡
{

cj
i(w, s), ϑ

j
i(w, s), bj

i(w, s), pi(w, s), qi(w, s), qb
i (w, s), µ

j
i(w, s), µb

i,s̃(w, s)
}

.

More precisely, the policy functions in Π(w, s), the transition map Ω(w, s) and the

value function Ui(w, s) satisfy the following conditions, for all (w, s) ∈ [0, 1]× S:

(0) The vectors of endogenous variables lie in Y defined in (4.10) - (4.11), i.e.

Π(w, s, 1), Π(w̃, s̃, ζ(s̃)) ∈ Y.

(1) The intra-temporal Euler equations are held:

p1(w, s)Gi,c2

(
c1

i (w, s), c2
i (w, s)

)
= p2(w, s)Gi,c1

(
c1

i (w, s), c2
i (w, s)

)
. (B.14)

(2) The inter-temporal Euler equations about equity positions are held:

qj(w, s)Ci(w, s)−ψ−1
i Gi,c2

(
c1

i (w, s), c2
i (w, s)

)
= βEw,s

[
Ui(w̃, s̃, ζ(s̃))θi

]1/θi−1

×Ew,s

[
Ci(w̃, s̃, ζ(s̃))−ψ−1

i Gi,c2

(
c1

i (w̃, s̃, ζ(s̃)), c2
i (w̃, s̃, ζ(s̃))

)
× Ui(w̃, s̃, ζ(s̃))θi−1(qj(w̃, s̃, ζ(s̃)) + pj(w̃, s̃, ζ(s̃))dj(s̃)ζ(s̃))

]
+ µ

j
i(w, s) + ∑̃

s∈S
µb

i,s̃(w, s)
(
qj(w̃, s̃, ζ(s̃)) + pj(w, s̃, ζ(s̃))dj(s̃)ζ(s̃)

)
. (B.15)
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(3) The inter-temporal Euler equations about bond are held

qb
j (w, s)Ci(w, s)−ψ−1

i Gi,c2

(
c1

i (w, s), c2
i (w, s)

)
= βEw,s

[
Ui(w̃, s̃, ζ(s̃))θi

]1/θi−1

×Ew,s

[
C̃i(w̃, s̃, ζ(s̃))−ψ−1

i Gi,c2

(
c1

i (w̃, s̃, ζ(s̃)), c2
i (w̃, s̃, ζ(s̃))

)
× (Ui(w̃, s̃, ζ(s̃)))θi−1 pj(w̃, s̃, ζ(s̃))

]
+ ∑̃

s∈S
µb

i,s̃ pj(w̃, s̃, ζ(s̃)).

and the feasibility conditions, for all s̃ ∈ S,

pi(w̃, s̃, ζ(s̃))ωi(s̃)ζ(s̃) +
2

∑
j=1

ϑ
j
i(w, s)

[
qj(w̃, s̃, ζ(s̃)) + pj(w̃, s̃, ζ(s̃))dj(s̃)ζ(s̃)

]
+

2

∑
j=1

bj
i(w, s)pj(w̃, s̃, ζ(s̃)) ≥ 0,

and slackness conditions, for all s̃ ∈ S,

µ
j
i,s̃(w, s)

[
pi(w̃, s̃, ζ(s̃))ωi(s̃)ζ(s̃) +

2

∑
j=1

ϑ
j
i(w, s)

[
qj(w̃, s̃, ζ(s̃)) + pj(w̃, s̃, ζ(s̃))dj(s̃)ζ(s̃)

]
+

2

∑
j=1

bj
i(w, s)pj(w̃, s̃, ζ(s̃))

]
= 0,

(4) The inter-temporal budget constraints, for all s̃ ∈ S, the wealth share corresponding to

exogenous shock in the period s̃ is w̃ = Ω(w, s; s̃). More precisely,

w̃

(
2

∑
i=1

pi(w̃, s̃, ζ(s̃))ei(s̃)ζ(s̃) +
2

∑
j=1

qj(w̃, s̃, ζ(s̃))

)
(B.16)

= p1(w̃, s̃, ζ(s̃))ω1(s̃)ζ(s̃)

+
2

∑
j=1

ϑ
j
1(w, s)

[
qj(w̃, s̃, ζ(s̃)) + pj(w̃, s̃, ζ(s̃))dj(s̃)ζ(s̃)

]
+

2

∑
j=1

bj
1(w, s)pj(w̃, s̃, ζ(s̃))
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and

w̃

(
2

∑
i=1

pi(w̃, s̃, ζ(s̃))ei(s̃)ζ(s̃) +
2

∑
j=1

qj(w̃, s̃, ζ(s̃))

)
(B.17)

=
2

∑
j=1

pj(w̃, s̃, ζ(s̃))cj
1(w̃, s̃, ζ(s̃)) +

2

∑
j=1

ϑ
j
1(w̃, s̃, ζ(s̃))qj(w̃, s̃, ζ(s̃))

+
2

∑
j=1

bj
1(w̃, s̃, ζ(s̃))qb

j (w̃, s̃, ζ(s̃));

(5) The commodity market clearing conditions, for all s̃ ∈ S,

cj
1(w̃, s̃, ζ(s̃)) + cj

2(w̃, s̃, ζ(s̃)) = (cj
1(w, s) + cj

2(w, s))ζ(s̃). (B.18)

For general value of e, we plug the expressions of (4.11) - (4.14) into the Bellman equa-

tion and conditions (0) - (5) above, and then we can see that the current size e is per-

fectly canceled out. By assumption for the case of e = 1, we know that they are policy

functions, transition map, and value functions for wealth-recursive Markov equilib-

rium for any current size e.

B.3 Proof of Theorem 3

We prove the existence by construction which combines important ideas of the proofs

in Duffie, Geanakoplos, Mas-Colell, and McLennan (1994), Kubler and Schmedders

(2003) and Geanakoplos and Zame (2013). The existence results of equilibria are stan-

dard for finite-horizon economy even with incomplete market, while for the infinite-

horizon economy the proofs are much more involving. The key idea of the proofs in

the literature1 is basically backward induction and is based on the existence of com-

petitive equilibria on all finitely-truncated economy whose equilibrium variables are

1Examples for existence of competitive equilibria in infinite-horizon incomplete market economy
with heterogeneous agents include Levine and Zame (1996), Magill and Quinzii (1996), and Hernandez
and Santos (1996), among others. Examples for existence of recursive Markov equilibria include Duffie,
Geanakoplos, Mas-Colell, and McLennan (1994) and Kubler and Schmedders (2003), among others.
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uniformly bounded. We extend the proof in Kubler and Schmedders (2003) to allow

for Epstein-Zin preferences including those which are not bounded below (i.e. EIS

parameter is bigger than one).

The T-truncated economy is defined to be a finite-horizon economy built on an

event tree, denoted by ST, which consists of all the nodes and edges along the path

sT = (s0, s1, · · · , sT) in the original event tree S. The endowments and asset payoffs

at the nodes of the truncated tree, as well as agents’ preferences and portfolio con-

straints at these nodes, are the identical to the original infinite-horizon economy. The

sequential budget constraint of agent i in the T-truncated economy is BST(PST
) which

is a collection of consumption plans CST

i =
{

c1
i (s

t), c2
i (s

t)
}

st∈ST and portfolio choice

plans AST

i =
{

ϑ1
i (s

t), ϑ2
i (s

t), b1
i (s

t), b2
i (s

t)
}

st∈ST such that, at each node of the event tree

st ∈ ST, the portfolio positions satisfy the short-selling constraint (4.5) and borrowing

constraint (4.6) and at each node st on the event tree ST,

2

∑
j=1

pj(st)cj
i(s

t) +
2

∑
j=1

qj(st)ϑ
j
i(s

t) +
2

∑
j=1

qb
j (s

t)bj
i(s

t)

= pi(st)ωi(st) +
2

∑
j=1

[
qj(st) + pj(st)dj(st)

]
ϑ

j
i(s

t−1)

+
2

∑
j=1

pj(st)bj(st−1) (B.19)

where st−1 is the ancestor node of the node st on the event tree and s0 = s0 is the initial

node.

Inspired by the result in Proposition 4, we take off the scaling effect of the economy

by assuming the world tree always has size one, i.e. e(st) ≡ 1 for all st ∈ S. We first

show that the competitive equilibria exist and the equilibrium variables are uniformly

bounded over T ≥ 1. We first formally introduce the following lemma and leave its

proof to Appendix B.3.1.

Lemma 7. For all T ≥ 1, there exists a competitive equilibrium for the T-truncated economy

in which all equilibrium variables, including consumptions, portfolio holdings and prices, all
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lie in a compact set Y* ⊂ Y.

For any compact set K ⊂ Y, and a policy correspondence Υ : S× [0, 1] ⇒ K, we

define an operator OK, that maps the policy correspondence Υ : S× ∆⇒ K to another

policy correspondence OK (Υ) such that for all s ∈ S and w ∈ [0, 1]

OK (Υ) (s, w)

=
{

y ∈ K : ∃
(
(w̃1, ỹ1), · · · , (w̃|S|, ỹ|S|)

)
∈ Φ(w, y, s, 1) s.t. ỹs̃ ∈ Υ(s̃, w̃s̃), ∀ s̃ ∈ S

}
.

The correspondence OK (Υ) (w, s) is basically computing the endogenous variables y ∈

Y given the state variables (w, s) in the current period and the next period’s equilibrium

endogenous variables (w1, y1), · · · , (w|S|, y|S|).

Define constant correspondence Υ0 by Υ0(y, w) ≡ Y* for all w ∈ [0, 1] and all y ∈ Y.

Given a correspondence Υn, we define recursively Υn+1 = OY* (Υn). First, for each

n, the set Υn is nonempty. This is because of Lemma 7, which implies that for all n

there exists a n-horizon competitive equilibrium whose endogenous variables lie in the

compact set Y*. Second, we show that Υn is closed for each n. We prove it by induction.

It is obvious that Υ0 ≡ Y* is closed. Suppose Υn is closed, then Υn+1 = OY* (Υn) is also

closed because the graph of Φ is closed and the graph of Υn is closed. Third, for each

n, Υn+1 ⊂ Υn. By definition, it is obvious that Υ1 ⊂ Υ0 ≡ Y*. Suppose that Υn ⊂ Υn+1,

then we have Υn+1 ⊂ Υn+2. This is because OY* (Υn) ⊂ OY*
(
Υn+1) by definition.

We define a correspondence Υ* such that for all (w, s) ∈ [0, 1]× S

Υ*(w, s) ≡ ∩∞
n=0Υn(w, s). (B.20)

Because for each (w, s) ∈ [0, 1]× S, the sequence of sets {Υn(w, s)} are compact, nested,

and nonempty, thus Υ*(w, s) is a closed and nonempty set. Υ*(w, s) is policy corre-

spondence in recursive Markov equilibria and the definition of operator OY* implies

the existence of a transition for the recursive Markov equilibrium.
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B.3.1 Proof of Lemma 7

We first show that the policy functions in equilibria are uniformly bounded for all T ≥

1 if equilibria exist. The agent i’s budget constraint Bi,ST(PST
) contains the portfolio

constraints including:

ϑ
j
i(s

t) ≥ 0, − Dei(st) ≤ bj
i(s

t) ≤ Dei(st) , and

pi(st)ωi(st) +
2

∑
j=1

ϑ
j
i(s

t−1)
[
qj(st) + pj(st)dj(st)

]
+

2

∑
j=1

pj(st)bj
i(s

t−1) ≥ 0,

for st−1, st ∈ ST.

For all T ≥ 1, in equilibria, we know that the consumptions lie in the interval [0, e]

where e ≡ maxs∈S {e1(s) + e2(s)} and we know that by nonnegativity and commodity

market clearing

0 ≤ cj
i(s

t) ≤ ej(st) ≤ e, for st ∈ ST, (B.21)

and also by short-selling constraint and equity market clearing

0 ≤ ϑj(st) ≤ 1, for st ∈ ST. (B.22)

By the debt ceiling and bond market clearing, we know that

− De ≤ bj
i(s

t) ≤ De for st ∈ ST. (B.23)

The intra-temporal Euler equations must hold in equilibria,

c1
1(s

t)

c2
1(s

t)
=

[
p1(st)

1− s
s

] 1
ρ−1

, (B.24)

and
e1(st)− c1

1(s
t)

e2(st)− c2
1(s

t)
=

[
p1(st)

s
1− s

] 1
ρ−1

. (B.25)
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Thus, combining (B.24) and (B.25), we have

e1(st)− e2(st)

[
p1(st)

s
1− s

] 1
ρ−1

= c2
1(s

t)p1(st)
1

ρ−1

{(
1− s

s

) 1
ρ−1

−
(

s
1− s

) 1
ρ−1
}

.

On the one hand, because c1
1(s

t) ≥ 0 and ρ ≤ 1, then

p1(st) ≥ 1− s
s

[
e1(st)

e2(st)

] 1
1−ρ

≥ 1− s
s

(
1
κ

) 1
1−ρ

≡ P1, (B.26)

with κ ≡ maxs∈S,i1,i2=1,2
ei1

(s)
ei2 (s)

> 1. And, on the other hand, because c1
1(s

t) ≤ e1(st),

then

p1(st) ≤ s
1− s

κ
1

ρ−1 ≡ P1. (B.27)

Now, we consider the prices of bonds. According to Santos and Woodford (1997), if

aggregate endowment is bounded away from zero, then any stationary and recursive

preference ordering does satisfy the form of impatience that for each agent i ∈ I, there

exist K > 0 and 0 ≤ δ < 1 such that for every st ∈ S,

(
(c1

i (s
t), c2

i (s
t) + Ke1(st)), (δc1

i,+(s
t), δc2

i,+(s
t))
)

≻i
(
(c1

i (s
t), c2

i (s
t)), (c1

i,+(s
t), c2

i,+(s
t))
)

for all consumption plans satisfying cj
i(s

t) ≤ ej(st) for all st ∈ S and cj
i,+(s

t) represents

the consumption of agent i for goods j over all remaining nodes; i.e. sr ∈ S such that

sr < st and r > t. It is obvious that in our economy for a given price system PT, if

a consumption plan c can be supported by an initial wealth W, then the consumption

plan δc can be supported by the initial wealth δW for any constant δ ∈ (0, 1). Thus, we

know that for each agent i ∈ I, there exist a K > 0 and 0 ≤ δ < 1 such that for every
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st ∈ S,

(
(c1

i (s
t), c2

i (s
t) + Ke1(st)), (δWi(st+1) : st+1 < st)

)
≻i
(
(c1

i (s
t), c2

i (s
t)), (Wi(st+1) : st+1 < st)

)
for all current consumption satisfying cj

i(s
t) ≤ ej(st) for all st ∈ S and wealth in the

beginning of the next period satisfying Wi(st+1) ≤ ∑2
i=1 pi(st+1)ei(st+1) + qi(st+1) for

all st ∈ S. Let Qb
2 ≡ Ke

wm(1− δ)
, and are going to show that the bond price qb

2(s
t) cannot

be higher than Qb
2 by contradiction. Suppose in an equilibrium, there is a note st such

that qb
2(s

t) > Qb
2 in an equilibrium of the T-truncated economy. At this node st, there

must be one agent who is not borrowing in net position, and hence her wealth in the

state st+1 < st in the next period is at least wm. Let’s just assume she is agent 1, without

loss of any generosity. Suppose her current consumption and next period’s wealth plan

is
(
(c1

i (s
t), c2

i (s
t)), (Wi(st+1) : st+1 < st)

)
. If the agent 1 sells wm(1− δ) unit of bond

2 at the node st (i.e. borrow wm(1− δ) unit more bond 2), she could gain at least K

amount of proceeds and then use all of the proceeds to buy at least Ke2(st) units of

commodity 2 which are consumed at st. However, this selling of bond 2 makes her

wealth plan in the next period is not lower than
(
δWi(st+1) : st+1 < st). Therefore,

the new plan strictly preferred relative to the original plan and at the same time the

new plan is in the budget constraint given the price system, which contradicts with

the agent optimization condition for general equilibrium. Similarly, we can show that

there is a large constant Qb
1 < +∞ such that the equilibrium price of bond 1 satisfies

qb
1(s

t) ≤ Qb
1 for all st ∈ ST in the T-truncated economy and all T ≥ 1.

Now, let’s consider the equity prices. For all T ≥ 1, the agent i’s value function

at each node st ∈ ST is upper bounded by e1−ψ−1
i

1− ψ−1
i

+ Ui(e, e, · · · ), where Ui(e, e, · · · )

denotes the value function for the consumption plan of consuming constant e of both

commodities over the infinite-horizon tree S. It is easy to get Ui(e, e, · · · ) = 1
1− β

e1−ψ−1
i

1−ψ−1
i

.
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Therefore, for any consumption plan

(
(c1

i (s
t), c2

i (s
t)), (c1

i,+(s
t), c2

i,+(s
t))
)

such that cj
i(s

r) ≤ ej(sr) for all i, j = 1, 2 and sr < st, we have

Ui

(
(c1

i (s
t), c2

i (s
t)), (c1

i,+(s
t), c2

i,+(s
t))
)
≤ 2

1− β

e1−ψ−1
i

1− ψ−1 , for i = 1, 2.

Due to the assumption that ψi ≥ 1, there exists large constant K such that for i = 1, 2,

K1−ψ−1
i

1− ψ−1
i

≥ 2
1− β

e1−ψ−1
i

1− ψ−1 .

Thus, we know that for each agent i ∈ I, there exist a K > 0 such that for every st ∈ S,

(c1
i (s

t) + K, c2
i (s

t) + K), (0, 0, · · · , 0︸ ︷︷ ︸
|S|

)

 ≻i
(
(c1

i (s
t), c2

i (s
t)), (Wi(st+1) : st+1 < st)

)

for all current consumption satisfying cj
i(s

t) ≤ ej(st) for all st ∈ S and wealth in the

beginning of the next period satisfying Wi(st+1) ≤ ∑2
i=1 pi(st+1)ei(st+1) + qi(st+1) for

all st ∈ S. We define a constant Q2 ≡ 4 max
{

K(1 + P1), (Qb
1 + Qb

2)De
}

and show that

the equity prices are uniformly bounded from above by this large constant by contra-

diction. Suppose that there exists a node st ∈ ST such that q2(st) > Q2 in a T-truncated

equilibrium. There must one agent whose position on equity 2 is no less than 1/2 in a

equilibrium. Without loss of generosity, we assume that the agent 1 holds no less than

1/2 of equity 2. If agent 1 sells 1/4 shares of equity 2 and consumes the proceeds for K

units of goods 1 and K units of goods 2, then the new plan strictly preferred relative to

the original plan and at the same time the new plan is in the budget constraint given

the price system, which contradicts with the agent optimization condition for general

equilibrium. Similarly, we can show that there is a large constant Q1 < +∞ such that

the equilibrium price of equity 1 satisfies q1(st) ≤ Q1 for all st ∈ ST in an equilibrium
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of the T-truncated economy and all T ≥ 1.

Therefore, we have shown that in equilibria of all T-truncated economies with T ≥

1 uniformly lie within a bounded rectangular area, denoted as Y*.

Now, we show that competitive equilibria exist for all T ≥ 1. For the purpose of

showing equilibrium existence, we change the price normalization following Kubler

and Schmedders (2003). That is, instead of setting the price of consumption com-

modity 2 at every node st ∈ ST to be one, we assume that the prices PST
(st) :={

pi(st), qi(st), qb
i (s

t)
}

i=1,2 at each node st to lie in the unit simplex ∆, i.e. ∑2
i=1 pi(st) +

∑2
i=1 qi(st) + ∑2

i=1 qb
i (s

t) = 1 and every price is nonnegative. We define the truncated

budget constraint to imposing the uniform bounds for the equilibria if they exist. We

construct truncated budget sets in this economy by adding extra bounds on the alloca-

tions and holdings, where the truncation will not affect the equilibria under portfolio

constraints. More precisely, we define the truncated budget set by, for i = 1, 2,

Bi,ST(PST
) = Ai,ST ∩Bi,ST(PST

),

where Ai,ST(PST
) imposes the uniform bounds on allocation and portfolio defined as

Ai,ST ≡
{

0 ≤ ϑ
j
i(s

t) ≤ 1, − De ≤ bj
i(s

t) ≤ De ,

0 ≤ cj
i(s

t) ≤ e, for st−1, st ∈ ST and j = 1, 2
}

.

Based on the truncated budget constraint, we define the truncated demand correspon-

dences which would be enough for our analysis. More precisely, we denote

σi,T(P
ST
) ≡ Arg max

(CST
i ,AST

i )∈Bi,ST (PST )

Ui(C
ST

i ). (B.28)

Note that truncated demand exists at every price system PST
because the equity hold-

ings are lower bounded and the bond holdings are bounded. Absent such bounds,

demand correspondence could be empty at some prices.
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Denote the demand correspondence component at the node st to be σi,T(P
ST

; st) and

the aggregate excess demand at the node st is

ΣT(P
ST
) ≡

2

∑
i=1

σi,T(P
ST

; st)−
(
e1(st), e2(st), 1, 1, 0, 0

)
, (B.29)

and define the excess demand of the T-truncated economy to be

ΣT(P
ST
) ≡ Πst∈ST ΣT(P

ST
; st). (B.30)

It’s easy to check that ΣT(P
ST
) is nonempty (because σi,T(P

ST
) is nonempty), compact-

valued (because Ui is continuous), convex-valued (because Ui is quasi-concave) and

upper hemi-continuous. Also, it is obvious that ΣT(P
ST
) is uniformly bounded, be-

cause consumptions and asset holdings are all uniformly bounded in the truncated

budget sets Bi,ST(PST
). That is, there exists R > 0 such that for all PST ∈ ∆|S

T | it holds

that

ΣT(P
ST
) ⊂ [−R, R]|S

T |×I(J+E+B). (B.31)

We further define the truncated space of endogenous variables

{(
c1

i , c2
i

)
i=1,2

,
(

ϑ1
i , ϑ2

i , b1
i , b2

i

)
i=1,2

}

as follows

Y(st) ≡
{

y ∈ RI(J+E+B) : ||y|| ≤ R
}

. (B.32)

We first define the correspondence

PT(·; st) : Y(st)⇒ ∆ (B.33)

such that

PT(y; st) ≡ Arg max
P∈∆

P · y. (B.34)

It’s obvious that PT(·; st) is nonempty, compact-valued, convex-valued, and upper
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hemi-continuous correspondence. Now, we define the correspondence

FT(·, ·; st) : ∆× Y(st)⇒ ∆× Y(st) (B.35)

such that

FT(P, y; st) = PT(y; st)× ΣT(P; st) (B.36)

The product correspondence FT : ∆|S
T | ×Πst∈STY(st) is defined as

FT(P
ST

, y) = Πst∈ST FT

(
PST

(st), y(st); st
)

. (B.37)

It is obvious that FT is nonempty, compact-valued, convex-valued, and upper hemi-

continuous correspondence. Therefore, by Kakutani Theorem, we know that FT has

fixed point. We denote the collection of fixed points to be GT.

We shall show that every fixed point (PST
, yST

) ∈ GT constitutes an equilibrium for

the T-truncated economy. Equivalently, we shall show that ∀ (PST
, yST

) ∈ GT,

yST ≡ 0 , and PST
>> 02. (B.38)

Our plan is to prove yST
(st) ≡ 0 for all st ∈ ST by induction first, and then show the

positiveness of prices. At the initial node s0, because of local non-satiation, we know

that agent i’s budget equation at node st is then

2

∑
j=1

pj(s0)cj
i(s

0) +
2

∑
j=1

qj(s0)ϑ
j
i(s

0) +
2

∑
j=1

qb
j (s

0)bj
i(s

0)

− pi(s0)wi(s0)−
2

∑
j=1

ϑ
j
i(s
−1)(qj(s0) + pj(s0)dj(s0))

−
2

∑
j=1

bj
i(s
−1)pj(s0) = 0,

which is due to the assumption that ∑2
i=1 ϑ

j
i(s
−1) = 1 and ∑2

i=1 bj
i(s
−1) = 0 for j = 1, 2.

2This means that every element of PST
is positive.
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We sum over all agents and get

2

∑
j=1

pj(s0)

[
2

∑
i=1

cj
i(s

0)− ej(s0)

]
+

2

∑
j=1

qj(s0)

[
2

∑
i=1

ϑ
j
i(s

0)− 1

]

+
2

∑
j=1

qb
j (s

0)

[
2

∑
i=1

bj
i(s

0)

]
= 0.

This implies that

0 = max
P∈∆

P · yST
(s0). (B.39)

Suppose that there is positive excess demand in some market at the node s0. Without

loss of generality, we assume the largest excess demand is in the market of commodity

1. Then, the optimal solution for maximization problem (B.39) at the node s0 would be

to set p1(s0) = 1 and p2(s0) = q1(s0) = q2(s0) = qb
1(s

0) = qb
2(s

0) = 0. However, this

leads to a positive value which contradicts with (B.39). On the other hand, suppose

that there is negative excess demand in some market. Without loss of generality, we

assume that the most negative excess demand is in the market of commodity 1. In this

case, the price of commodity 1 must be zero, i.e. p1(s0) = 0, in order to make PST
(s0)

to be the solution to (B.39). With zero price of commodity 1, the excess demand of

commodity 1 should be positive for two agents because of monotonicity of preference,

which is contradictory.

Suppose that yST
(st) ≡ 0. For any node st+1 < st, because of local non-satiation, we

know that agent i’s budget equation at node st+1 is then

2

∑
j=1

pj(st+1)cj
i(s

t+1) +
2

∑
j=1

qj(st+1)ϑ
j
i(s

t+1) +
2

∑
j=1

qb
j (s

t+1)bj
i(s

t+1)

− pi(st+1)wi(st+1)−
2

∑
j=1

ϑ
j
i(s

t)(qj(st+1) + pj(st+1)dj(st+1))

−
2

∑
j=1

bj
i(s

t)pj(st+1) = 0,

which is due to the assumption that ∑2
i=1 ϑ

j
i(s

t) = 1 and ∑2
i=1 bj

i(s
t) = 0 for j = 1, 2. We
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sum over all agents and get

2

∑
j=1

pj(st+1)

[
2

∑
i=1

cj
i(s

t+1)− ej(st+1)

]
+

2

∑
j=1

qj(st+1)

[
2

∑
i=1

ϑ
j
i(s

t+1)− 1

]

+
2

∑
j=1

qb
j (s

t+1)

[
2

∑
i=1

bj
i(s

t+1)

]
= 0.

This implies that

0 = max
P∈∆

P · yST
(st+1). (B.40)

Suppose that there is positive excess demand in some market at the node st+1. Without

loss of generality, we assume the largest excess demand is in the market of commodity

1. Then, the optimal solution for maximization problem (B.40) at the node st+1 would

be to set p1(st+1) = 1 and p2(st+1) = q1(st+1) = q2(st+1) = qb
1(s

t+1) = qb
2(s

t+1) = 0.

However, this leads to a positive value which contradicts with (B.39). On the other

hand, suppose that there is negative excess demand in some market. Without loss of

generality, we assume that the most negative excess demand is in the market of com-

modity 1. In this case, the price of commodity 1 must be zero, i.e. p1(st+1) = 0, in

order to make PST
(st+1) to be the solution to (B.39). With zero price of commodity

1, the excess demand of commodity 1 should be positive for two agents because of

monotonicity of preference, which is contradictory. Therefore, we complete the induc-

tion step in the proof and hence we have shown that yST
(st) ≡ 0 for all node st ∈ ST.

Because utility functions Ui are monotone, by Debreu (1959), we have the standard

boundary condition which means the demand blows up when PST → ∂
(

∆|S
T |
)

. Thus,

if there is an element of PST
is zero, there must exist an element of yST

is nonzero. This

is contradictory with the result we just proved above.

B.4 Two Simple Cases with Analytical Solutions

In the two simple examples, we consider the case where (1) agents have log utilities

(i.e. γ = ψ = 1) and (2) agents have no portfolio constraints. The simple examples
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allow us to derive the analytical solution and hence exactly check our algorithm and

numerical solution. The first-best consumption plan or the complete-market allocation

can be characterized by the following risk-sharing problem with intratemporal budget

constraints of both agents and the budget constraints of both agents being binding.

That is, at each node of the tree st ∈ S,

max
c1

1,t,c
2
1,t,c

1
2,t,c

2
2,t

λ log
(

s(c1
1,t)

ρ + (1− s)(c2
1,t)

ρ
)
+ (1− λ) log

(
(1− s)(c1

2,t)
ρ + s(c2

2,t)
ρ
)

(B.41)

such that

ci
1,t + ci

2,t = ei,t, for i = 1, 2. (B.42)

Thus, the perfect risk sharing rule gives that the state price density (SPD) is

πt =
λβt

p1,t

sρ(c1
1,t)

ρ−1

s(c1
1,t)

ρ + (1− s)(c2
1,t)

ρ
=

(1− λ)βt

p1,t

(1− s)ρ(c1
2,t)

ρ−1

(1− s)(c1
2,t)

ρ + s(c2
2,t)

ρ
(B.43)

together with the Intratemporal Euler Equations

p1,t =
s

1− s

(
c1

1,t

c2
1,t

)ρ−1

=
1− s

s

(
c1

2,t

c2
2,t

)ρ−1

, with p2,t ≡ 1. (B.44)

Plug market clearing conditions into the equation above, we have

(
s

1− s

) 2
ρ− 1

=
e1,t/c1

1,t − 1

e2,t/c2
1,t − 1

. (B.45)

Under the complete market assumption, the agents’ sequential budget constraints can

be summarized into static budget constraints of consumption claims.

πtW*1,t = Et

[
∑
τ≥t

πτ

(
p1,τc1

1,τ + c2
1,τ

)]
(B.46)
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and

πtW*2,t = Et

[
∑
τ≥t

πτ

(
p1,τc1

2,τ + c2
2,τ

)]
(B.47)

From (B.43), (B.44) and (B.46), we have

πtW*1,t = λEt

[
∑
τ≥t

βτ 1
p1,t

sρ(c1
1,τ)

ρ−1

s(c1
1,τ)

ρ + (1− s)(c2
1,τ)

ρ
(p1,τc1

1,τ + c2
1,τ)

]

=
λρ

1− β
.

And, similarly, we have

πtW*2,t = (1− λ)Et

[
∑
τ≥t

βτ 1
p1,t

(1− s)ρ(c1
2,τ)

ρ−1

(1− s)(c1
2,τ)

ρ + s(c2
2,τ)

ρ
(p1,τc1

2,τ + c2
2,τ)

]

=
(1− λ)ρ

1− β
.

Thus, the wealth ratio is equal to the Pareto weight

λ =
W*1,t

W*1,t + W*2,t
. (B.48)

The coincides above has a strong implication that the total wealth share λ is constant

over time in the equilibrium. Also, we have

W*1,t =
1

1− β

(
p1,tc1

1,t + c2
1,t

)
, (B.49)

and

W*2,t =
1

1− β

(
p1,tc1

2,t + c2
2,t

)
. (B.50)

So far, we have only assumed log utility and complete market. The consumption poli-

cies are characterized by the consumption shares νi,t with i = 1, 2 where ci
1 = νi,tei

(
s

1− s

) 2
ρ− 1

=
1/ν1,t − 1
1/ν2,t − 1

(B.51)
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and

λ =

ν1,te1,t
s

1− s

(
ν1,t

ν2,t

)ρ−1( e1,t

e2,t

)ρ−1

+ ν2,te2,t

e1,t
s

1− s

(
ν1,t

ν2,t

)ρ−1( e1,t

e2,t

)ρ−1

+ e2,t

=

ν1,t
s

1− s

(
ν1,t

ν2,t

)ρ−1( e1,t

e2,t

)ρ

+ ν2,t

s
1− s

(
ν1,t

ν2,t

)ρ−1 ( e1,t

e2,t

)ρ

+ 1

. (B.52)

Thus, in general, the first-best consumption plans (i.e. νi,t) depend on the parameters ρ

and s, as well as the total wealth share λ and the output ratio e2,t/e1,t. We consider two

special cases where the consumption shares νi,t are constant over time and hence facil-

itates analytical solutions. One example is the well-known Cole-Obstfeld Economy3,

and the other is the Symmetric Economy.

B.4.1 Cole and Obstfeld Economy

Based on the two assumptions in the beginning of Appendix B.4, we further assume

that the aggregator is Cobb-Douglas (i.e. ρ = 0) and the equity leverage ratio coeffi-

cient is zero (i.e. $ = 0) in our model. This economy is effectively the Cole-Obstfeld

economy. The solution to equations (B.51) and (B.52) are simply

ν1,t ≡ ν1 ≡
1

1 +
1− s

s
1− λ

λ

and ν2,t ≡ ν2 ≡
1

1 +
s

1− s
1− λ

λ

. (B.53)

3In their classic analysis of the irrelevance of asset markets for international risk sharing, Cole and
Obstfeld (1991) show that in an open economy with two differentiated goods, agents with logarithmic
preferences and Cobb-Douglas aggregator, and no trade costs, the central-plannerŠs allocation can be
achieved even without trade in asset markets. This occurs because the endogenous response of the Term
of Trade to supply shocks to the two goods is sufficient to implement the international wealth transfers
that support the central plannerŠs consumption allocation. As is well known, the Cole and Obstfeld
equilibrium features: perfectly correlated Home and Foreign stock markets, symmetric aggregate stock
market portfolio holdings, zero holdings of risk-free bonds, equal consumption state by state, zero NX,
and indeterminate NFA and CA. The exchange rate is either constant (s = 0.5) or positively related to
the Term of Trade (s > 0.5).
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Thus, the optimal consumptions are

c1
1,t = ν1e1,t, c2

1,t = ν2e2,t, (B.54)

c1
2,t = (1− ν1)e1,t, c2

2,t = (1− ν2)e2,t. (B.55)

The Term of Trade is

p1,t = A
e2,t

e1,t
, with A ≡ s

1− s
ν2

ν1
, (B.56)

and the real exchange rate is

Qt ≡ p2s−1
1,t . (B.57)

Because the wealth share is constant, based on the Proposition 4, the Euler equation

for equity prices are

e2(st)−1 [q1(st)e(st)
]

= β ∑
st+1∈S

P(st, st+1)e2(st+1)−1
[
q1(st+1)e(st+1) + p1(st+1)de1(st+1)

]
= β ∑

st+1∈S
P(st, st+1)e2(st+1)−1

[
q1(st+1)e(st+1) + Ade2(st+1)

]
(B.58)

and

e2(st)−1 [q2(st)e(st)
]

= β ∑
st+1∈S

P(st, st+1)e2(st+1)−1
[
q2(st+1)e(st+1) + de2(st+1)

]
(B.59)

Because two equities have perfectly correlated dividend flows which are {Ade2,t}t≥0

and {de2,t}t≥0, then it is straightforward to know that q1(st) ≡ Aq2(st). Therefore,

the US and ROW equities are perfectly correlated, and hence the equity holdings are

indeterminate. Thus, one possible set of portfolio holdings are

ϑ1
1,t ≡

ν1 − (1− d)
d

, ϑ2
1,t ≡

ν2

d
, b1

1,t ≡ b2
1,t ≡ 0, (B.60)
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ϑ1
2,t ≡

1− ν1

d
, ϑ2

2,t ≡
1− ν2 − (1− d)

d
, b1

2,t ≡ b2
2,t ≡ 0. (B.61)

The bonds’ prices are, for i = 1, 2,

e2(st)−1
[
qb

i (st)e(st)
]
= β ∑

st+1∈S
P(st, st+1)e2(st+1)−1

[
pi(st+1)e(st+1)

]
. (B.62)

Based on the structures of endowment processes specified in Section 4.2.1, the Euler

equations for asset prices in (B.58), (B.59) and (B.62) can re-written as

x−1
2,t q1(st) = β ∑

st+1∈S
P(st, st+1)

[
x−1

2,t+1q1(st+1) + Ad
]

(B.63)

x−1
2,t q2(st) = β ∑

st+1∈S
P(st, st+1)

[
x−1

2,t+1q2(st+1) + d
]

(B.64)

and

x−1
2,t qb

i (st) = β ∑
st+1∈S

P(st, st+1)x−1
2,t+1pi(st+1). (B.65)

The equity prices are solution of the S by S linear equations, while the bond prices can

be directly calculated. We can see that the normalized asset prices are independent of

global component and the disaster probability.

B.4.2 Symmetric Economy

Based on the two assumptions in the beginning of Appendix B.4, we further assume

that the consumption share coefficient (i.e. s = 0.5) and the equity leverage ratio coef-

ficient is zero (i.e. $ = 0) in our model. The solution to equations (B.51) and (B.52) are

simply

ν1,t ≡ ν2,t ≡ λ. (B.66)

Thus, the optimal consumptions are

c1
1,t = λe1,t, c2

1,t = λe2,t, (B.67)
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c1
2,t = (1− λ)e1,t, c2

2,t = (1− λ)e2,t. (B.68)

The Term of Trade is

p1,t =

(
e1,t

e2,t

)ρ−1

, (B.69)

and the real exchange rate is

Qt ≡ 1. (B.70)

Because the wealth share is constant, the Euler equation for equity prices are

e2(st)ρ−1

e1(st)ρ + e2(st)ρ

[
q1(st)e(st)

]
= β ∑

st+1∈S
P(st, st+1)

e2(st+1)ρ−1

e1(st+1)ρ + e2(st+1)ρ

{[
q1(st+1)e(st+1)

]
+ p1(st+1)de1(st+1)

}

and

e2(st)ρ−1

e1(st)ρ + e2(st)ρ

[
q2(st)e(st)

]
= β ∑

st+1∈S
P(st, st+1)

e2(st+1)ρ−1

e1(st+1)ρ + e2(st+1)ρ

{[
q2(st+1)e(st+1)

]
+ de2(st+1)

}

The Inter-temporal Euler equations above can be re-written as

q1(st)e(st)

p1(st)e1(st) + e2(st)

= β ∑
st+1∈S

P(st, st+1)
q1(st+1)e(st+1) + p1(st+1)de1(st+1)

p1(st+1)e1(st+1) + e2(st+1)
(B.71)

and

q2(st)e(st)

p1(st)e1(st) + e2(st)
= β ∑

st+1∈S
P(st, st+1)

q2(st+1)e(st+1) + de2(st+1)

p1(st+1)e1(st+1) + e2(st+1)
. (B.72)

The equilibrium portfolio holdings are

ϑ1
1,t ≡

λ− (1− d)
d

, ϑ2
1,t ≡

λ

d
, b1

1,t ≡ b2
1,t ≡ 0, (B.73)
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ϑ1
2,t ≡

1− λ

d
, ϑ2

2,t ≡
1− λ− (1− d)

d
, b1

2,t ≡ b2
2,t ≡ 0. (B.74)

The bonds’ prices Euler equations are, for i = 1, 2,

qb
i (st)e(st)

p1(st)e1(st) + e2(st)
= β ∑

st+1∈S
P(st, st+1)

pi(st+1)e(st)

p1(st+1)e1(st+1) + e2(st+1)
. (B.75)

Based on the structures of endowment processes specified in Section 4.2.1, the Euler

equations for asset prices in (B.71), (B.72) and (B.75) can re-written as

q1(st)

p1(st)x1,t + x2,t
= β ∑

st+1∈S
P(st, st+1)

q1(st+1) + p1(st+1)dx1,t+1

p1(st+1)x1,t+1 + x2,t+1
, (B.76)

q2(st)

p1(st)x1,t + x2,t
= β ∑

st+1∈S
P(st, st+1)

q2(st+1) + p2(st+1)dx2,t+1

p1(st+1)x1,t+1 + x2,t+1
, (B.77)

and for i = 1, 2

qb
i (st)

p1(st)x1,t + x2,t
= β ∑

st+1∈S
P(st, st+1)

pi(st+1)ζ(st+1)
−1

p1(st+1)x1,t+1 + x2,t+1
, (B.78)

where

p1(st) =

(
x1,t

x2,t

)ρ−1

. (B.79)

So, the equity prices can be solved from the S by S linear system, and the bond prices

can be directly calculated. We can see that the normalized asset prices are independent

of global component and the disaster probability.

How about the value function Ui(λ, st, et)? From the definition, we know that

U1(λ, st, et) = Et

{
∑
τ≥t

βτ−t 1
ρ

log
[
s(c1

1(λ, sτ, eτ))
ρ + (1− s)(c2

1(λ, sτ, eτ))
ρ
]}

=
1

1− β
log(λ) +

1
1− β

log(et) + F1(st),
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where

F1(st) = ∑
τ>t

βτ−tEt

[
log
(

eτ

et

)]
+

1
ρ ∑

τ≥t
βτ−tEt

[
log(sxρ

1,t + (1− s)xρ
2,t)
]

.

Plugging back into the recursive formulation of the value function, it follows that, for

st, st+1 ∈ S,

F1(st) =
1
ρ

log(sxρ
1,t + (1− s)xρ

2,t) (B.80)

+ β ∑
st+1∈S

P(st, st+1)

[
F1(st+1) +

1
1− β

log(ζt+1)

]
.

Thus, the function F1(s) can be solved out from the S by S linear system.

U2(λ, st, et) = Et

{
∑
τ≥t

βτ−t 1
ρ

log
[
(1− s)(c1

2(λ, sτ, eτ))
ρ + s(c2

2(λ, sτ, eτ))
ρ
]}

=
1

1− β
log(1− λ) +

1
1− β

log(et) + F2(st),

where

F2(st) = ∑
τ>t

βτ−tEt

[
log
(

eτ

et

)]
+

1
ρ ∑

τ≥t
βτ−tEt

[
log((1− s)xρ

1,t + sxρ
2,t)
]

.

Plugging back into the recursive formulation of the value function, it follows that, for

st, st+1 ∈ S,

F2(st) =
1
ρ

log((1− s)xρ
1,t + sxρ

2,t) (B.81)

+ β ∑
st+1∈S

P(st, st+1)

[
F2(st+1) +

1
1− β

log(ζt+1)

]
.

Thus, the function F2(s) can be solved out from the S by S linear system.
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B.4.3 Financial Wealth Share as Endogenous State Variable

The total wealth (including the present value of labor income) distribution serves as a

natural state variable in complete market to characterize the equilibrium, as we have

shown above where the first-best allocation can be achieved even in an incomplete

market and more generally described in standard textbooks of complete market, such

as Magill and Quinzii (2002).

However, when the market is incomplete, a natural endogenous state variable char-

acterizing the equilibrium would be the financial wealth (excluding the present value

of non-tradable cash flows) distribution, instead of the total wealth distribution. In our

simple examples above, the financial wealth share can be expressed in terms of total

wealth share, asset prices and endowments.

B.5 Numerical Solution

The algorithm is a time iteration algorithm.

Step 0: Select an error tolerance ε for the stopping criterion and a grids discretizing

the financial wealth ratio endogenous state variable w on [0, 1]. Denote the grids as

0 < w1 < · · · < wN < 1. We also choose the initial guess for Π and Ω as Π̂0 and

Ω̂0.

Step 1: For k = 1, · · · , K, given piecewise-linear (or more general interpolation meth-

ods) functions Π̂k−1 and Ω̂k−1, we solve out the policy functions and transition map

Π̂k and Ω̂k. This is key part of time iteration algorithm.

(1) Solve out Π̂k given Π̂k−1 and Ω̂k−1:

(a) Given a grid point wi, s ∈ S and s̃ ∈ S, calculate w̃ based on Ω̂k−1:

w̃ = Ω̂k−1(wi, s, s̃)
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(b) Interpolate/Extroplate the policy function Π̂k−1 at w̃ or you can also say eval-

uating the interpolated function Π̂k−1 at w̃.

(c) Solve out Π̂k as current period’s policies based on taking the next period’s

policies as those interpolated above.

(2) Update Ω̂k given Π̂k and Ω̂k−1:

(a) Given a grid point wi, s ∈ S and s̃ ∈ S, calculate w̃ based on Ω̂k−1:

w̃ = Ω̂k−1(wi, s, s̃)

(b) Calculate Ω̂k(wi, s, s̃):

Ω̂k(wi, s, s̃) =

p1(w̃, s̃)w1(s̃) + ∑2
j=1 ϑ

j
1(wi, s)(qj(w̃, s̃) + pj(w̃, s̃)dj(w̃, s̃)) + ∑2

j=1 bj
1(wi, s)pj(w̃, s̃)

∑2
j=1 pj(w̃, s̃)ej(s̃) + qj(w̃, s̃)

Step 2: Check stropping criterion. If

max
w∈W,z,z′∈Z

{
|ρ̂k(w, z)− ρ̂k−1(w, z)|, |Ω̂k(w, z, z′)− Ω̂k−1(w, z, z′)|

}
< ε

then go to Step 3. Otherwise, k = k + 1 and go to Step 1.

Step 3: The algorithm terminates. Set

ρ̂ = ρ̂k and Ω̂ = Ω̂k.

B.6 Additional Simulation Results

We simulate an economy for 100 years at a quarterly frequency. This simulation is then

repeated 30,000 times. In each simulation the model is hit with a disaster probability

shock in the first quarter of year 96. The disaster probability jumps to a large value

of pt = pH ≡ 6% and then decays back to average level according to its average
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convergence speed. The half life of the temporary risk shock is 10 quarters according

to our calibration. All other shocks are randomly drawn. This experiment generates

the average impact of a risk shock, where the average is taken over the distribution of

aggregate and country-specific shocks.

Panel A of figure B-1 reports the path of the disaster probability pt. The shock gen-

erates a sharp spike in the average disaster probability pt across the 30,000 simulations,

which dies out with a half-life of about 6 months.

Figure B-2 reports the impulse response functions of domestic and foreign asset

pricing moments to a large buy temporary shock in the disaster probability.

The capital stock, scaled by GDP, is defined as:

CSj
i,t ≡

ϑ
j
i,tqj,t

Yi,t
.

Panel B of Figure B-3 reports the response of the U.S. holdings of U.S. and ROW equity.

The increase in the disaster probability leads to a sharp decreases the price-dividend

and consumption-wealth ratios, and a sharp increase in equity risk premia. The U.S.

capital stock of U.S. equity decreases sharply while the U.S. capital stock of the ROW

equity increases slightly.

The change in capital stocks is due to a change in the value of the existing holdings

and a change in the holdings, reflected in the international capital flows. We defined

the capital flows, scaled by GDP, as equal to:

CFj
i,t+1 ≡

ϑ
j
i,t+1qj,t+1 − ϑ

j
i,tqj,t+1

Yi,t+1
.

Panel C of Figure B-3 reports the gross and net equity flows from the perspective of

the U.S. Inflows increase and outflows decrease immediately in response to the disas-

ter probability shock. The net inflows are positive but small in comparison with the

gross flows. The inflows and outflows immediately reverse after the shock, but their

subsequent size are an order of magnitude smaller than their initial responses. Panel
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Figure B-1: Impulse-Response Functions of Basic Quantities to a Disaster Probability
Shock in the Model.
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D of Figure B-1 shows that the net debt flow is almost immune to the large risk shocks.

The change in capital stocks can be decomposed into a capital flow and a valuation

component:

∆CSj
i,t+1 =

ϑ
j
i,t+1qj,t+1

Yi,t+1
−

ϑ
j
i,tqj,t

Yi,t
,

∆CSj
i,t+1 = CSj

i,t

Rj
i,t+1

RY
i,t+1
− 1


︸ ︷︷ ︸
Valuation effects

+ CSj
i,t+1 − CSj

i,t

Rj
i,t+1

RY
i,t+1

,︸ ︷︷ ︸
Flow effects

where Rj
i,t+1 ≡

qj,t+1
qj,t

and RY
i,t+1 ≡

Yi,t+1
Yi,t

. The first term above captures the impact of

asset prices on the change of capital stocks. The second term corresponds to the capital

flows, as defined previously:

CSj
i,t+1 − CSj

i,t

Rj
i,t+1

RY
i,t+1

=
ϑ

j
i,t+1qj,t+1 − ϑ

j
i,tqj,t+1

Yi,t+1
= CFj

i,t+1.

Figure B-3 reports the impulse response functions of capital stocks to a large shock

in the disaster probability. The figure reports the dynamics of capital stocks levels,

capital stock changes and capital flows.

Figure B-4 reports the dynamics of U.S. domestic and foreign holdings in response

to a shock on the disaster probability. Panel B corresponds to the U.S. holdings of

U.S. equity. Panel C corresponds to the U.S. holdings of ROW equity. And, Panel

D corresponds to the U.S. holdings of international bond. In each panel, the stock

changes are decomposed into their valuation and flow components.
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Figure B-2: The simulation of pricing moments with a large temporary risk shock.
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