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Abstract

This note contains a continuous-time version of the full-fledged quantitative model

in the paper titled “Feedback and Contagion through Distressed Competition” (Chen

et al., 2023a). Section 1 develops the model in continuous time and provides addi-

tional discussions on the literature. Section 2 clarifies some technical conditions for

the boundary conditions of the continuous-time model. Section 3 provides the numer-

ical algorithm that solves the continuous-time model using a discrete-time dynamic

programming method. Moreover, an internet appendix (Chen et al., 2023b) provides

empirical evidence supporting the theoretical results, as well as additional analyses of

the full-fledged quantitative model.
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1 Additional Materials on the Quantitative Model

We develop a continuous-time version of the full-fledged quantitative model. Section 1.1
presents the setup of the model. Section 1.2 formulates the Nash equilibrium. Section 1.3
provides additional discussions on the literature.

1.1 Model Formulation

The model describes an infinite-horizon economy with continuous time t ≥ 0 and two
firms within the same industry. The continuously compounded risk-free rate is r f ≥ 0. At
t = 0, firms are financed by external equity and long-term consol debt at coupon rate ebi .
Firms engage in Bertrand competition over every instant of time.

Product Market Competition and Cash Flows. Firm i’s earnings intensity after interest
expenses over [t, t + dt) is

Ei,t = (Pi,t − ω)ezi,t Ci,t − ebi , (1)

where ω is the marginal cost of production, Pi,t is the price, and ezi,t Ci,t is the demand,
which is determined by a firm-specific demand intensity zi,t, for firm i ∈ {1, 2}. The
timeline of a firm’s decisions and actions within every instant of time can be summarized
as follows. A firm first observes its demand intensity, then names its price and receives
the demand for its goods. Next, the firm uses its operating cash flows to make interest
payments, and then decides whether to default. Finally, if it chooses not to default, the
firm pays taxes and distributes the remaining cash flows to its shareholders as dividends.
Specifically, firm i’s earnings intensity after interest expenses and taxes is (1 − τ)Ei,t, where
the corporate tax rate is τ ∈ (0, 1).

Within every instant of time [t, t + dt), firms simultaneously name their prices P1,t

and P2,t, knowing that they face downward-sloping within- and cross-industry demand
functions. Once prices are set, the demand ez1,t C1,t and ez2,t C2,t are determined according
to the following demand system. To characterize how industry demand depends on the
industry-level price index Pt, we follow the literature (e.g., Hopenhayn, 1992; Pindyck,
1993; Caballero and Pindyck, 1996) and postulate a downward-sloping isoelastic industry
demand curve. Specifically, the industry demand is eat Ct, where eat ≡ ∑2

i=1 ezi,t is the
industry-level demand intensity and Ct is given by

Ct = P−ϵ
t , (2)

where the parameter ϵ > 1 captures the industry-level price elasticity of demand.
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Next, we introduce the demand system for differentiated goods within an industry.
Given Ct and Pt, consumers decide on a basket of differentiated goods, which are produced
by the two firms, based on the prices P1,t and P2,t charged by firms 1 and 2, respectively.
Specifically, Ct equals a Dixit-Stiglitz constant elasticity of substitution (CES) aggregator:

Ct =

[
2

∑
i=1

(
ezi,t−at

)
C

η−1
η

i,t

] η
η−1

, (3)

where the parameter η > 1 captures the elasticity of substitution among goods produced
by the two firms in the same industry. Intuitively, the weight ezi,t−at captures consumers’
relative preference for firm i’s goods. We assume that η ≥ ϵ > 1, meaning that goods
within the same industry are more substitutable than those across industries.

From the CES aggregator, the firm-level demand curve immediately follows. Specifically,
given the prices Pi,t for i = 1, 2 and Ct, the demand for firm i’s goods ezi,t Ci,t can be obtained
by solving a standard expenditure minimization problem:

ezi,t Ci,t = ezi,t−at

(
Pi,t

Pt

)−η

eat Ct, with the price index Pt =

[
2

∑
i=1

ezi,t−at P1−η
i,t

] 1
1−η

. (4)

All else equal, the demand for firm i’s goods ezi,t Ci,t increases with consumers’ relative
preference ezi,t−at for firm i’s goods in equilibrium. A larger ezi,t−at implies that firm i’s
price Pi,t has a greater influence on the price index Pt. The demand curves at the industry
level (2) and the firm level (4) yield:

Ci,t =

(
Pi,t

Pt

)−η

P−ϵ
t . (5)

The short-run price elasticity of demand for firm i’s goods is

−∂ ln(ezi,t Ci,t)

∂ ln Pi,t
= µi,t

[
−∂ ln(ezi,t Ci,t)

∂ ln Pt

]
︸ ︷︷ ︸

cross-industry

+ (1 − µi,t)

[
−∂ ln(ezi,t Ci,t/(eat Ct))

∂ ln(Pi,t/Pt)

]
︸ ︷︷ ︸

within-industry

= µi,tϵ + (1 − µi,t)η,

(6)

where µi,t is the (revenue) market share of firm i, which equals µi,t = ezi,t−at (Pi,t/Pt)
1−η.

Equation (6) shows that the short-run price elasticity of demand is given by the average
of η and ϵ, weighted by the firm’s market share µi,t. When its market share µi,t shrinks
(grows), within-industry (cross-industry) competition becomes more relevant for firm i, so
its price elasticity of demand depends more on η (ϵ). There are two extreme cases, µi,t = 0
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and µi,t = 1. In the former case, firm i becomes atomistic and takes the industry price index
Pt as given; as a result, firm i’s price elasticity of demand is exactly η. In the latter case,
firm i monopolizes the industry, and its price elasticity of demand is exactly ϵ.

The firm-specific demand intensity zi,t follows a process with intertemporal dependence:

e−zi,tdezi,t = gdt + ςdWt + σdWi,t − dJi,t, (7)

where the parameter g captures the firm’s expected growth rate, the standard Brownian
motion Wt (Wi,t) captures aggregate (idiosyncratic) demand shocks, and the Poisson process
Ji,t with intensity ν captures idiosyncratic left-tail jump shocks in firm i’s cash flows. Firm i
exits the industry upon the occurrence of a Poisson shock. The shocks Wt, Wi,t, and Ji,t are
mutually independent. The coefficient ν captures idiosyncratic left-tail risk.

Several points regarding the shocks are worth mentioning. First, the aggregate Brownian
shock Wt in equation (7) is an economy-wide or industry-wide demand shock. Second, the
idiosyncratic Brownian shocks, W1,t and W2,t, are firm-specific demand shocks. Idiosyncratic
shocks are needed for the model to quantitatively match the default frequency and generate
a nondegenerate cross-sectional distribution of market shares in the stationary equilibrium.
Third, the idiosyncratic left-tail jump shocks, J1,t and J2,t, play a crucial role in our theory
and empirical results. Idiosyncratic left-tail risk has been proven useful in explaining credit
spreads and credit default swap index (CDX) spreads (e.g., Delianedis and Geske, 2001;
Collin-Dufresne, Goldstein and Yang, 2012; Kelly, Manzo and Palhares, 2018; Seo and
Wachter, 2018).

In the rest of this section, we focus on illustrating firms’ problems under the risk-neutral
(Q) measure. Specifically, let γ be the market price of risk for the aggregate shock Wt.
Equation (7) can be written as:

e−zi,tdezi,t = (g − ςγ)dt + ςdWQ
t + σdWi,t − dJi,t, with dWQ

t = γdt + dWt, (8)

where dWQ
t captures the aggregate shocks under the risk-neutral measure.

Endogenous Profits and Externalities. Now, we characterize the profitability function.
Firm i’s operating profits are

(Pi,t − ω) ezi,t Ci,t = Πi(θi,t, θj,t)ezi,t , with Πi(θi,t, θj,t) ≡ ω1−ϵθi,t (1 − θi,t)
η−1 (1 − θt)

ϵ−η,
(9)
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where θi,t and θt represent the firm-level and industry-level profit margins,

θi,t ≡
Pi,t − ω

Pi,t
and θt ≡

Pt − ω

Pt
, (10)

and it directly follows from equation (4) that the relation between θi,t and θt is

1 − θt =

[
2

∑
i=1

ezi,t−at(1 − θi,t)
η−1

] 1
η−1

. (11)

Equation (9) shows that firm i’s profits depend on its rival j’s profit margin θj,t through the
industry’s profit margin θt. This reflects the externality of firm j’s profit margin decisions.
For example, holding firm i’s profit margin fixed, if firm j cuts its profit margin θj,t, the
industry’s profit margin θt will drop, which will reduce the demand for firm i’s goods Ci,t

(see equation (5)), compromising firm i’s profits. Below, we explain the Nash equilibrium,
which determines the profit margin strategies (θ1,t, θ2,t).

Financial Distress. Firm i can optimally choose to file for bankruptcy and exit when
its equity value drops to zero because of negative shocks to the demand intensity zi,t. To
maintain tractability, a new firm enters the industry only after an incumbent firm exits.
However, the new firm has an initial demand intensity eznew = κezj,0 > 0 and an optimal
coupon rate ebnew . The parameter κ > 0 captures the size of the new entrant relative to
the surviving incumbent firm j’s initial size. Intuitively, a larger κ reflects a higher entry
threat to the incumbent. Upon entry, the dynamic game of industry competition, which
we describe in Section 1.2 below, is “reset” to a new one between the surviving incumbent
firm and the new entrant

1.2 Nash Equilibrium

Non-Collusive Equilibrium. The two firms in an industry play a supergame (Friedman,
1971), in which the stage games of setting profit margins are continuously played and
infinitely repeated with exogenous and endogenous state variables varying over time. All
strategies depend on “payoff-relevant” states zt ≡ {z1,t, z2,t} in the state space Z, as in
Maskin and Tirole (1988a,b).

Specifically, the non-collusive equilibrium is characterized by a profit-margin-setting
scheme ΘN(·) = (θN

1 (·), θN
2 (·)), which is a pair of functions defined in the state space Z,

such that firm i’s equity value EN
i (zt) is maximized by choosing the profit margin θN

i (zt),
under the assumption that its rival j will stick to the non-collusive profit margin θN

j (zt).
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We denote by zN
i (zj,t) firm i’s endogenous default boundary with respect to zi,t in

the non-collusive equilibrium; importantly, the endogenous default boundary of firm i
depends on its rival’s demand intensity zj,t. Following the recursive formulation in dynamic
games for characterizing the Nash equilibrium (e.g., Pakes and McGuire, 1994; Ericson and
Pakes, 1995), we formulate the optimization problems, conditioning on zi,t > zN

i (zj,t) for
i ̸= j ∈ {1, 2}, as a pair of Hamilton-Jacobi-Bellman (HJB) equations:

r f EN
i (zt)dt = max

θi,t
(1 − τ)

[
Πi(θi,t, θN

j,t)e
zi,t − ebi

]
dt + E

Q
t [dEN

i (zt)], (12)

where i ̸= j ∈ {1, 2}, E
Q
t [·] represents the expectation under the risk-neutral measure

conditioning on the information set up to t, θN
i,t ≡ θN

i (zt), and Πi(θi,t, θj,t) is defined in
(9). The coupled HJB equations provide the solutions for the non-collusive profit margins
θN

1 (zt) and θN
2 (zt).

At the default boundary zN
i (zj,t) of firm i, the equity value of firm i is equal to zero

(i.e., the value matching condition), and the optimality of the default boundary implies the
smooth pasting condition:

EN
i (zt)

∣∣∣
zi,t=zN

i (zj,t)
= 0 and

∂

∂zi,t
EN

i (zt)

∣∣∣∣
zi,t=zN

i (zj,t)

= 0, respectively. (13)

As zi,t → +∞, firm i becomes an industry monopoly, which sets an asymptotic boundary
condition (see Section 2.2 of this note). The value matching and smooth pasting conditions
in (13) ensures that the smooth-pasting condition with respect to zj,t holds in equilibrium,

i.e., ∂
∂zj,t

EN
i (zt)

∣∣∣
zi,t=zN

i (zj,t)
= 0. This property may not hold generally in other corporate

liquidity models with multiple state variables and multiple boundaries (e.g., Chen et al.,
2022; Kakhbod et al., 2022). We provide detailed proofs and discussions in Section 2.1 of
this note.

Competition Under Tacit Collusion. Our main focus is the collusive equilibrium, which
is sustained using the non-collusive equilibrium as a punishment strategy. Firms tacitly
collude with each other in setting higher profit margins, with any deviation potentially
triggering a switch to the non-collusive equilibrium.

In the collusive equilibrium, strategies not only depend on “payoff-relevant” states
zt ≡ {z1,t, z2,t}, but also on a pair of indicator functions that track whether either firm has
previously deviated from the collusive agreement, as in Fershtman and Pakes (2000, p.
212).1 Consider a generic collusive equilibrium in which the two firms follow a collusive

1For notational simplicity, we omit the indicator states of historical deviations.
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profit-margin-setting scheme. If one firm deviates from the collusive profit-margin-setting
scheme, then with a probability of ξdt over [t, t + dt), the other firm will implement a
punishment strategy, under which it will forever set the non-collusive profit margin. We
use an idiosyncratic Poisson process Ni,t with intensity ξ to characterize whether a firm can
successfully implement a punishment strategy after the rival’s deviation.2 Thus, a higher ξ

makes the threat of punishment more credible, which reduces incentives to deviate and
enables collusion at higher profit margins.

Formally, the set of incentive compatible collusion agreements, denoted by C, consists of
all continuous profit-margin-setting schemes ΘC(·) ≡ (θC

1 (·), θC
2 (·)) such that the following

participation constraint (PC) and IC constraint are satisfied:

EN
i (z) ≤ EC

i (z), for all z ∈ Z, and (PC) (14)

ED
i (z) ≤ EC

i (z), for all z ∈ Z, (IC) (15)

where i ∈ {1, 2}, ED
i (z) is firm i’s equity value if it chooses to deviate from collusion, and

EC
i (z) is firm i’s equity value in the collusive equilibrium.

We denote by zC
i (zj,t) firm i’s endogenous default boundary with respect to zi,t in the

collusive equilibrium. Conditional on zi,t > zC
i (zj,t) for i ̸= j ∈ {1, 2}, the value functions

EC
i (z) satisfy the following coupled HJB equations:

r f EC
i (zt)dt = (1 − τ)[Πi(θ

C
i,t, θC

j,t)e
zi,t − ebi ]dt + E

Q
t [dEC

i (zt)], (16)

subject to the PC constraint (14) and the IC constraint (15),

where i ̸= j ∈ {1, 2}, θC
i,t ≡ θC

i (zt), and Πi(θi,t, θj,t) is defined in (9).
The optimal default boundaries, zC

1 (z2,t) and zC
2 (z1,t), are endogenously determined by

the following value matching and smooth pasting conditions:

EC
i (zt)

∣∣∣
zi,t=zC

i (zj,t)
= 0 and

∂

∂zi,t
EC

i (zt)

∣∣∣∣
zi,t=zC

i (zj,t)

= 0, respectively. (17)

The boundary condition at zi,t → +∞ is identical to that in the non-collusive equilibrium.
This is because when zi,t → +∞, firm i is essentially an industry monopoly and there is no
benefit from collusion.

2One interpretation of Ni,t is that, with a probability of 1 − ξdt over [t, t + dt), the deviator can persuade
its rival not to enter the non-collusive equilibrium over [t, t + dt). Ex-post renegotiations can occur because
the non-collusive equilibrium is not renegotiation-proof or “immune to collective rethinking” (Farrell and
Maskin, 1989). The strategy we consider is essentially a probabilistic punishment strategy. This “inertia
assumption” also solves the technical issue of continuous-time dynamic games about the indeterminacy of
outcomes (e.g., Simon and Stinchcombe, 1989; Bergin and MacLeod, 1993).
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Equilibrium Deviation Values. We denote by zD
i (zj,t) firm i’s endogenous default bound-

ary with respect to zi,t if firm i deviates from collusion and its rival j continues to follow
the collusive profit-margin-setting scheme. Conditional on zi,t > zD

i (zj,t) for i ̸= j ∈ {1, 2},
the value functions ED

i (z) satisfy the following coupled HJB equations:

r f ED
i (zt)dt = max

θi,t
(1 − τ)[Πi(θi,t, θC

j,t)e
zi,t − ebi ]dt

− ξ
[

ED
i (zt)− EN

i (zt)
]

dt + E
Q
t [dED

i (zt)], (18)

where i ̸= j ∈ {1, 2}, θC
i,t ≡ θC

i (zt), and Πi(θi,t, θj,t) is defined in (9).
The optimal default boundaries, zD

1 (z2,t) and zD
2 (z1,t), are endogenously determined by

the value matching and smooth pasting conditions:

ED
i (zt)

∣∣∣
zi,t=zD

i (zj,t)
= 0 and

∂

∂zi,t
ED

i (zt)

∣∣∣∣
zi,t=zD

i (zj,t)

= 0, respectively. (19)

The boundary condition at zi,t → +∞ is identical to that in the non-collusive equilibrium.
Two points require discussion. First, the PC constraint (14) can become binding in the

collusive equilibrium, triggering the two firms to switch to the non-collusive equilibrium.
The endogenous switch captures the endogenous outbreak of price wars. We assume that
once the two firms switch to the non-collusive equilibrium, they will stay there forever.3

Endogenous switching from the collusive to the non-collusive equilibrium because of
increased financial distress (i.e., higher leverage ratios) is one of our model’s key differences
from that of Dou, Ji and Wu (2021a,b), in which firms are financed wholly by equity and
never suffer from financial distress. In their model, the PC constraint is never binding
because higher profit margins always lead to higher equity values in the absence of financial
distress costs owing to costly default or exit.

Second, there exist infinitely many elements in the set of incentive compatible collusion
agreements, C, and hence infinitely many collusive equilibria. We focus on a subset of
C, denoted by C, consisting of all profit-margin-setting schemes ΘC(·) such that the IC
constraints (15) are binding state by state, that is, ED

i (zt) = EC
i (zt) for all zt ∈ Z and

i ∈ {1, 2}.4 The subset C is nonempty because it contains the profit-margin-setting scheme
in the non-collusive equilibrium. We further narrow our focus to the “Pareto-efficient
frontier” of C, denoted by Cp, consisting of all pairs of ΘC(·) such that there does not exist

3As the firm that proposes switching to the non-collusive equilibrium is essentially deviating, we assume
that the two firms will not return to the collusive equilibrium. We make this assumption to be consistent with
our specification for the punishment strategy.

4This equilibrium refinement is similar in spirit to Abreu (1988), Alvarez and Jermann (2000, 2001), and
Opp, Parlour and Walden (2014)
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another pair Θ̃C(·) = (θ̃C
1 (zt), θ̃C

2 (zt)) ∈ C such that such that the implied firm values are
higher for all zt ∈ Z and i ∈ {1, 2}, with strict inequality held for some i and zt. Deviation
never occurs on the equilibrium path. The one-shot deviation principle (Fudenberg and
Tirole, 1991) makes it clear that the collusive equilibrium characterized above is subgame
perfect.

Debt Value. The debt value equals the sum of the present value of cash flows that accrue
to debtholders until the occurrence of an endogenous default or an idiosyncratic left-tail
jump shock (i.e., exogenous displacement), whichever occurs first, plus the recovery value.
We follow the literature on dynamic debt models (e.g., Mello and Parsons, 1992; Leland,
1994; Hackbarth, Miao and Morellec, 2006) and set the recovery value of endogenous
default to a fraction δ ∈ (0, 1) of the firm’s unlevered asset value, AC

i (zt), which is the
value of an all-equity firm. In the collusive equilibrium, the unlevered asset value AC

i (zt)

is similarly determined by equations (12) to (19) with the IC and PC constraints satisfied,
except that we set ebi = 0 and remove the default boundary conditions (13), (17), and (19).

The value of debt in the non-default region of the collusive equilibrium (i.e., zi,t > zC
i (zj,t)

for i ̸= j), denoted by DC
i (zt), can be characterized by the following coupled HJB equations:

r f DC
i (zt)dt = ebidt + E

Q
t [dDC

i (zt)], for i = 1, 2, (20)

with the following boundary conditions:

DC
i (zt)

∣∣∣
zi,t=zC

i (zj,t)
= δAC

i (zt)
∣∣∣
zi,t=zC

i (zj,t)
and lim

zi,t→+∞
DC

i (zt) =
ebi

r f + ν
. (21)

In equation (21), the first condition is the recover value to debtholders at the default
boundary. The second condition captures the asymptotic behavior of debt when zi,t → ∞;
in this case, the default risk of firm i arises only from the idiosyncratic left-tail jump shock,
which occurs at a rate of ν.

Optimal Coupon Choice. We now illustrate the optimal initial coupon choice of firms at
t = 0. The log coupon rates b1 and b2 are optimally determined in the Nash equilibrium.
The best response function bi(bj) is defined as follows:

bi(bj) ≡ argmax
bi

VC
i (z0; bi, bj), with i ̸= j ∈ {1, 2}. (22)

The initial firm value is VC
i (z0; bi, bj) ≡ EC

i (z0; bi, bj) + DC
i (z0; bi, bj), where the notations of

EC
i (·) and DC

i (·) are slightly changed to explicitly highlight their dependence on (bi, bj).
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The equilibrium leverage (bC
1 , bC

2 ) is determined by the following condition:

bC
i = bi(bC

j ), for i ̸= j ∈ {1, 2}. (23)

1.3 Motivation

Our investigation of the competition-distress feedback effect is motivated by the theoretical
literature that emphasizes the feedback effects between the capital market and the real
economy. For example, seminal works of Bernanke and Gertler (1989) and Kiyotaki and
Moore (1997) show that the price-dependent financing constraints can spur an adverse
feedback loop. Bond, Edmans and Goldstein (2012) emphasize that the fundamental-based
feedback effect mainly concerns primary financial markets, whereas the equally crucial
feedback effect between secondary financial markets and the real economy is mainly
transmitted through the information-based channel (e.g., Chen, Goldstein and Jiang, 2006;
Bakke and Whited, 2010; Edmans, Goldstein and Jiang, 2012).

Our study is also motivated by the large and growing literature that studies how
firms’ decisions and characteristics in financial markets interact with those in product
markets. Theoretical works on this topic are, e.g., Maksimovic and Titman (1991), Bolton
and Scharfstein (1990), and Hackbarth, Mathews and Robinson (2014). Empirical works,
on the one hand, study the implications of financial frictions for product markets, e.g.,
Phillips (1995), Hortaçsu et al. (2013), Koijen and Yogo (2015), Hoberg and Phillips (2016),
Gilchrist et al. (2017), Hackbarth and Taub (2018), Banerjee et al. (2019), and Grieser and
Liu (2019). On the other hand, there are empirical works investigating how product market
competition affects various corporate policies, e.g., Kovenock and Phillips (1997), Banerjee,
Dasgupta and Kim (2008), Hoberg and Phillips (2010), and Hoberg, Phillips and Prabhala
(2014).

2 Boundary Conditions

2.1 Endogenous Default Boundary Conditions

The state space is (z1, z2) ∈ Z ⊂ R2. We denote the default boundary of firm i ∈ {1, 2} in
the non-collusive equilibrium by TN

i , which is a 1-dimensional manifold in R2. The idea is
the same for the default boundaries in the collusive equilibrium and in the characterization
of the deviation value. Put simply, the default boundary TN

i is a “curve” in R2. In general,
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the value matching condition for the default boundary of firm i is

EN
i (z1, z2)

∣∣∣
(z1,z2)∈TN

i

= 0, for i ∈ {1, 2}, (24)

and the smooth pasting conditions are

∂

∂zi
EN

i (z1, z2)

∣∣∣∣
(z1,z2)∈TN

i

= 0 and
∂

∂zj
EN

i (z1, z2)

∣∣∣∣∣
(z1,z2)∈TN

i

= 0, for i ̸= j ∈ {1, 2}. (25)

For the default boundary TN
i , we can conveniently parameterize it using zj because

there is always a threshold point zN
i (zj) below which the shareholders of firm i would

choose to default on the debt for any zj ∈ R. Thus, the default boundary TN
i can naturally

be represented by the function zN
i (zj). As a result, the value matching condition in (24) can

be rewritten as
EN

i (z1, z2)
∣∣∣
zi=zN

i (zj)
= 0, ∀ zj, for i ̸= j ∈ {1, 2}, (26)

and the smooth pasting conditions in (25) can be rewritten as

∂

∂zi
EN

i (z1, z2)

∣∣∣∣
zi=zN

i (zj)

= 0 and
∂

∂zj
EN

i (z1, z2)

∣∣∣∣∣
zi=zN

i (zj)

= 0, ∀ zj, for i ̸= j ∈ {1, 2}. (27)

Obviously, because the specific structure of the default boundary, the second smooth
pasting condition in (27) is redundant given that the first smooth pasting condition in (27)
and the value matching condition in (26) hold simultaneously for arbitrary zj ∈ R. More
precisely, according to the chain rule, the value matching condition in (26) implies that

∂

∂zi
EN

i (z1, z2)

∣∣∣∣
zi=zN

i (zj)

× ∂

∂zj
zN

i (zj) +
∂

∂zj
EN

i (z1, z2)

∣∣∣∣∣
zi=zN

i (zj)

= 0, ∀ zj, for i ̸= j ∈ {1, 2},

(28)
where the first term captures the indirect effect of a small local change of zj on EN

i (z1, z2)

through its impact on the default boundary zN
i (zj), and the second term captures the direct

effect of a small local change of zj on EN
i (z1, z2); further, the relation established in (28) in

turn leads to
∂

∂zj
EN

i (z1, z2)

∣∣∣∣∣
zi=zN

i (zj)

= 0, ∀ zj, for i ̸= j ∈ {1, 2}, (29)
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because the first smooth pasting condition in (27) implies the following equality:

∂

∂zi
EN

i (z1, z2)

∣∣∣∣
zi=zN

i (zj)

× ∂

∂zj
zN

i (zj) = 0, ∀ zj, for i ̸= j ∈ {1, 2}. (30)

Although the state space is 2-dimensional (i.e., there are two state variables z1 and z2),
there is only one “free boundary” to be characterized, which can be parameterized by
one state variable. In general, the free boundary of an optimal stopping problem with K
state variables where K ≥ 2 (i.e., a free boundary optimal control problem with K state
variables), as a (K − 1)-dimensional manifold in the K-dimensional state space, often cannot
be parameterized by any (K − 1)-subset of the state variables; in such cases, smooth pasting
conditions in all different directions are needed to describe the free boundary conditions
properly, similar in spirit to (24) and (25). For example, Chen et al. (2022) and Kakhbod
et al. (2022) consider corporate liquidity models with multiple state variables in which there
is an economic boundary condition for each of the state variables. Their free boundary
optimal control problems, by nature, are more complex than ours here, and as a result, they
cannot simplify the smooth pasting conditions by ignoring some redundant ones, similar
to what we do.

2.2 Boundary Conditions at Infinity

When zi,t = +∞, firm i essentially monopolizes the industry with negligible financial
leverage because its competitor, firm j, has a negligible size regardless of its zj,t. Thus, the
boundary condition of firm i’s equity value at zi,t = +∞ should satisfy

lim
zi,t→∞

∂

∂zi,t
EN

i (zt) = lim
zi,t→∞

∂

∂zi,t
EC

i (zt) = lim
zi,t→∞

∂

∂zi,t
ED

i (zt) = lim
zi,t→∞

∂

∂zi,t
Ui(zi,t), (31)

where Ui(zi,t) is the equity value of an unlevered monopoly firm with zi,t ≡ at and price
Pi,t ≡ Pt. In this industry, the demand curve facing the monopoly firm is ezi,t Ci,t, where Ci,t

given by equation (2), i.e.,
Ci,t ≡ Ct = P−ϵ

i,t , (32)

and the evolution of zi,t is given by equation (8),

e−zi,tdezi,t = (g − ςγ)dt + ςdWQ
t + σdWi,t − dJi,t. (33)
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Thus, the HJB equation that determines U(zi,t) can be written as

r f Ui(zi,t)dt = max
θi,t

(1 − τ)
[
ω1−ϵθi,t(1 − θi,t)

ϵ−1ezi,t − ebi
]

dt + E
Q
t [dUi(zi,t)] . (34)

3 Numerical Algorithm

To give an overview, our algorithm proceeds in the following steps:

(1). We solve the non-collusive equilibrium. This requires us to solve the subgame perfect
equilibrium of the dynamic game played by two firms. The simultaneous-move
dynamic game requires us to solve the intersection of the two firms’ best response
functions (i.e., optimal decisions on profit margins and default), which themselves
are optimal solutions to coupled partial differential equations (PDEs).

(2). We solve the collusive equilibrium using the value functions in the non-collusive
equilibrium as punishment values. Because we are interested in the highest collusive
profit margins with binding IC constraints, this requires us to solve a high-dimensional
fixed-points problem. Thus, we use an iteration method inspired by Abreu, Pearce
and Stacchetti (1986, 1990), Ericson and Pakes (1995), and Fershtman and Pakes (2000)
to solve the problem.

Note that standard methods for solving PDEs with free boundaries (e.g. finite difference
or finite element) can easily lead to non-convergence of value functions. To mitigate
such problems and obtain accurate solutions, we solve the continuous-time game using a
discrete-time dynamic programming method, as in Dou et al. (2021); Dou and Ji (2021).

Because firm 1 and firm 2 are symmetric, one firm’s equity value and policy functions
are obtained directly given the other firm’s equity value and policy functions. We first
illustrate the non-collusive equilibrium and then the collusive equilibrium.

3.1 Non-Collusive Equilibrium

We first present the recursive formulation for the firm’s equity value in the non-collusive
equilibrium. Next, we present the conditions that determine the non-collusive equilibrium.

Recursive Formulation for Equity Value in Non-collusive Equilibrium. Firm i’s state
is characterized by two state variables, including firm i’s demand intensity zi,t and firm
j’s demand intensity zj,t. Denote by EN

i (zi,t, zj,t; bi, bj) the equity value function in the
non-collusive equilibrium for i = 1, 2, where bi and bj are the two firms’ log coupon rates,
which will be optimally determined in the end.

13



To characterize the equilibrium equity value functions, it is more convenient to introduce
two off-equilibrium equity value functions. Let ÊN

i (zi,t, zj,t; θj,t, dj,t; bi, bj) be firm i(= 1, 2)’s
equity value when its competitor j’s profit margin is any (off-equilibrium) value θj,t and
default status is any (off-equilibrium) value dj,t = 0, 1.

Firm i = 1, 2 solves the following problem:

ÊN
i (zi,t, zj,t; θj,t, dj,t; bi, bj) = max

θi,t,di,t
(1 − τ)

[
ω1−ϵθi,t(1 − θi,t)

η−1(1 − θt)
ϵ−ηezi,t − ebi

]
∆t (35)

+ (1 − di,t)e
−(r f +ν)∆tE

Q
t

[
(1 − dj,t)EN

i (zi,t+∆t, zj,t+∆t; bi, bj) + dj,tEN
i (zi,t+∆t, znew; bi, bnew)

]
,

subject to the following constraints. (1) The industry’s profit margin is given by

1 − θt =

[
2

∑
j=1

ezi,t−at (1 − θi,t)
η−1

] 1
η−1

with eat = ezi,t + ezj,t . (36)

(2) Firms’ demand shocks evolve according to

ezi,t+∆t =ezi,t + (g − ςγ)ezi,t ∆t + ςezi,t ∆WQ
t + σezi,t ∆Wi,t, (37)

ezj,t+∆t =ezj,t + (g − ςγ)ezj,t ∆t + ςezj,t ∆WQ
t + σezj,t ∆Wj,t. (38)

Non-collusive Equilibrium. Denote by θN
i (zi,t, zj,t; bi, bj) and dN

i (zi,t, zj,t; bi, bj) the equi-
librium profit margin and default functions. Denote by θ̂N

i (zi,t, zj,t; θj,t, dj,t; bi, bj) and
d̂N

i (zi,t, zj,t; θj,t, dj,t; bi, bj) the off-equilibrium profit margin and default functions.
Given firm j’s profit margin θj,t and default decision dj,t, firm i optimally sets the profit

margin θi,t and makes default decision di,t. The non-collusive equilibrium is derived from
the fixed point—each firm’s profit margin and default are optimal given the other firm’s
optimal profit margin and default:

θN
i (zi,t, zj,t; bi, bj) =θ̂N

i (zi,t, zj,t; θN
j (zj,t, zi,t; bj, bi), dN

j (zj,t, zi,t; bj, bi); bi, bj), (39)

dN
i (zi,t, zj,t; bi, bj) =d̂N

i (zi,t, zj,t; θN
j (zj,t, zi,t; bj, bi), dN

j (zj,t, zi,t; bj, bi); bi, bj). (40)

The equilibrium equity value functions are given by

EN
i (zi,t, zj,t; bi, bj) = ÊN

i (zi,t, zj,t; θN
j (zj,t, zi,t; bj, bi), dN

j (zj,t, zi,t; bj, bi); bi, bj). (41)
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3.2 Collusive Equilibrium

We first present the recursive formulation for the firm’s equity value in the collusive
equilibrium. Next, we present the recursive formulation for the firm’s equity value when it
deviates from the collusive equilibrium. Finally, we present the IC constraints to determine
the equilibrium collusive profit margins. After finding the equilibrium collusive profit
margin scheme, we check whether the PC constraints are satisfied. There are two cases,
if the PC constraints are satisfied, the two firms will collude on the equilibrium profit
margin scheme. If the PC constraints are not satisfied, the two firms will set profit margins
according to their non-collusive ones.

Recursive Formulation for Equity Value in The Collusive Equilibrium. Denote by
EC

i (zi,t, zj,t; bi, bj; Θ
C
(·)) firm i’s equity value in the collusive equilibrium with collusive

profit margin scheme Θ
C
(·), for i = 1, 2. Denote by ÊC

i (zi,t, zj,t; dj,t; bi, bj; Θ
C
(·)) firm i’s

equity value in the collusive equilibrium with collusive profit margin scheme Θ
C
(·) when

its competitor j’s default status is any (off-equilibrium) value dj,t = 0, 1.
Firm i solves the following problem:

ÊC
i (zi,t, zj,t; dj,t; bi, bj; Θ

C
(·)) = max

di,t
(1 − τ)

[
ω1−ϵθ

C
i,t(1 − θ

C
i,t)

η−1(1 − θ
C
t )

ϵ−ηezi,t − ebi
]

∆t

+ (1 − di,t)e
−(r f +ν)∆tE

Q
t

[
(1 − dj,t)EC

i (zi,t+∆t, zj,t+∆t; bi, bj; Θ
C
(·)) + dj,tE

C
i (zi,t+∆t, znew; bi, bnew; Θ

C
(·))

]
,

(42)

subject to the following constraints. (1) The industry’s profit margin is given by

1 − θ
C
t =

[
2

∑
j=1

ezi,t−at
(

1 − θ
C
i,t

)η−1
] 1

η−1

with eat = ezi,t + ezj,t . (43)

(2) Firms’ demand shocks evolve according to

ezi,t+∆t =ezi,t + (g − ςγ)ezi,t ∆t + ςezi,t ∆WQ
t + σezi,t ∆Wi,t, (44)

ezj,t+∆t =ezj,t + (g − ςγ)ezj,t ∆t + ςezj,t ∆WQ
t + σezj,t ∆Wj,t. (45)

Denote by d
C
i (zi,t, zj,t; bi, bj; Θ

C
(·)) the equilibrium default function. Denote by

d̂C
i (zi,t, zj,t; dj,t; bi, bj; Θ

C
(·)) the off-equilibrium default function. The default decisions are

determined in Nash equilibrium. In particular, given firm j’s default decision dj,t, firm
i optimally makes default decision di,t. The Nash equilibrium is derived from the fixed
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point—each firm’s default is optimal given the other firm’s optimal default:

d
C
i (zi,t, zj,t; bi, bj; Θ

C
(·)) =d̂C

i (zi,t, zj,t; d
C
j (zj,t, zi,t; bj, bi; Θ

C
(·)); bi, bj; Θ

C
(·)). (46)

The equilibrium equity value functions are given by

EC
i (zi,t, zj,t; bi, bj; Θ

C
(·)) =ÊC

i (zi,t, zj,t; d
C
j (zj,t, zi,t; bj, bi; Θ

C
(·)); bi, bj; Θ

C
(·)). (47)

Recursive Formulation for Equity Value upon Deviation. The deviation equity value
is obtained by assuming that firm i optimally sets its profit margin conditional on
firm j setting the profit margin according to the collusive profit margin scheme, i.e.,
θ

C
j (zj,t, zi,t; bj, bi; Θ

C
(·)) and default decision d

C
j (zj,t, zi,t; bj, bi; Θ

C
(·)).

Denote by ED
i (zi,t, zj,t; bi, bj; Θ

C
(·)) firm i’s deviation equity value. Firm i solves the

following problem:

ED
i (zi,t, zj,t; bi, bj; Θ

C
(·)) = max

θi,t,di,t
(1 − τ)

[
ω1−ϵθi,t(1 − θi,t)

η−1(1 − θ
D
t )

ϵ−ηezi,t − ebi
]

∆t

+ (1 − di,t)e
−(r f +ν)∆tE

Q
t

[
dj,t

(
(1 − ξ∆t)ED

i (zi,t+∆t, znew; bi, bnew; Θ
C
(·))

+ξ∆tEN
i (zi,t+∆t, znew; bi, bnew)

)
+ (1 − dj,t)

(
ξ∆tEN

i (zi,t+∆t, zj,t+∆t; bi, bj)

+(1 − ξ∆t)ED
i (zi,t+∆t, zj,t+∆t; bi, bj; Θ

C
(·))

)]
, (48)

subject to the following constraints. (1) The industry’s profit margin is given by

1 − θ
D
t =

[
ezi,t−at (1 − θi,t)

η−1 + ezj,t−at
(

1 − θ
C
j,t

)η−1
] 1

η−1

with eat = ezi,t + ezj,t . (49)

(2) Firms’ demand shocks evolve according to

ezi,t+∆t =ezi,t + (g − ςγ)ezi,t ∆t + ςezi,t ∆WQ
t + σezi,t ∆Wi,t, (50)

ezj,t+∆t =ezj,t + (g − ςγ)ezj,t ∆t + ςezj,t ∆WQ
t + σezj,t ∆Wj,t. (51)

Solving for Equilibrium Profit Margins. The collusive equilibrium is a subgame perfect
Nash equilibrium if and only if the collusive profit margin scheme Θ

C
(·) satisfies the

following PC and IC constraints:

EC
i (zi,t, zj,t; bi, bj; Θ

C
(·)) ≥EN

i (zi,t, zj,t; bi, bj), (52)

EC
i (zi,t, zj,t; bi, bj; Θ

C
(·)) ≥ED

i (zi,t, zj,t; bi, bj; Θ
C
(·)), (53)
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for all zi,t and i = 1, 2.
There exist infinitely many subgame perfect Nash equilibria. We focus on the collu-

sive equilibrium with the collusive profit margins lying on the “Pareto efficient frontier”
(denoted by ΘC(·)), which are obtained when all IC constraints are binding, i.e.,

EC
i (zi,t, zj,t; bi, bj; ΘC(·)) = ED

i (zi,t, zj,t; bi, bj; ΘC(·)), (54)

for all zi,t and i = 1, 2. The collusive equilibrium is solved by finding the collusive profit
margin scheme ΘC(·) such that the PC constraint (52) and the IC constraint (54) are satisfied
simultaneously.

We denote EC
i (zi,t, zj,t; bi, bj) as firm i’s value in the collusive equilibrium with the

collusive profit margin scheme ΘC(·). In solving the equilibrium, we first ignore the PC
constraint (52) and solve for ΘC(·) that satisfies the IC constraint (54). Then given ΘC(·),
for each value of zi,t and zj,t, we check whether the PC constraint (52) is satisfied for both i
and j. If it is satisfied, the equity value and profit margin in the collusive equilibrium are
determined according to the collusive value

EC
i (zi,t, zj,t; bi, bj) =EC

i (zi,t, zj,t; bi, bj; ΘC(·)), (55)

θC
i (zi,t, zj,t; bi, bj) =θ

C
i (zi,t, zj,t; bi, bj; ΘC(·)), (56)

EC
j (zj,t, zi,t; bj, bi) =EC

j (zj,t, zi,t; bj, bi; ΘC(·)), (57)

θC
j (zj,t, zi,t; bj, bi) =θ

C
j (zj,t, zi,t; bj, bi; ΘC(·)). (58)

If it is not satisfied, there are two cases. First, if firm i’s PC constraint is not satisfied,
then we search for the endogenous collusion boundary λi(zj,t; bi, bj) at which firm i’s PC
constraint just becomes binding. Then, given zj,t, for all zi,t ≤ λi(zj,t; bi, bj), the equity
values and profit margins in the collusive equilibrium are determined according to the
non-collusive value

EC
i (zi,t, zj,t; bi, bj) =EN

i (zi,t, zj,t; bi, bj), (59)

θC
i (zi,t, zj,t; bi, bj) =θN

i (zi,t, zj,t; bi, bj), (60)

EC
j (zj,t, zi,t; bj, bi) =EN

j (zj,t, zi,t; bj, bi), (61)

θC
j (zj,t, zi,t; bj, bi) =θN

j (zj,t, zi,t; bj, bi). (62)

For all zi,t > λi(zj,t; bi, bj), the equity values and profit margins in the collusive equilibrium
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are determined according to the collusive value

EC
i (zi,t, zj,t; bi, bj) =EC

i (zi,t, zj,t; bi, bj; ΘC(·)), (63)

θC
i (zi,t, zj,t; bi, bj) =θ

C
i (zi,t, zj,t; bi, bj; ΘC(·)), (64)

EC
j (zj,t, zi,t; bj, bi) =EC

j (zj,t, zi,t; bj, bi; ΘC(·)). (65)

θC
j (zj,t, zi,t; bj, bi) =θ

C
j (zj,t, zi,t; bj, bi; ΘC(·)). (66)

Second, if firm j’s PC constraint is not satisfied, then we search for the endogenous
collusion boundary λj(zi,t; bj, bi) at which firm j’s PC constraint just becomes binding. Then,
given zi,t, for all zj,t ≤ λj(zi,t; bj, bi), the equity values and profit margins in the collusive
equilibrium are determined according to the non-collusive value

EC
i (zi,t, zj,t; bi, bj) =EN

i (zi,t, zj,t; bi, bj), (67)

θC
i (zi,t, zj,t; bi, bj) =θN

i (zi,t, zj,t; bi, bj), (68)

EC
j (zj,t, zi,t; bj, bi) =EN

j (zj,t, zi,t; bj, bi), (69)

θC
j (zj,t, zi,t; bj, bi) =θN

j (zj,t, zi,t; bj, bi). (70)

For all zj,t > λj(zi,t; bj, bi), the equity values and profit margins in the collusive equilibrium
are determined according to the collusive value

EC
i (zi,t, zj,t; bi, bj) =EC

i (zi,t, zj,t; bi, bj; ΘC(·)), (71)

θC
i (zi,t, zj,t; bi, bj) =θ

C
i (zi,t, zj,t; bi, bj; ΘC(·)), (72)

EC
j (zj,t, zi,t; bj, bi) =EC

j (zj,t, zi,t; bj, bi; ΘC(·)). (73)

θC
j (zj,t, zi,t; bj, bi) =θ

C
j (zj,t, zi,t; bj, bi; ΘC(·)). (74)

Value of Debt. Firm i’s debt value in the collusive equilibrium is given by

DC
i (zi,t, zj,t; bi, bj) =ebi ∆t + (1 − dC

i,t)e
−(r f +ν)∆tE

Q
t

[
(1 − dC

j,t)DC
i (zi,t+∆t, zj,t+∆t; bi, bj)

+dC
j,tD

C
i (zi,t+∆t, znew; bi, bnew)

]}
+ dC

i,tνAC
i (zi,t, zj,t; bj), (75)

where dC
i,t ≡ dC

i (zi,t, zj,t; bi, bj) and AC
i (zi,t, zj,t; bj) for i = 1, 2 are the optimal default decision

and the unlevered asset value in the collusive equilibrium under the collusive profit margin
scheme ΘC(·). Firm i’s debt value in the non-collusive equilibrium is determined similarly
using the optimal default decision and the unlevered asset value in the non-collusive
equilibrium.
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Optimal Choice of Debt. When firm i enters the market at time t0, it optimally chooses bi

to maximize equity value (which is equal to the firm value after debt issuance) by solving
the following problem:

max
bi

= EC
i (zi,t0 , zj,t0 ; bi, bj) + DC

i (zi,t0 , zj,t0 ; bi, bj), (76)

where the competitor’s log coupon rate bj is given because firms can choose coupon rates
only at the beginning, when they enter the market.

At t = 0, we need to solve a fixed point problem in terms of bi and bj because the two
firms choose coupon rates simultaneously. Moreover, because the two firms are symmetric
at the very beginning (zi,0 = zj,0), the initial optimal debt choice is also the same, i.e.,
bi = bj.
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