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Abstract

We develop an endogenous growth model with heterogeneous firms facing

financial frictions, in which misallocation emerges explicitly as a crucial state vari-

able. In equilibrium, misallocation endogenously generates long-run uncertainty

about economic growth by distorting innovation decisions, leading to significant

welfare losses and risk premia in capital markets. Macroeconomic shocks that affect

misallocation are likely to have overly persistent effects on aggregate growth. Using

an empirical misallocation measure motivated by the model, we find evidence

showing that misallocation captures low-frequency variations in both aggregate

growth and stock returns. Empirically, a two-factor model with market and mis-

allocation factors prices size, book-to-market, momentum, and bond portfolios

with an R-squared and a mean absolute pricing error close to the Fama-French

three-factor model.
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1 Introduction

In the last decade, one of the most import ant developments in the growth literature
is the enhanced appreciation of the role of misallocation in helping us understand
economic growth (Jones, 2013). The link between misallocation and growth prospects
can potentially shed light on the fundamental forces that drive the fluctuation of
economic growth in the long run, a mechanism that quantitatively rationalizes many
asset pricing moments (e.g., Bansal and Yaron, 2004; Hansen, Heaton and Li, 2008), and
that quantitatively justifies large welfare costs of business cycles owing to endogenous
fluctuations in consumption growth via capital accumulation (e.g., Barlevy, 2004;
Eisfeldt and Rampini, 2006, 2008b).

This paper develops a general-equilibrium model with analytical tractability to
quantitatively investigate the connection between misallocation and systematic risk
that shapes asset prices in capital markets. In our model, a low-frequency component
of economic growth emerges endogenously due to slow-moving misallocation as a
primitive source of systematic risk faced by investors, shedding novel insights on the
asset pricing implications of misallocation.

Specifically, economic growth is driven by endogenous technological advances
through the invention of intermediate goods as in standard endogenous growth mod-
els (e.g., Romer, 1987, 1990; Jones, 1995). Final goods are produced by heterogeneous
firms facing two financial frictions arising from agency conflicts — an equity market
constraint for payout and issuance and a collateral constraint for debt.1 These two
financial frictions prevent capital from being reallocated across firms. The misalloca-
tion of capital among firms of different productivity emerges analytically as a crucial
endogenous state variable, which characterizes the evolution of the economy. In equi-
librium, short-run (even white-noise) macroeconomic shocks can generate persistent
shifts in demand for research and development (R&D) through their long-lasting effects
on misallocation, which can in turn lead to overly persistent fluctuations in economic
growth. In other words, our model suggests a novel channel through which business
cycle fluctuations are endogenously associated overly persistent fluctuations in con-
sumption growth. Consequently, when investors prefer early resolution of uncertainty
and the intertemporal substitution effect dominates according to their preferences, the

1More specifically, the equity market constraint for payout and issuance is same as in Myers (2000)
and Lambrecht and Myers (2008, 2012), and the collateral constraint for debt is the same as in Buera
and Shin (2013) and Moll (2014).
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endogenous low-frequency component of economic growth driven by slow-moving
misallocation can have first-order asset pricing implications in capital markets and
lead to substantial welfare costs of business cycles.

Our paper contributes to the existing literature in four ways. First, we show that
misallocation drives low-frequency movements in R&D intensity and thus economic
growth in both the model and data. A covariance-type misallocation measure endoge-
nously arises as a sufficient statistic that captures the general-equilibrium effect of the
multivariate cross-sectional distribution of heterogeneous firms in the model. Shocks
that impact an economy’s misallocation can have persistent effects on the economy’s
growth rate through R&D decisions, providing a misallocation-based explanation for
the observed low-frequency covariation in the time series of consumption growth and
output growth (e.g., Bansal, Dittmar and Lundblad, 2005; Hansen, Heaton and Li,
2008; Müller and Watson, 2008, 2018). In the data, we find empirical evidence for
misallocation-driven low-frequency movements in time series of aggregate growth
rates and stock returns.

Second, we show that, as a macroeconomic factor, the misallocation measure
motivated by our model has significant cross-sectional asset pricing implications. A
two-factor model with market and misallocation factors prices size, book-to-market,
momentum, and bond portfolios with an R-squared of 53% and a mean absolute pricing
error (MAPE) of 1.82, which are close to those implied by the Fama-French three-factor
model with an R-squared of 62% and a MAPE of 1.90. Importantly, future accumulated
consumption growth, as a proxy for the low-frequency component of consumption
growth that is shown to contain important asset pricing information, becomes of little
importance in explaining asset returns once our misallocation measure is taken into
account as a factor. We emphasize that the strong pricing power of misallocation factor,
as a (macro) nontradable asset pricing factor, is an important, nontrivial empirical
finding. As emphasized by Cochrane (2017), it is the sole job of macro-finance to
understand what are the primitive sources of systematic risk, by suggesting (macro)
nontradable factors, and explain why they earn a premium.2 However, not many
studies find that (macro) nontradable factors motivated by macro-finance models
empirically outperform or drive out (ad hoc) tradable factors such as Fama-French
factors in explaining the cross section of expected asset returns,3 partly (not totally)

2Other recent reviews on macro-finance models also highlight this point (e.g., Brunnermeier, Eisen-
bach and Sannikov, 2012; Dou et al., 2020a).

3A few exceptions include durable consumption growth (Yogo, 2006; Gomes, Kogan and Yogo,
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because the measurement error in the nontradable factors causes attenuation bias in
the estimates of factor exposures.

Third, our model delineates the tight link between firms’ idiosyncratic productivity
shocks and the low-frequency aggregate consumption risk. When firms’ idiosyncratic
productivity is more persistent, the economy’s misallocation, which determines the
aggregate total factor productivity (TFP) and output, also becomes more persistent.
Consequently, this generates more persistent variations in aggregate consumption
growth in response to macroeconomic shocks. By connecting the persistence in
idiosyncratic productivity with the persistence in aggregate consumption growth, our
model implies that long-run risk in aggregate consumption can be estimated based
on a vast panel of granular firm-level data, which helps address the issues of weak
identification in the long-run risk literature (Chen, Dou and Kogan, 2022; Cheng,
Dou and Liao, 2022). This highlights the important role of misallocation measures in
estimating the empirical stochastic discount factor (SDF).

Fourth, this paper advances the insight of Eisfeldt and Rampini (2006, 2008b)
by quantitatively showing that misallocation plays an essential role in generating
the welfare costs of business cycles through the endogenous misallocation-driven
fluctuations of aggregate consumption growth in the long run, which is extremely
costly in the sense that investors are willing to pay a sizeable premium to eliminate
such long-run uncertainty about economic growth.

We now elaborate more on the ingredients of our model. There are three sectors
in our model economy. The innovation sector uses final goods and existing stock of
knowledge to produce new knowledge, which are blueprints for new intermediate
goods. An intermediate goods sector uses the designs from the innovation sector
together with final goods to produce differentiated goods, which are intermediate
goods for final goods production. The final goods sector uses capital, labor, and
intermediate goods to produce final goods. There exists a representative household
that owns firms in all sectors, a continuum of heterogeneous firms in the final goods
sector, and homogeneous firms in intermediate goods and innovation sectors.

Firms in the final goods sector are heterogeneous in productivity and capital.
Production takes place using capital, labor, and intermediate goods. Because of agency
conflicts, firms face an equity market constraint for payout and issuance and a collateral

2009), expenditure shares of housing (Piazzesi, Schneider and Tuzel, 2007), market liquidity (Pástor and
Stambaugh, 2003), intermediary leverages (Adrian, Etula and Muir, 2014; He, Kelly and Manela, 2017),
and common fund flows (Dou, Kogan and Wu, 2021), among others.
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constraint for debt. The collateral constraint generates capital misallocation among
firms as in Buera and Shin (2013) and Moll (2014). A higher misallocation results in a
lower productivity in the final goods sector, which reduces the aggregate demand for
intermediate goods. This, in turn, motivates innovators to invent new intermediate
goods less intensively, leading to a lower growth rate.

Firms endogenously choose their capacity utilization intensity. A higher capacity
utilization intensity allows firms to produce more outputs at the cost of bearing a
higher depreciation rate of capital. There are aggregate capital depreciation shocks,
as in Gourio (2012), Brunnermeier and Sannikov (2017), etc. In equilibrium, because
more productive firms use their capital more intensively, aggregate capital depreciation
shocks generate endogenous fluctuations in the economy’s misallocation.

We show that the misallocation in the final goods sector emerges as an endogenous
state variable. Specifically, by applying the Berry-Esseen bound (Tikhomirov, 1980;
Bentkus, Gotze and Tikhomoirov, 1997), the capital share of firms of different produc-
tivity can be approximated by a log-normal distribution. This parametric functional
form implies that the distribution of firms in the cross section is fully summarized by a
single endogenous state variable, capturing the covariance between log capital and log
productivity across firms. This covariance-type state variable determines the economy’s
misallocation, based on which both the steady state and transitional dynamics can
be characterized in closed form. We show that a calibrated model can quantitatively
reproduce the low-frequency components in aggregate consumption growth and the
high Sharpe ratio of equity returns as in the data. Short-run i.i.d. shocks can generate
persistent effects on the economy’s growth because the endogenous misallocation is
slow moving. Importantly, the persistence in misallocation largely depends on the
persistence in firms’ idiosyncratic productivity.

While our main contribution is theoretical, we also empirically test the main
predictions of our model. Motivated by the model, we construct a misallocation
measure based on the covariance between log productivity and log capital using the
U.S. Compustat data. We find evidence that an increase in misallocation predicts
declines in R&D intensity and lower growth of aggregate consumption and output
over long horizons. In the cross section, we find that the cash flows of value firms
load more negatively on misallocation than the cash flows of growth firms. This
is consistent with the robust evidence found in the asset pricing literature that the
cash flows of value firms load more positively on accumulated consumption growth
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than those of growth firms (Bansal, Dittmar and Lundblad, 2005; Parker and Julliard,
2005; Hansen, Heaton and Li, 2008; Santos and Veronesi, 2010), providing empirical
support for our model prediction that fluctuations in misallocation can drive the low-
frequency variations in consumption growth. Further, we show that a two-factor model
with market and misallocation factors prices size, book-to-market, momentum, and
bond portfolios with an R-squared and a MAPE close to the Fama-French three-factor
model. Future accumulated consumption growth has little explanatory power for
portfolio returns once our misallocation measure is included as a factor, suggesting
that long-run consumption growth affects asset returns through the persistent variation
in misallocation. Finally, we provide direct evidence for the core mechanism of our
model, which implies that misallocation drives long-run growth through its impact
on R&D. We consider the policy shock from the American Jobs Creation Act (AJCA)
passed in 2004, which presumably relaxes the financial constraints of firms with pre-tax
income from abroad. By exploiting industries’ differential exposure to this policy shock
in a difference-in-differences (DID) setting, we find that AJCA results in significantly
lower industry-level misallocation and higher R&D expenditure in treated industries.
Moreover, the impact of AJCA on industry-level R&D expenditure becomes statistically
insignificant after controlling for industry-level misallocation.

Related Literature. Our paper is related to three strands of literature. First, we
contribute to the long-run risk literature in finance (e.g., Bansal and Yaron, 2004).
Various studies try to justify long-run risk with micro foundations (e.g., Ai, 2010;
Kaltenbrunner and Lochstoer, 2010; Garleanu, Panageas and Yu, 2012; Kung and
Schmid, 2015; Collin-Dufresne, Johannes and Lochstoer, 2016; Ai, Li and Yang, 2020;
Gârleanu and Panageas, 2020; Croce, Nguyen and Raymond, 2021). Our paper is mostly
related to Kung and Schmid (2015) who show that R&D endogenously drives a small,
persistent component in productivity, which generates long-run uncertainty about
economic growth. Building on the theoretical framework of Kung and Schmid (2015),
we introduce heterogeneous firms to the final goods sector to generate endogenous
misallocation as in Moll (2014). The aggregate TFP, which is exogenous in the model
of Kung and Schmid (2015), is endogenously in our model, determined by the cross-
sectional misallocation. Our theory rationalizes long-run consumption risk through
the equilibrium interactions between endogenous misallocation and R&D incentives,
which is also supported by the data. Importantly, by connecting the persistence in
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idiosyncratic productivity with the persistence in aggregate consumption growth,
our model implies that long-run risk in aggregate consumption can be estimated
based on granular firm-level data, which potentially helps address the issues of weak
identification in the long-run risk literature (Chen, Dou and Kogan, 2022; Cheng, Dou
and Liao, 2022).

Second, our paper contributes to the large and growing macroeconomics literature
that emphasizes the role of misallocation in economic development (e.g., Banerjee
and Duflo, 2005; Foster, Haltiwanger and Syverson, 2008; Restuccia and Rogerson,
2008; Buera and Shin, 2011; Jones, 2011; Buera and Shin, 2013; Jones, 2013; Midrigan
and Xu, 2014; Moll, 2014; Acemoglu et al., 2018; Peters, 2020), and Hsieh and Klenow
(2009); Bartelsman, Haltiwanger and Scarpetta (2013). On the technical side, our model
extends the tractable framework of Moll (2014) with intermediate inputs, R&D, and
aggregate shocks to generate endogenous stochastic growth. Our paper provides the
following insights to this literature. First, our model implies that misallocation in
production inputs of final goods producers can affect equilibrium growth because it
determines the profits of producing intermediate goods and thus innovators’ R&D
incentives. Second, misallocation emerges naturally as an endogenous state variable in
our model, which motivates an intuitive empirical misallocation measure based on the
covariance between firms’ log productivity and log capital. Third, our model implies
that when idiosyncratic productivity is persistent, investors demand high risk premia
because the slow-moving misallocation incubates long-run consumption risk. Our
results thus complement the key insight of Moll (2014) who shows that misallocation is
less severe in the long-run steady state (without aggregate shocks) when idiosyncratic
productivity is more persistent.

Relative to the macroeconomics literature, much less work focuses on the role
of misallocation in the corporate finance and asset pricing literature. Important
contributions include, for example, Eisfeldt and Rampini (2006, 2008b), Opp, Parlour
and Walden (2014), Fuchs, Green and Papanikolaou (2016), Ehouarne, Kuehn and
Schreindorfer (2017), van Binsbergen and Opp (2019), David, Schmid and Zeke (2019),
Ai, Li and Yang (2020), Ai et al. (2020), Lanteri and Rampini (2021), Whited and
Zhao (2021).4 Notably, David, Schmid and Zeke (2019) propose a theory that links
misallocation with macroeconomic risk. They show that risk considerations can explain
a large proportion of the dispersion in marginal products of capital among U.S. firms,

4See Eisfeldt and Shi (2018) for a comprehensive survey.
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which suggests that much of the observed dispersion is attributed to efficient sources.
Similar to David, Schmid and Zeke (2019), firm decisions in our model are also
influenced by their risk exposure, and thus the cross-sectional misallocation is partly
driven by firms’ risk considerations. The additional insight of our paper is to show that
the economy’s misallocation itself emerges as a macroeconomic risk factor because the
evolution of misallocation determines the evolution of aggregate consumption growth,
a primitive determinant of risk premia. In other words, a feedback loop emerges in
general equilibrium: an economy’s misallocation determines households’ SDF and
thus affects firm decisions, which in turn determine the misallocation across firms.

Third, our paper is related to the literature on business cycles (e.g., Lucas, 1987).
Barlevy (2004) shows that the welfare cost of business cycles is large when fluctuations
affect the growth rate of consumption in a model with diminishing returns in invest-
ment. The strong procyclical patterns of capital reallocation documented by Eisfeldt
and Rampini (2006, 2008b) suggest that misallocation can play an important role in
determining the welfare costs of business cycles. Through persistent misallocation,
our model rationalizes long-run consumption risk and generates a high Sharpe ratio
for equity returns, which reflects investors’ aversion to aggregate risks. As a result,
our model quantifies a large welfare cost of business cycles following the approach of
Alvarez and Jermann (2004, 2005).

The outline of the paper is as follows. Section 2 develops a model to depict the
equilibrium relation between misallocation and growth. Section 3 calibrates the model
to evaluate its quantitative implications. Section 4 provides empirical evidence to
support the model’s main mechanisms and predictions. Section 5 concludes.

2 Model

There are three sectors: a final goods sector, an intermediate goods sector, and an
R&D sector. The R&D sector invents new knowledge (i.e., blueprints for new varieties
of intermediate goods) using final goods and existing stock of knowledge, then sells
blueprints to the intermediate goods sector. The intermediate goods sector produces
differentiated intermediate goods using blueprints created by the R&D sector and
final goods, then sells intermediate goods to the final goods sector. The final goods
sector uses capital, labor, and intermediate goods to produce final goods. There is a
representative household that owns firms in all sectors, a continuum of heterogeneous
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firms in the final goods sector, and homogeneous firms in the intermediate goods and
R&D sectors.

2.1 Final Goods Sector

In the final goods sector, there is a continuum of firms of measure one, indexed by
i ∈ I ≡ [0, 1] and operated by managers. Firms are different from each other in their
idiosyncratic productivity zi,t and capital ai,t. At each point in time t, the distribution
of final goods firms is characterized by the joint probability density function (PDF),
φt(a, z).

The firm produces output at intensity yi,t over [t, t + dt) using a production tech-
nology with constant returns to scale:

yi,t =
[
(zi,tui,tki,t)

αℓ1−α
i,t

]1−ε
xε

i,t, with α, ε ∈ (0, 1), (1)

where labor ℓi,t is hired in a competitive labor market at the equilibrium wage wt. The
variable ki,t = ai,t + âi,t is the capital installed in production, which includes the firm’s
own capital ai,t and the leased capital âi,t borrowed from a competitive rental market
at the equilibrium risk-free rate r f ,t.5

The firm’s output increases with its idiosyncratic productivity zi,t and endogenous
choice of capacity utilization intensity ui,t ∈ [0, 1]. Utilizing capital at intensity ui,t

leads to an amount of ui,tki,td∆t depreciation over [t, t + dt), where d∆t captures the
stochastic depreciation rate,

d∆t = δkdt + σkdWt. (2)

The standard Brownian motion Wt captures the aggregate capital depreciation shock
similar in spirit to that of Albuquerue and Wang (2008) and Gourio (2012). The
parameters δk, σk > 0 capture the constant and stochastic components of capital
depreciation. As we show in Lemma 1 below, in equilibrium, more productive firms
utilize capital more intensively by optimally choosing larger ui,t. As a result, more
productive firms are more exposed to the aggregate depreciation shock dWt than less
productive firms. The only role of utilization intensity ui,t is to endogenously generate
differential exposure to the aggregate shocks in the cross section of firms, so that dWt

5The capital leasing market is relevant for firms’ production and financial decisions (e.g., Eisfeldt
and Rampini, 2008a; Rampini and Viswanathan, 2013; Li and Tsou, 2021; Li and Xu, 2021).

8



will have an impact on the economy’s misallocation. The same results can be obtained
if we exogenously specify the aggregate risk exposure across firms.

We assume that the firm’s own capital stock evolves according to

dai,t = −δaai,tdt + σaai,tdWt + dIi,t, (3)

where δa > 0 is the constant depreciation rate, and σadWt captures the capital efficiency
shock with σa > 0. The modeling of capital efficiency shocks has been widely adopted
in the literature.6 We assume that a single aggregate shock enters both equations (2)
and (3), which implies that improvement in the efficiency of new capital is associated
with depreciation of existing capital, capturing the displacement effect of new capital
(e.g., Gârleanu, Kogan and Panageas, 2012; Kogan et al., 2017; Kogan, Papanikolaou
and Stoffman, 2020). Introducing capital efficiency shock in equation (3) ensures
that the aggregate shock dWt mainly affects the economy’s misallocation without
having much effect on the level of aggregate capital stock, because the depreciation
of productive capital, captured by the term σkdWt in equation (2), is partially offset
by the improved efficiency of new capital, captured by the term σadWt in equation
(3). If we instead eliminate the aggregate shock in equation (3) and only focus on
the depreciation shock in equation (2), the time-series variation in both misallocation
and aggregate capital will play a significant role in determining the Sharpe ratio of
risky assets, which confounds the misallocation channel we emphasize. Under our
calibration, the time variation in misallocation plays a determining role to generate a
high Sharpe ratio while the time variation in the level of aggregate capital stock does
not (see columns (1) and (7) of Table 4).

The variable dIi,t in equation (3) is the amount of final goods that is converted to
capital over [t, t + dt). Similar to Pástor and Veronesi (2012), we assume that profits
are reinvested, so that the firm’s investment rate dIi,t is equal to its profit after paying
operation expenses, interests, and dividends (see equation (19) below).

The composite xi,t in equation (1) consists of differentiated intermediate goods,
given by the constant elasticity of substitution (CES) aggregation:

xi,t =

(∫ Nt

0
xν

i,j,tdj
) 1

ν

, (4)

6e.g., Sundaresan (1984), Cox, Ingersoll and Ross (1985), Kogan (2001, 2004), Gourio (2012), Di Tella
(2017), and Dou (2017).
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where xi,j,t is the quantity of intermediate goods j ∈ [0, Nt]. The elasticity of substitution
among differentiated intermediate goods is 1/(1 − ν) > 0. The economy’s stock of
knowledge (i.e., the variety of differentiated intermediate goods created based on
existing blueprints) at t is Nt. Technological advances through the expansion of Nt

drives endogenous growth, as in Romer (1987, 1990) and Jones (1995). Denote by pj,t

and pt the prices of the intermediate good j and the composite of intermediate goods,
respectively.

The firm’s idiosyncratic productivity zi,t evolves according to

d ln(zi,t) = −θ ln(zi,t)dt + σ
√

θdWi,t, (5)

where the standard Brownian motion Wi,t captures idiosyncratic shocks to firm i’s
productivity. The specification of the idiosyncratic process zi,t is similar to that of Moll
(2014). The parameter θ determines the persistence of idiosyncratic productivity zi,t.
A higher θ makes zi,t less persistent, implying that firms face higher uncertainty in
their future idiosyncratic productivity. Importantly, a change in θ does not affect the
dispersion in idiosyncratic productivity across firms, because θ scales both the drift
term and the diffusion term in equation (5).

2.2 Intermediate Goods Sector

There is a continuum of intermediate goods producers, indexed by j ∈ [0, Nt]. They
produce intermediate goods using final goods and blueprints created by firms in the
R&D sector. Specifically, intermediate goods producer j has monopoly power in setting
prices, facing a downward sloping demand for its output. Intermediate good producers
buy final goods and transform them to intermediate inputs, based on the blueprints
they hold. We assume that one unit of final goods can be transformed into one unit of
intermediate goods, meaning that the marginal cost of producing intermediate goods
is unity. The producer of intermediate good j solves

max
pj,t

πj,t = pj,tej,t − ej,t, (6)

subject to the demand curve:

ej,t =

(
pj,t

pt

) 1
ν−1

Xt, (7)
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where Xt ≡
∫

i∈I xi,tdi is the aggregate demand for the composite of intermediate
goods.

The value of a blueprint, denoted by vj,t, is the value of owning the exclusive rights
to produce intermediate goods j, which is given by the Hamilton-Jacobi-Bellman (HJB)
equation:

0 = Λt
(
πj,t − δbvj,t

)
dt + Et

[
d(Λtvj,t)

]
, (8)

where Λt is the SDF, and δb is the hazard rate at which an existing blueprint becomes
obsolete. Because of symmetry and homogeneity, all blueprints have identical values,
vj,t ≡ vt, and all intermediate good producers make identical flow profits, πj,t ≡ πt.

2.3 R&D Sector

Intermediate goods producers are competitive and do not make profits in equilibrium.
They buy blueprints from innovators at the price vj,t. That is, innovators have full
bargaining power and seize all the surplus vj,t. Thus, vj,t is the value of creating
the blueprint for producing the intermediate good j, which shapes the incentive of
innovators to create new blueprints.

Blueprints are created by conducting R&D using final goods as in Comin and
Gertler (2006). The stock of knowledge Nt evolves as follows:

dNt = ϑtStdt − δbNtdt, (9)

where St is the aggregate R&D expenditure, and ϑt captures the productivity of inno-
vations, which is taken as exogenously given by individual innovators. In equilibrium,
the free-entry condition implies that the marginal return of R&D is equal to its marginal
cost:

vtϑt = 1. (10)

Following Comin and Gertler (2006) and Kung and Schmid (2015), we specify

ϑt = χ

(
Nt

St

)h
, (11)

where h ∈ (0, 1). Equation (11) implies that there are positive spillovers of the
aggregate stock of knowledge (the term Nh

t ) as in Romer (1990) and Jones (1995),
and that aggregate R&D investment has decreasing marginal returns (the term S−h

t ),

11



capturing the congestion effect in developing new blueprints.

2.4 Agents

There is a continuum of households, with workers and managers who consume
together. Like in Dou (2017), only managers can manage firms’ investments and
operations. The managers can be executives, directors, and entrepreneurs; more
broadly, they can also be the controlling shareholders who are fully entrenched and
have complete control over the firm’s investment and payout policies (e.g., Albuquerue
and Wang, 2008). Each manager manages a firm in the final goodssector subject to
agency problems. Workers lend funds to firms and hold equity claims on all firms. We
assume that a full set of Arrow-Debreu securities is available to households, so that
idiosyncratic consumption risks can be fully insured and there exists a representative
household. The aggregate labor supply is inelastic and normalized to be 1.

Preferences. The representative household has stochastic differential utility as in
Duffie and Epstein (1992a,b):

U0 = E0

[∫ ∞

0
f (Ct, Ut)dt

]
, (12)

where

f (Ct, Ut) =

(
1 − γ

1 − ψ−1

)
Ut

[(
Ct

[(1 − γ)Ut]1/(1−γ)

)1−ψ−1

− δ

]
. (13)

This preference is a continuous-time version of the recursive preferences proposed
by Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1990). The felicity
function f is an aggregator over the current consumption rate Ct of final goods and
future utility level Ut. The coefficient δ is the subjective discount rate, the parameter ψ

is the elasticity of intertemporal substitution (EIS), and the parameter γ captures risk
aversion.

The representative household maximizes utility (12) subject to the following budget
constraint:

dBt =
(
wtLt + r f ,tBt + Dt − Ct

)
dt, (14)

where wtLt is the wage income intensity, with Lt ≡ 1, Dt is the dividend intensity of
all firms, and Bt is the amount of bonds held by the household at t.

12



The representative household’s SDF is

Λt = exp
(∫ t

0
fU(Cs, Us)ds

)
ρ

1−γ

1−ψ−1 R
γ−ψ−1

1−ψ−1

t C−γ
t , (15)

where Rt is the consumption-wealth ratio of the representative household.

Limited Enforcement. An equity market constraint for payout/issuance and a credit
market collateral constraint for borrowing endogenously arise from limited enforce-
ment problems of equity and debt contracts.

The manager extracts pecuniary rents τai,tdt over [t, t + dt) when running the
firm i.7 These rents represent the cash compensation above the manager’s wage (e.g.,
Myers, 2000; Lambrecht and Myers, 2008, 2012). Shareholders have the option to
intervene and take control of the firm by replacing the manager. Intervention is costly
because it requires collective action (e.g., Myers, 2000) and can damage the firm’s
talent-dependent customer capital (e.g., Dou et al., 2020b). In particular, we assume
that a fraction τ/ρ of capital ai,t is lost upon intervention with τ < ρ, after which
shareholders will become the new manager of the firm. In equilibrium, the manager
will pay dividend up to the point where shareholders would have no incentive to
intervene, implying a payout intensity policy di,t = ρai,t over [t, t + dt).

Moreover, the installed capital for production is ki,t = ai,t + âi,t, and the manager
can divert a fraction 1/λ of leased capital âi,t with λ ≥ 1. As a punishment, the firm
would lose his own capital ai,t. In equilibrium, the manager is able to borrow up to the
point where the manager has no incentive to divert leased capital, implying a collateral
constraint âi,t ≤ λai,t. The same form of collateral constraints is motivated similarly
and adopted widely in the literature (e.g., Banerjee and Newman, 2003; Jermann and
Quadrini, 2012; Buera and Shin, 2013; Moll, 2014).

The financial frictions can be summarized in the following proposition.

Proposition 1. Because of the agency problem with limited enforcement, the firm’s pay-

7Managers can extract rents because corporate governance is imperfect. In practice, it is difficult to
verify the cash flows generated by firms’ assets, even though cash flows are observable and shareholders’
property rights to firm assets are protected. For example, it is difficult to distinguish and verify rents
and business expenses. The rents here do not include nonpecuniary private benefits, such as prestige
from empire building (Eisfeldt and Rampini, 2008b).
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out/issuance policy is subject to the following equity market constraint:

di,t = ρai,t, (16)

where di,t is the dividend flow intensity over [t, t + dt); moreover, the firm’s leased capital is
subject to the following collateral constraint:

−ai,t ≤ âi,t ≤ λai,t. (17)

Several points are worth further discussions. First, other agency problems can give
rise to above equity market and collateral constraints, e.g., Gertler and Kiyotaki (2010);
Gertler and Karadi (2011). Second, the equity market constraint is widely studied in
the corporate finance literature (e.g., Myers, 2000; Lambrecht and Myers, 2008, 2012).
It essentially implies that shareholders cannot freely move funds in and out of firms.
Third, our analytically tractable formulation of capital market imperfections captures
the fact that external funds available to a firm are limited and costly. Fourth, one specific
interpretation of inter-firm borrowing and lending is the existence of a competitive
rental market in which firms can rent capital from each other (e.g., Jorgenson, 1963;
Hall and Jorgenson, 1969; Buera and Shin, 2013; Rampini and Viswanathan, 2013; Moll,
2014).

Managers’ Problem. Similar to Moll (2014), our timeline assumption ensures that the
idiosyncratic productivity zi,t is locally deterministic when managers make decisions
at t for the production cycle [t, t + dt). Specifically, the manager of firm i makes leasing
(âi,s) and production (ui,s, ℓi,s, xi,j,s) decisions for all s ≥ t to maximize the present value
Ji,t of his own rents

Ji,t = max
âi,s,ui,s,ℓi,s,xi,j,s

Et

[∫ ∞

t

Λs

Λt
τai,sds

]
, (18)

subject to the equity market constraint (16), the collateral constraint (17), and the
intertemporal budget constraint (3) with dIi,t given by

dIi,t = yi,tdt −
∫ Nt

0
pj,txi,j,tdjdt − wtℓi,tdt − ui,tki,td∆t − r f ,t âi,tdt − di,tdt, (19)
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where the SDF Λt evolves according to

dΛt

Λt
= −r f ,tdt − ηtdWt. (20)

The variable ηt is the endogenous market price of risk. Because the technology, budget
constraint, and collateral constraint are all linear in ai,t, the value Ji,t is also linear in
ai,t with the following form:

Ji,t ≡ Jt(ai,t, zi,t) = ξt(zi,t)ai,t, (21)

where ξi,t ≡ ξt(zi,t) captures the marginal value of capital to the manager, which
depends on the firm’s idiosyncratic productivity zi,t and the aggregate state of the
economy. The variable ξi,t evolves as follows:

dξi,t

ξi,t
= µξ,t(zi,t)dt + σξ,t(zi,t)dWt + σw,t(zi,t)dWi,t, (22)

where µξ,t(zi,t), σξ,t(zi,t), and σw,t(zi,t) are endogenously determined in equilibrium.
Exploiting the homogeneity of Ji,t in capital ai,t, we obtain the manager’s optimal

decisions, summarized in Lemma 1.

Lemma 1. Factor demands and profits are linear in capital, and there is a productivity cutoff
zt for being active:

ut(z) =

{
1, z ≥ zt

0 z < zt
, kt(a, z) =

{
(1 + λ)a, z ≥ zt

0 z < zt
(23)

ℓt(a, z) =
[
(1 − α)(1 − ε)

wt

] 1
α
(

ε

pt

) ε
α(1−ε)

zut(z)kt(a, z), (24)

xj,t(a, z) =
(

pj,t

pt

) 1
ν−1

xt(a, z), (25)

15



where pt is the price index and xt(a, z) is the demand for the composite of intermediate goods,

pt =

(∫ Nt

0
p

ν
ν−1
j,t dj

) ν−1
ν

, (26)

xt(a, z) =
(

ε

pt

) 1−(1−α)(1−ε)
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1−α
α

zut(z)kt(a, z). (27)

The productivity cutoff zt is determined by:

ztκt = r f ,t + δk + σk(σξ,t(zt)− ηt). (28)

where κt is

κt = α(1 − ε)

(
ε

pt

) ε
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1−α
α

. (29)

At any point in time t, only firms whose productivity is greater than zt produce, and
these firms will rent the maximal amount ãi,t = λai,t allowed by the collateral constraint.
Equations (25) to (27) are standard results of CES aggregation. The productivity cutoff
zt is determined by equation (28), where the marginal production return, ztκt, is equal
to the marginal cost of leased capital, r f ,t + δk + σk

(
σξ,t(zt)− ηt

)
, which includes the

locally deterministic user cost of capital and the term σk
(
σξ,t(zt)− ηt

)
reflecting the

firm’s exposure to aggregate risks.
Using Lemma 1, equation (19) can be simplified as

dIi,t

ai,t
=(1 + λ)

(
κtzi,tdt − d∆t − r f ,tdt

)
1zi,t≥zt + (r f ,t − ρ)dt. (30)

As in Moll (2014), the drift term in capital accumulation is proportional to the firm’s
capital ai,t. This is a direct consequence of the constant payout ratio (16) and the
constant-returns-to-scale production technology (1) for a fixed Nt. The linear savings
policy ensures that ai,t ≥ 0 for all t.

2.5 Equilibrium and Aggregation

The dividend intensity Dt is given by

Dt = ρAt +
∫ Nt

j=0
πj,tdj − St, (31)
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where At is the aggregate capital held by firms in the final goods sector, given by

At =
∫ ∞

0

∫ ∞

0
aφt(a, z)dadz. (32)

In equation (31), the first term ρAt captures the dividend of the final goods sector. The
second term

∫ Nt
j=0 πj,tdj captures the profits from the intermediate goods sector and

the third term St captures the expenditure on R&D. The aggregate capital Kt in the
economy is

Kt =
∫ ∞

0

∫ ∞

0
kt(a, z)φt(a, z)dadz. (33)

Definition 2.1 (Competitive Equilibrium). At any point in time t, the competitive equilib-
rium of the economy consists of prices wt, r f ,t, and

{
pj,t
}Nt

j=0, and corresponding quantities,
such that

(i) firms in the final goods sector maximize (18) by choosing âi,t, ui,t, ℓi,t, and xi,j,t, subject
to (16), (17), and (19), given equilibrium prices;

(ii) intermediate goods producers maximize (6) by choosing pj,t for j ∈ [0, Nt];

(iii) the equilibrium R&D expensiture St is determined by equation (10);

(iv) The SDF Λt is given by equation (15) and the risk-free rate r f ,t is determined by

r f ,t = − 1
dt

Et

[
dΛt

Λt

]
; (34)

(v) the labor market-clearing condition determines wt:

Lt =
∫ ∞

zt

∫ ∞

0
ℓt(a, z)φt(a, z)dadz; (35)

(vi) the leased capital market-clearing condition determines households’ bond holdings Bt:

Bt =
∫ ∞

0

∫ ∞

0
ãt(a, z)φt(a, z)dadz. (36)

The aggregate capital is the sum of capital in the final goods sector and households’ bonds

Kt = At + Bt. (37)
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Finally, the resource constraint is automatically satisfied because of Walras’s law (see Online
Appendix A.4).

Because managers’ problem is linear in capital ai,t (see equation (75)), it is not
necessary to track the marginal distribution of capital conditional on each productivity
type z.8 We thus follow Moll (2014) and introduce the capital share ωt(z) to fully
characterize the distribution of firms in the final goods sector:

ωt(z) ≡
1
At

∫ ∞

0
aφt(a, z)da. (38)

Intuitively, the capital share ωt(z) plays the role of a density, and it captures the share
of firms’ capital held by each productivity type z. We define the analogue of the
corresponding cumulative distribution function (CDF) as

Ωt(z) ≡
∫ z

0
ωt(z′)dz′. (39)

To ensure that the equilibrium growth is well behaved, as in standard growth
models, we need output Yt given by equation (40) to be homogenous of degree one in
the accumulating factors Nt and Kt, i.e., (1−ν)ε

ν(1−ε)
+ α = 1 as in Kung and Schmid (2015).

For the rest of the paper, we assume this parameter restriction.

Proposition 2. At any point in time t ≥ 0, given the capital share ωt(z), the equilibrium
aggregate output is

Yt = ZtKα
t L1−α

t , (40)

where Zt is the economy’s TFP given by

Zt = (εν)
ε

1−ε HtN1−α
t with Ht =

[∫ ∞
zt

zωt(z)dz

1 − Ωt(zt)

]α

. (41)

The variable Ht captures the endogenous productivity of the final goods sector. The equilibrium
Kt/At ratio is determined by the productivity cutoff zt in equation (28):

Kt/At = (1 + λ) [1 − Ωt(zt)] . (42)

8In fact, similar to the model of Moll (2014), the marginal distribution of capital is not stationary due
to the constant-returns-to-scale production technology.
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Factor prices are

pj,t =1/ν and pt = N
ν−1

ν
t /ν, (43)

wt =(1 − α)(1 − ε)Yt/Lt, (44)

where κt in equation (29) is simplified to κt = α(1 − ε)H− 1
α

t Yt/Kt. The aggregate profits of
the intermediate goods sector and R&D expenditure are

Ntπt = (1 − ν)εYt, (45)

St = (χvt)
1
h Nt. (46)

Equation (40) shows that the economy’s aggregate TFP is (εν)
ε

1−ε HtN1−α
t , which

depends on the knowledge stock Nt and the productivity Ht of the final goods sector.
The productivity Ht reflects the degree of misallocation in the economy and determines
the growth rate of Nt, and hence the growth rate of aggregate TFP. In equation (41),
Ht is firms’ average productivity z weighted by their capital share ωt(z). Similar to
Moll (2014), the equilibrium productivity cutoff zt is determined directly by the CDF
of capital share (see equation (42)) due to the bang-bang solution in equation (23). The
value of Ht is higher when more productive firms are associated with more capital,
which reflects a more efficient capital allocation across firms.

Equation (43) is a direct consequence of homogeneous intermediate goods produc-
ers facing the a constant elasticity of substitution, 1/(1 − ν). Equation (44) implies that
the equilibrium wage is competitive, given by the labor share, (1 − α)(1 − ε), in the
production function times the aggregate per-capita output, Yt/Lt.

In the intermediate goods sector, equation (45) implies that the aggregate profit
flow, Ntπt, equals the share of intermediate goods in aggregate output, εYt, multiplied
by the profitability of intermediate-goods producers, as captured by the inverse of the
elasticity of substitution (1 − ν) among differentiated intermediate goods. In equation
(46), innovators’ R&D expenditure increases with the value of blueprints vt with an
elasticity of 1/h.
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2.6 Misallocation as a State Variable

The capital share ωt(z) is crucial in determining the final goods sector’s productivity
Ht in equation (41), whose value reflects the misallocation of capital. As in the model
of Moll (2014) and many other general-equilibrium models with heterogeneous agents,
the capital share is an infinite-dimensional object that evolves endogenously.

In this section, we propose an analytical approximation of ωt(z). In Online Ap-
pendix A.5, we apply the Berry-Esseen bound (Tikhomirov, 1980; Bentkus, Gotze
and Tikhomoirov, 1997) to show that in the stationary equilibrium without aggregate
shocks, the distribution of capital ai,t across firms in the final goods sector approxi-
mately follows a log-normal distribution at any point in time t. This motivates the
following lemma.

Lemma 2. The log capital, ãi,t = ln(ai,t), across firms in the final goods sector approximately
follows a normal distribution.

According to equation (5), log individual productivity z̃i,t = ln zi,t also follows
a normal distribution, z̃i,t ∼ N(0, σ2/2), in the stationary equilibrium. Thus, if at
some initial point in time t0, z̃i,t0 and ãi,t0 follow a joint normal distribution, then the
distribution of z̃i,t and ãi,t will be joint normal for all t ≥ t0. This joint-normality allows
us to derive a closed-form representation for the capital share ωt(z) as follows.

Lemma 3. For any t ≥ 0, the capital share ωt(z) can be approximated by the PDF of a
log-normal distribution,

ωt(z) =
1

zσ
√

π
exp

[
− (ln z + Mtσ

2/2)2

σ2

]
, (47)

where Mt ≡ −Cov(z̃i,t, ãi,t)/var(z̃i,t) = −2Cov(z̃i,t, ãi,t)/σ2.

Lemma 3 implies that under our approximation, the endogenous variable Mt ≡
−Cov(z̃i,t, ãi,t)/var(z̃i,t) is a sufficient statistic that characterizes ωt(z). Intuitively, Mt

captures the covariance between z̃i,t and ãi,t at t across all firms in the final goods
sector. A higher Mt indicates that more productive firms are associated with less
capital, reflecting a higher degree of capital misallocation.

The main purpose of our analytical approximation proposed in Lemmas 2 and
3 is to highlight the economy’s misallocation as a crucial state variable Mt. This
allows us to achieve two results. First, it yields a simple closed-form characterization
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for the evolution of the economy (see Section 2.7), allowing us to clearly illustrate
the key model mechanism that links the persistence of idiosyncratic productivity
to that of misallocation. Second, it directly implies an intuitive and theoretically-
justified empirical measure of misallocation (see Section 4.1), based on which we
provide a set of empirical evidence to support our model predictions. Our idea of
using tractable analytical approximations to deliver key model mechanisms is in spirit
similar to several important works in the finance literature. For example, Campbell and
Shiller (1988) propose log-linear present value approximations to clearly decompose
the impact of discount-rate news and cash-flow news on stock valuations. Gabaix
(2007, 2012) develops the class of “linearity-generating” processes to achieve analytical
convenience when revisiting a set of macro-finance puzzles.

In terms of the accuracy of our approximation, we show in Online Appendix B
that our approximation yields solutions sufficiently close to the numerical solutions
based on directly tracking the evolution of ωt(z) using higher-order approximations in
both the balanced growth path and the stochastic steady state under our benchmark
calibration. These findings are consistent with the numerical results of Winberry
(2018) who approximates the distribution of heterogeneous firms in a DSGE model
using a flexible parametric family and shows that the implied dynamics of aggregate
variables, such as consumption, output, investment, SDF, and the autocorrelations
in the covariance between log capital and log productivity, based on the log-normal
approximation are very close to the results based on higher-order approximations, in
the stochastic steady state.

Proposition 3. Under our approximation specified in Lemma 2, the TFP Zt is

Zt = (εν)
ε

1−ε N1−α
t

[
(1 + λ)

At

Kt
exp

(
−σ2

2
Mt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

,

(48)
where Φ(·) represents the CDF of a standard normal variable.

Equation (48) clearly shows that the economy’s Zt strictly decreases with the
misallocation variable Mt. Thus, a lower Mt leads to higher Zt and aggregate output
Yt.9 Moreover, a lower misallocation Mt implies that more productive firms have more

9One of the main insights of Hsieh and Klenow (2009) is that the misallocation of resources lowers
aggregate TFP. Proposition 3 shows that, in our model, the endogenous variable Mt determines the
degree of misallocation as it determines productivity Ht, and thus TFP. Our analytical formula (48)
for Zt is an approximation for the exact formula (41), which can be linked to the industry-level TFP
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capital, leading to a higher productivity cutoff zt. Under our approximation, equation
(41) has a closed-form representation:

zt = exp
[
−σ2

2
Mt − Φ−1

(
1

1 + λ

Kt

At

)
σ√
2

]
. (49)

Thus, a lower misallocation Mt leads to a higher productivity Ht but fewer firms in
the final goods sector will be active.10

2.7 Evolution of the Economy

The economy’s transitional dynamics are characterized by the evolution of aggregate
capital At in the final goods sector, knowledge stock Nt, and misallocation Mt. The
aggregate capital Kt and bond holdings of households Bt are not state variables because
they are determined by equations (37) and (42), given At. We summarize the evolution
of the economy in the proposition below.

Proposition 4. For any t ≥ 0, the economy is fully characterized by the evolution of aggregate
capital At in the final goods sector, knowledge stock Nt, and misallocation Mt, as follows

dAt

At
=α(1 − ε)

Yt

At
dt −

[
(δkdt + σkdWt)

Kt

At
+ δadt − σadWt

]
−
(

Kt

At
− 1
)

r f ,tdt − ρdt,

(50)

dNt

Nt
=χ (χvt)

1−h
h dt − δbdt, (51)

dMt =− θMtdt − Cov(z̃i,t, dãi,t)

var(z̃i,t)
, (52)

where Cov(z̃i,t, dãi,t) is given by equation (159) in Online Appendix A.8.

formula derived by Hsieh and Klenow (2009). The key difference is that in our model, firms in the final
goods sector produce homogeneous goods. But firms in the model of Hsieh and Klenow (2009) produce
differentiated goods. In Online Appendix D, we show that by driving the elasticity of substitution
among goods to infinity and wedges to zero, the industry-level TFP formula of Hsieh and Klenow (2009)
coincides with our productivity Ht in equation (41).

10Banerjee and Moll (2010) show that there could be misallocation on the extensive margin because
some productive firms may not run businesses. Our model, like Moll (2014), does not have misallocation
on the extensive margin because production does not require upfront fixed costs (i.e., technology is
convex).
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In equation (50), the evolution of aggregate capital At is given by the capital share,
α(1− ε), in the production function times the aggregate output to capital ratio, Yt/Atdt,
minus capital depreciation, (δkdt + σkdWt)Kt/At + δadt − σadWt, minus interests on
households’ loans, (Kt/At − 1)r f ,tdt, and dividend payout, ρdt.

In equation (51), the accumulation of knowledge stock Nt increases with the
value of blueprints vt because a higher vt motivates innovators to increase R&D
expenditure St (equation (46)). Importantly, the misallocation Mt determines the
economy’s endogenous growth rate over [t, t + dt). This is because vt equals the
present value of profit flow πt (equation (8)), and thus vt is higher when πt is higher.
A lower misallocation Mt increases the economy’s TFP Zt (equation (48)), leading to a
higher aggregate output Yt (equation (40)) and thus a higher profit flow πt (equation
(45)), and ultimately, a higher growth rate of the economy. By linking the final goods
sector and the innovation sector through the endogenous TFP Zt, the allocation of
capital ai,t among firms of different productivity zi,t plays a crucial role in determining
economic growth.

Equation (52) shows that the evolution of Mt depends on two terms. The first term
−θMtdt reflects time-varying productivity zi,t evolving according to equation (5). Intu-
itively, a higher θ implies a less persistent idiosyncratic productivity zi,t, which pushes
the misallocation Mt = −Cov(z̃i,t, ãi,t)/var(z̃i,t) towards zero. In Section 3, we show
that the parameter θ crucially determines the economy’s long-run consumption risk by
affecting the persistence of Mt. The second term Cov(z̃i,t, dãi,t)/var(z̃i,t) captures the
impact of capital accumulation, dãi,t, evolving according to equation (3). Intuitively, a
higher Cov(z̃i,t, dãi,t) implies that more productive firms also accumulate their capital
at a higher rate, which reduces misallocation Mt.

Importantly, the variable Cov(z̃i,t, dãi,t) negatively depends on the aggregate shock
dWt (see equation (159) in Online Appendix A.8). Intuitively, a positive shock (dWt > 0)
increases the depreciation rate of capital ki,t, which reduces the capital accumulation
of firms with productivity zi,t above the cutoff zt, without affecting those with produc-
tivity below the cutoff because these firms do not produce (see equation (23)). As a
result, a positive shock leads to a lower Cov(z̃i,t, dãi,t), increasing the misallocation Mt.
Aggregate shocks can have positive or negative effects on the aggregate capital At in
the final goods sector, depending on the sign of σkKt/At − σa. Under our calibration,
σkKt/At − σa has a small magnitude. Thus, aggregate shocks dWt do not directly drive
large variations in At. In Section 3.4, we conduct counterfactual experiments to show
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that our model generates endogenous long-run consumption risk and a high Sharpe
ratio mainly through the time variation in misallocation Mt, rather than time variation
in aggregate capital stock.

Define Et = Nt/At as the aggregate knowledge stock to capital ratio. Because the
economy is homogeneous of degree one in At, the three state variables (At, Nt, Mt)

can be reduced to two state variables (Et, Mt).

2.8 Balanced Growth Path

We characterize the economy’s balanced growth path in the absence of aggregate
shocks (i.e., dWt ≡ 0).

Proposition 5. There is a balanced growth path in which Et, Mt, and Ht are constant, and
aggregate capital At, knowledge stock Nt, output Yt, TFP Zt, and consumption Ct grow at the
same constant rate.

In the presence of aggregate shocks, the economy’s growth rate is time varying,
depending on its misallocation Mt. A positive shock (dWt > 0) increases Mt, leading
to a lower TFP Zt through equation (48). Per our discussion in Section 2.7, a higher
Zt increases aggregate output Yt, and thus the value of blueprints vt. This motivates
innovators to increase their R&D expenditure, leading to a higher growth rate of knowl-
edge stock Nt. Because the economy’s misallocation Mt is persistent (see equation
(52)), i.i.d. shocks that affect misallocation Mt can generate persistent effects on both
aggregate output and consumption growth. Thus, the economy’s misallocation Mt not
only determines contemporaneous growth but also predicts future growth of output
and consumption.

Proposition 6 presents the relationship between R&D to capital ratio St/At and
misallocation Mt in the balanced growth path.

Proposition 6. The R&D to capital ratio, St/At, is negatively related to misallocation Mt in
the balanced growth path,

ln
(

St

At

)
=− ασ2

2h
Mt +

ασ2

4h
+

1
h

ln(χ) +
α

h
ln(1 + λ) +

(α

h
− 1
)

ln
(

At

Nt

)
+

1
h

ln

(
(1 − ν)ε(εν)

ε
1−ε

r f ,t + δb

)
+

α

h
ln
(

Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

))
. (53)
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3 Quantitative Analysis

In this section, we evaluate whether misallocation can quantitatively generate low-
frequency movements in aggregate consumption growth (Bansal and Yaron, 2004).
Section 3.1 calibrates the model. Section 3.2 presents the untargeted moments. Our
model can generate moments of consumption growth and asset prices consistent with
the data. In the model, misallocation significantly predicts R&D expenditure and
future growth. Section 3.3 illustrates the important role of the persistence of idiosyn-
cratic productivity in determining the persistence of aggregate consumption growth
through the slow-moving misallocation variable. Section 3.4 conduct counterfactual
and sensitivity analyses to illustrate the key mechanisms of the model. Importantly,
we show that in our model, it is the time variation in misallocation Mt that generates
endogenous long-run consumption risk and asset-pricing moments consistent with the
data. Section 3.5 studies the welfare implications of misallocation.

3.1 Calibration

Panel A of Table 1 presents externally calibrated parameters. Following the standard
practice, we set the capital share in the production technology at α = 0.33. We set the
yearly capital depreciation rates at δk = δa = 0.04. We set the share of intermediate
inputs at ε = 0.5 according to the estimates of Jones (2011, 2013). The inverse markup
is set at ν = 0.6 to guarantee the existence of a balanced growth path. Recursive
preferences are commonly used in recent works of asset pricing, we set the risk
aversion at γ = 10 and the EIS at ψ = 1.85 as in Kung and Schmid (2015). We set
the payout ratio at ρ = 0.06 and the rent extraction rate at τ = 0.01. These two
parameters imply that the average dividend payout to shareholders is about 2.5%
of the market value in equilibrium. We set h = 0.17 so that the elasticity of new
blueprints with respect to R&D is 0.83, following the calibration of Kung and Schmid
(2015). We set the depreciation rate of knowledge stock at δb = 0.2, which is within
the range of the standard values used by the Bureau of Labor Statistics (BLS) in the
R&D stock calculations. We set the volatility of idiosyncratic productivity at σ = 1.39
according to the calibration of Moll (2014). We set the persistence of idiosyncratic
productivity at θ = 0.1625, which implies that firms’ idiosyncratic productivity has
a yearly autocorrelation of exp(−θ) = 0.85, consistent with the estimate of Asker,
Collard-Wexler and Loecker (2014) based on U.S. census data as well as the calibration
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Table 1: Parameter calibration and targeted moments.

Panel A: Externally determined parameters

Parameter Symbol Value Parameter Symbol Value

Capital share α 0.33 Capital depreciation rate δk 0.04

Share of intermediate inputs ε 0.5 Capital depreciation rate δa 0.04

EIS ψ 1.85 Risk aversion γ 10

Inverse markup ν 0.6 Rent extraction rate τ 0.01

Dividend payout ratio ρ 0.06 Knowledge depreciation rate δb 0.2

1− R&D elasticity h 0.17 Vol. of idio. productivity σ 1.39

Collateral constraint λ 1 Persistence of idio. productivity θ 0.1625

Panel B: Internally calibrated parameters and targeted moments

Parameter Symbol Value Moments Data Model

Subjective discount rate δ 0.01 Real risk-free rate (%) 0.86 1.47

R&D productivity χ 1.93 Consumption growth rate (%) 1.80 1.88

Capital depreciation shock σk 0.19 Consumption growth vol. (%) 2.93 2.59

Capital efficiency shock σa 0.18 σ(∆ ln Ct)/σ(∆ ln Yt) 0.52 0.51

Note: In panel B, when constructing the model moments, we simulate a sample for 160 years with an
80-year burn-in period. We then compute the model-implied moments as we do for the data in each
simulation. For each moment, the table reports the median of the distribution across 10,000 independent
simulations. The data moments for the real risk-free rate, consumption growth rate, and consumption
growth volatility are from Bansal and Yaron (2004), and the data moment for the ratio of the volatility of
consumption growth and output growth (σ(∆ ln Ct)/σ(∆ ln Yt)) is from Kaltenbrunner and Lochstoer
(2010).

in the macroeconomics literature (e.g., Khan and Thomas, 2008; Moll, 2014; Winberry,
2018, 2021). We set the collateral constraint parameter at λ = 1, which is within the
range of the calibration in the macroeconomics literature (e.g., Buera and Shin, 2013;
Jermann and Quadrini, 2012; Midrigan and Xu, 2014; Moll, 2014; Dabla-Norris et al.,
2021).

The remaining parameters are calibrated by matching the relevant moments sum-
marized in Panel B of Table 1. When constructing the model moments, we simulate
a sample for 160 years with an 80-year burn-in period. We then compute the model-
implied moments as we do for the data in each simulation. For each moment, the
table reports the median of the distribution across 10,000 independent simulations.
The discount rate is set at δ = 0.01 to generate a real risk-free rate of about 1.47%.
The R&D productivity is a scaling parameter and is set at χ = 1.93 to generate an
average consumption growth rate of about 1.88%. We calibrate σk = 0.19 so that the
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Table 2: Untargeted moments in data and model.

Moments Data Model Moments Data Model

Panel A: Consumption moments

AC1(∆ ln Ct) (%) 0.49 0.48 AC2(∆ ln Ct) (%) 0.15 0.28

AC5(∆ ln Ct) (%) −0.08 0.08 AC10(∆ ln Ct) (%) 0.05 0.01

VR2(∆ ln Ct) (%) 1.61 1.48 VR5(∆ ln Ct) (%) 2.01 2.31

AC1(∆ ln St) (%) 0.21 0.26 AC1(Mt) (%) 0.65 0.72

Panel B: Asset pricing moments

Sharpe ratio 0.33 0.36 σr f (%) 0.97 1.40

Note: The notation ∆ ln Xt = ln Xt+1 − ln Xt represents difference in ln Xt between year t and year t − 1.
The consumption data moments in panel A and the data moments in panel B are from Bansal and Yaron
(2004). ACk(∆ ln Ct) refers to the autocorrelation of consumption growth with a k-year lag. VRk(∆ ln Ct)
refers to the variance ratio of consumption growth with a k-year horizon. The data moment AC1(∆ ln St)
for yearly autocorrelation in R&D expenditure is from Kung and Schmid (2015). The data moment
AC1(Mt) for the misallocation measure is constructed in our sample. When constructing the model
moments, we simulate a sample for 160 years with an 80-year burn-in period. We then compute the
model-implied moments as we do for the data in each simulation. For each moment, the table reports
the median of the distribution across 10,000 independent simulations.

model-implied volatility of consumption growth is about 2.59%. These moments are
similar to the data moments estimated by Bansal and Yaron (2004). Finally, we calibrate
σa = 0.18 so that the ratio of the volatility of consumption growth and output growth
is 0.51, which is consistent with the data moment estimated by Kaltenbrunner and
Lochstoer (2010).

3.2 Untargeted Moments and Predicative Regressions

Table 2 presents untargeted moments as a validation test of the model. Panel A
shows that the moments reflecting the persistence of consumption growth implied
by the model is very consistent with that in the data even though these moments
are not directly targeted in our calibration. Specifically, the yearly autocorrelation
of consumption growth (AC1(∆ ln Ct)) is 0.49 in the data and 0.48 in the model.
Consumption growth is endogenously generated by innovators’ R&D expenditure
St, which depends on the degree of misallocation Mt. The last row of Table 2 shows
that the yearly autocorrelation of R&D expenditure St and misallocation Mt also have
similar values in the model and data. In Section 3.3, we show that the parameter
θ governing the persistence of idiosyncratic productivity zi,t plays a major role in
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Table 3: Model-implied relationship between misallocation, R&D, and growth.

Panel A: R&D intensity (St/Nt)

t t + 1

β −0.035 −0.037

[−0.002] [−0.002]

R-squared 0.754 0.850

Panel B: Consumption growth (∆ ln Ct)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

β −0.093 −0.220 −0.285 −0.333 −0.372

[−0.011] [−0.009] [−0.016] [−0.025] [−0.033]

R-squared 0.472 0.892 0.791 0.694 0.619

Panel C: Output growth (∆ ln Yt)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

β −0.192 −0.232 −0.245 −0.281 −0.285

[−0.029] [−0.035] [−0.042] [−0.049] [−0.057]

R-squared 0.341 0.344 0.297 0.284 0.242

Note: We simulate a sample for 160 years with an 80-year burn-in period. In panel A, we regress
the R&D intensity (St/Nt) in year t and t + 1 on misallocation Mt. In panels B and C, we regress the
cumulative growth of consumption and output from year t to t + τ (τ = 1, 2, ..., 5) on Mt, respectively.
We report the median of each statistic across 10,000 independent simulations.

determining the persistence of consumption growth.
Panel B of Table 2 shows that our model implies a smooth risk-free rate and a

high Sharpe ratio for the consumption claim, consistent with both the data and the
moments implied by the long-run risk model of Bansal and Yaron (2004). Thus, the
endogenous low-frequency movements in aggregate consumption growth implied by
our model have reasonable implications for asset prices.

Table 3 studies the relationship between misallocation, R&D and growth in our
model. Panel A shows that misallocation Mt in year t is negatively correlated with
contemporaneous R&D intensity St/Nt. The misallocation Mt also negatively predicts
the R&D intensity St+1/Nt+1 in the next year.

Panel B of Table 3 shows that misallocation Mt significantly negatively predicts
future consumption growth over time horizons of one year to five years. The coef-
ficients are more negative for longer horizons as consumption growth is persistent.
Misallocation can predict future consumption growth in our model because it is the
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persistence in misallocation that generates persistent consumption growth through
endogenous R&D. Because our model only has one aggregate shock, the conditional
consumption growth is strongly correlated with innovations in misallocation. As a
result, both the t-statistic and the R-sqaured are large. Panel C of Table 3 shows
that misallocation Mt also negatively predicts future output growth. The regression
coefficients are statistically significant, though the standard errors are larger than those
of the coefficients predicting consumption growth.

3.3 Impulse Response Functions

We illustrate how the persistence of idiosyncratic productivity determines the per-
sistence of aggregate consumption growth and the quantitative implications of the
model.

Response to a One-Time Shock. Consider a stationary economy in the balanced
growth path. At t = 0, there is a one-time unexpected shock (i.e., dWt < 0 over [0, dt))
that reduces the misallocation Mt by σk. The blue solid line in each panel of Figure 1
plots the transitional dynamics under our benchmark calibration.

Panel A plots the evolution of the misallocation Mt after the shock, which follows
equation (52). The blue solid line shows that misallocation Mt declines immediately at
t = 0 and slowly recovers and reaches the steady-state level after about 20 years.

In the absence of aggregate shocks, aggregate consumption would be C0 exp(gt),
growing at a constant rate g = 1.88% for all t ≥ 0. We take out the trend effect in Ct by
focusing on excess consumption, defined by Ct/(C0 exp(gt)). The blue solid line in
panel B shows that excess consumption Ct/(C0 exp(gt)) stays at one before the shock,
and it immediately jumps to about 1.03 when the shock hits at t = 0, and continues to
increase until reaching the balanced growth path. Even though the shock is transitory,
the economy converges to a steady state with permanently higher consumption due to
the endogenous accumulation of capital At and knowledge stock Nt.

Panel C illustrates a similar idea by plotting the conditional consumption growth
rate, defined by dCt/(Ctdt). The blue solid line shows that the conditional consump-
tion growth rate increases dramatically to about 2.8% when the shock hits at t = 0. This
is because the reduction in misallocation Mt immediately increases the productivity
Ht of the final goods sector (panel D). A higher Ht increases the profits of innovators,
motivating them to spend more on R&D (panel E), which consequently leads to a
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Note: Consider an unexpected shock that reduces misallocation Mt by σk at t = 0. Panels A, B, and
C plot the transitional dynamics of misallocation Mt, excess consumption Ct/(C0egt), and conditional
consumption growth rate dCt/(Ctdt) in three economies with different θ. For each economy, we
calibrate the parameter χ so that the consumption growth rate in the balanced growth path is the
same as our benchmark calibration. All other parameters are set according to our calibration in Table
1. Panels D, E, and F plot the transitional dynamics of final goods sector’s productivity Ht, R&D to
capital ratio St/At, and knowledge stock to capital ratio Et = Nt/At for the benchmark economy with
exp(−θ) = 0.85.

Figure 1: Transitional dynamics after a one-time shock in misallocation Mt.

higher growth rate of the economy. Crucially, it is the persistence in misallocation
Mt (panel A) that results in persistent excess consumption growth relative to the
balanced growth path (panels B and C). Panel F plots the evolution of the knowledge
stock to capital ratio Et = Nt/At, which has hump-shaped dynamics because we only
introduce a one-time shock in Mt at t = 0.

Role of the Persistence of Idiosyncratic Productivity. In panels A, B and C, we
further compare our benchmark calibration with two economies of different per-
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sistence of idiosyncratic productivity zi,t. The yearly autocorrelation in ln zi,t is
corr(ln zi,t, ln zi,t+1) = exp(−θ) according to equation (5). Panel A shows that the
economy with a higher persistence of zi,t is associated with lower misallocation in the
balanced growth path (i.e., the red dash-dotted line is above the blue solid line, which
is above the black dashed line). This follows the insight of Buera and Shin (2011) and
Moll (2014): More productive firms accumulate more capital relative to less productive
firms over time. Thus, the covariance between capital and productivity across firms
increases with the persistence of productivity, resulting in less misallocation in the
balanced growth path.

In addition, we find that the convergence speed of Mt decreases with the persistence
of idiosyncratic productivity (see equation (52)). Specifically, we compute the half-life
of transitions, defined as the time required for Mt to recover to half of its value in the
balanced growth path after the shock. The half life of Mt is 2.2, 2.8, and 3.8 years for
the red dash-dotted (exp(−θ) = 0.8), blue solid (exp(−θ) = 0.85), and black dashed
lines (exp(−θ) = 0.9), respectively, indicating that Mt is more persistent when θ is
smaller. Comparing the three curves in panels B and C, it is clear that the economy
with a higher persistence of zi,t has more persistent consumption growth after the
shock in Mt (i.e., it takes more time for Ct/(C0 exp(gt)) and dCt/(Ctdt) to converge
to the levels in the balanced growth path).

One key insight of our model is that the persistence of the level of idiosyncratic
productivity, zi,t, plays an important role in determining the persistence of the growth
rate of aggregate consumption, dCt/(Ctdt). The persistence of these two variables is
connected with each other via the persistent endogenous misallocation Mt. Specifically,
when idiosyncratic productivity becomes more persistent, the persistence of misallo-
cation Mt increases (panel A of Figure 1). As a result, the consumption growth rate
also becomes more persistent (panel C of Figure 1) because misallocation Mt directly
determines the economy’s aggregate output Yt and consumption Ct through its effect
on TFP Zt.

Our insight is related to that of Moll (2014), who shows that transitions to steady
states are slow when idiosyncratic productivity shocks are persistent. Different from
Moll (2014), we show that the persistence of idiosyncratic productivity not only
determines the transition speed of the level of output and TFP, but also the growth
rate of aggregate consumption in a model with endogenous growth. This allows our
theory to generate endogenous low-frequency movements in aggregate consumption
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growth through persistent misallocation, thereby rationalizing asset prices in the capital
market. Crucially, by linking the persistence of idiosyncratic productivity with the
persistence of aggregate consumption growth, our model provides a way to estimate
the long-run risk of aggregate consumption growth based on granular firm-level data,
which helps address the issues of weak identification in the long-run risk literature
(Chen, Dou and Kogan, 2022; Cheng, Dou and Liao, 2022).

3.4 Inspection of Key Parameters and Mechanisms

We conduct counterfactual and sensitivity analyses to illustrate the key mechanisms
of the model. Importantly, we show that in our model, it is the time variation in
misallocation Mt, rather than time variation in aggregate capital stock, that generates
endogenous long-run consumption risk and asset-pricing moments consistent with the
data. This differentiates our theoretical mechanism from those in the literature (e.g.,
Kaltenbrunner and Lochstoer, 2010; Kung and Schmid, 2015). Table 4 shows how the
main variables of our model respond to changes in key parameters and variables.

Column (1) presents the baseline case of our full model. In column (2), we consider
a less persistent idiosyncratic productivity by increasing θ from 0.1625 to 0.22, which
corresponds to a reduction in the yearly autocorrelation of ln zi,t from 0.85 to 0.8.
Compared with the baseline, the average misallocation Mt increases from −0.53 to
−0.43 because productive firms are more likely to be unproductive when productivity
is more transitory, weakening the self-financing channel through capital accumulation.
As a result, the final-goods sector’s productivity Ht decreases from 1.63 to 1.56.
The average consumption growth rate decreases to 1.05%. A lower persistence of
idiosyncratic productivity reduces the yearly autocorrelation of consumption growth
to 0.42; moreover, aggregate TFP, output, and misallocation all become less persistent.
Because of the decrease in consumption persistence, the Sharpe ratio declines from
0.36 in the baseline to 0.31 in column (2).

In column (3), we consider a more restrictive collateral constraint by reducing
λ from 1 to 0.9. The average misallocation Mt stays unchanged compared to the
baseline. This is because the equilibrium misallocation is mainly determined by firms’
differential speed of capital accumulation across different productivity zi,t (i.e., the
term Cov(z̃i,t, dãi,t) in equation (52)). A change in λ does not affect this difference
much because a lower λ scales down the revenue of both high-productivity and low-
productivity firms. However, reducing λ directly leads to a lower TFP Zt in equation

32



Table 4: Inspection of key parameters.

(1) (2) (3) (4) (5) (6) (7)

Baseline θ = 0.22 λ = 0.9 χ = 1.85 σk = 0 σa = 0 Fix Mt

E[Mt] −0.53 −0.43 −0.53 −0.53 −0.57 −0.68 −0.53

E[Ht] 1.63 1.56 1.61 1.61 1.57 1.62 1.62

E[∆ ln Ct] (%) 1.88 1.05 1.53 1.09 1.73 3.87 1.47

σ(∆ ln Ct) (%) 2.59 2.62 2.46 2.72 3.79 6.64 0.51

σ(∆ ln Ct)/σ(∆ ln Yt) 0.56 0.46 0.51 0.46 0.16 0.24 0.13

AC1(∆ ln Ct) 0.48 0.42 0.48 0.49 0.52 0.47 0.69

AC1(Mt) 0.72 0.66 0.73 0.72 0.97 0.59 1.00

σ(Mt) (%) 20.44 19.37 19.90 20.78 9.06 18.57 0

Sharpe ratio 0.36 0.31 0.35 0.37 0.40 0.72 0.09

Note: The notation ∆ ln Xt = ln Xt+1 − ln Xt represents difference in ln Xt between year t and year
t − 1. AC1(∆ ln Ct) and AC1(Mt) refers to the yearly autocorrelation of consumption growth and
misallocation. When constructing the model moments, we simulate a sample for 160 years with an
80-year burn-in period. We then compute the model-implied moments as we do for the data in each
simulation. We report the median of each moment’s distribution across 10,000 independent simulations.

(48), reflecting the instantaneous reallocation of capital through the capital leasing
market. The lower Ht reduces the average consumption growth rate to 1.53% and
the volatility of consumption growth to 2.46%, without affecting the persistence of
consumption growth or other macro variables much. The Sharpe ratio is reduced
slightly to 0.35.

In column (4), we consider a lower productivity of R&D by reducing χ from 1.93 to
1.85. Compared with our baseline in column (1), column (4) shows that all variables
remain roughly unchanged, except for a lower consumption growth rate (1.09% vs.
1.88% in the baseline). The lower growth rate is determined by the productivity of
R&D, rather than a better allocation of capital among firms because Ht is roughly
unchanged. As discussed in Section 3.1, the parameter χ can be thought of as a pure
scaling factor that determines the equilibrium growth rate.

In column (5), we turn off capital depreciation shocks by setting σk = 0. Thus,
the economy’s only aggregate shock is the capital efficiency shock σadWt entering
equation (50). The main difference between columns (1) and (5) are the following:
i). consumption growth volatility increases substantially from 2.59% to 3.79% after
eliminating capital depreciation shocks. The reason is that −σkKt/AtdWt and σadWt

in equation (50) roughly offset each other under our benchmark calibration. Once
we eliminate capital depreciation shocks by setting σk = 0, the aggregate capital
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growth dAt/At in the final goods sector becomes much more volatile, resulting in
a higher volatility of consumption growth; ii). Mt becomes very persistent, with a
yearly autocorrelation of 0.97, and much less volatile, with an annualized volatility
of 9.06%, as opposed to 0.72 and 20.44% in our baseline (column (1)). Intuitively,
capital efficiency shocks do not directly affect the evolution of Mt through equation
(52), because the term Cov(z̃i,t, dãi,t) only depends on σkdWt but not on σadWt. The
mild time variation in Mt is driven by several slow-moving variables (i.e., zt, r f ,t, and
κt, which determine Cov(z̃i,t, dãi,t) through equation (159)); and iii). The Sharpe ratio
remains high in column (5) because of the volatile and persistent consumption growth.
However, the volatile and persistent consumption growth dynamics are not driven
by time-varying misallocation Mt, instead, they are mechanically determined by the
persistent knowledge stock to capital ratio Et.11

Complementary to the experiment in column (5), we eliminate capital efficiency
shocks in column (6) by setting σa = 0. Compared with our baseline (column (1)), this
leads to substantially higher consumption growth rate, consumption growth volatility,
and Sharpe ratio. The main reason is that a positive shock dWt reduces aggregate
capital At in the final goods sector through equation (50) and increases misallcoation
Mt through equation (52), both of which will substantially reduce aggregate output
and consumption. As a result, consumption growth becomes much more volatile,
resulting in a much higher Sharpe ratio and average consumption growth rate (due
to Jensen’s inequality). By contrast, in our baseline (column (1)), a positive shock
dWt does not affect aggregate capital At much because capital efficiency shocks σadWt

largely offset capital depreciation shocks −σkKt/AtdWt in equation (50). Thus, the
quantitative implications of our baseline mostly reflect the impact of time-varying
misallocation Mt.

Finally, we echo the arguments above by exogenously fixing Mt at its long-run
mean in column (7). In this case, the time variation in aggregate variables is purely
driven by the term (−σkKt/At + σa)dWt in equation (50). Because our benchmark
calibration roughly has the property of σkKt/At ≈ σa, the volatility of consumption
growth is only 0.51% in column (6), which is much smaller than 2.59% in our baseline
(column (1)). As a result, the Sharpe ratio is merely 0.09 despite the high persistence in
consumption growth.

11This mechanism is related to Kaltenbrunner and Lochstoer (2010), who emphasize households’ con-
sumption smoothing motives in generating persistent consumption growth. In our model, households
make loan decisions (i.e., Bt) instead of corporate investment decisions.
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Taken together, columns (5) to (7) show that our model generates endogenous long-
run consumption risk and a high Sharpe ratio mainly through the time variation in
misallocation Mt, rather than time variation in aggregate capital stock. Our calibration
of σk and σa roughly ensures that the aggregate shock dWt mainly directly drives the
evolution of misallocation Mt, rather than the evolution of aggregate capital At in the
final goods sector. As a key theoretical and conceptual point, we emphasize the role
of misallocation in generating low-frequency movements in aggregate consumption
growth, which differentiates our paper from the seminal work of Kung and Schmid
(2015). In Section 4, we show that the misallocation-based story is also supported by
the data.

3.5 Welfare Implications of Misallocation

In our model, fluctuations in aggregate quantities reflect changes in misallocation,
implying that the cost of misallocation can be evaluated by measuring the cost of
business cycles. We provide some suggestive quantitative evaluation through the lens
of the model.

Because aggregate consumption includes both transitory fluctuations and perma-
nent fluctuations, it is important to define business cycles to comprise only transitory
fluctuations (Alvarez and Jermann, 2004, 2005). Kung and Schmid (2015) emphasize
the importance of distinguishing business cycles from growth cycles (i.e., the low-
frequency movements in consumption) in endogenous stochastic growth models with
long-run consumption risk.

Following the approach of Alvarez and Jermann (2004), we use the model-generated
consumption time series to calculate the potential benefits of eliminating business cycles
(i.e., transitory fluctuations). Specifically, business cycles are defined as fluctuations
that last up to eight years as in Burns and Mitchell (1946) and Alvarez and Jermann
(2004). In our simulated consumption time series, we use a one-sided moving average
to represent a low-pass filter that lets pass frequencies that correspond to cycles
of eight years or more (Baxter and King, 1999).12 The estimated moving average
coefficients allow us to calculate the costs of business cycles based on the model-
implied consumption risk premium (Alvarez and Jermann, 2004, equations (4) and
(6)).

12The frequency response function is one for frequencies lower than eight years and zero otherwise.
Section III of Alvarez and Jermann (2004) provides details on estimating the moving average coefficients.
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Our model implies that eliminating business cycles leads to a welfare gain of 0.51%,
with a 95% confidence interval of [0.15%, 1.01%]. The magnitude of our estimate
is similar to that of Alvarez and Jermann (2004), which is directly obtained from
asset price data. We also estimate the potential benefits of eliminating all consumption
uncertainty. Specifically, we calibrate the parameter χ in an economy without aggregate
shocks to achieve the same growth rate of aggregate consumption as our benchmark
calibration. Because the representative household’s utility (12) is homogeneous of
degree one in aggregate consumption, the consumption-equivalent welfare gain of
eliminating all consumption uncertainty is equal to the percentage increase in the
value of utility U0, when the agent moves from the baseline economy to the economy
without aggregate shocks at t = 0. Our model implies that eliminating all consumption
uncertainty leads to a welfare gain of as large as 35.14%, with a 95% confidence interval
of [20.23%, 51.90%], which is also in the ballpark range estimated by Alvarez and
Jermann (2004). Per the insight of Alvarez and Jermann (2004, 2005), our model implies
a large gain from the elimination of all consumption uncertainty because consumption
and the pricing kernel have large permanent components. This further confirms our
main results that misallocation endogenously drives low-frequency movements in
aggregate consumption growth in our model.

4 Empirical Results

In this section, we conduct empirical analyses to test our model’s main predictions. In
Section 4.1, we use the U.S. data to construct an empirical measure of misallocation
implied by our model. We show that misallocation becomes more severe during
economic recessions and financial crises. In Section 4.2, we provide evidence for the
effects of misallocation on R&D intensity and economic growth over long horizons.
We thus identify shocks to the misallocation as a proxy for shocks to the low-frequency
components of consumption growth and the pricing kernel. In Section 4.3, we provide
cross-sectional evidence to support the model’s key prediction that fluctuations in
misallocation drive the low-frequency component of consumption growth. In Section
4.4, we study the cross-sectional asset pricing implications of misallocation, as a
macroeconomic risk factor. Finally, in Section 4.5, we provide empirical support for the
model’s core mechanism that firms’ financial constraints result in misallocation, which
in turn determines firms’ R&D expenditure.
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4.1 Empirical Measure of Misallocation

In our model, the economy’s misallocation can be fully captured by the state variable
Mt ≡ −Cov(z̃i,t, ãi,t)/var(z̃i,t), defined in Lemma 3. The term Cov(z̃i,t, ãi,t)/var(z̃i,t)

can be estimated by a single variable linear regression that regresses log capital ãi,t on
log productivity z̃i,t using the cross section of firms in each year t:

ãi,t = αt + βtz̃i,t + εi,t, (54)

where the estimated coefficient β̂t directly captures Cov(z̃i,t, ãi,t)/var(z̃i,t). Thus, moti-
vated by our theory, we construct an empirical measure of Mt using the HP-filtered
time-series of the minus of the estimated coefficient β̂t from 1965 to 2016. The HP filter
allows us to extract the cyclical component of the time series of −β̂t, following the liter-
ature (e.g., Eisfeldt and Rampini, 2006). Figure 2 plots the time series of the empirical
measure Mt. Sharp spikes in Mt are observed during periods of economic downturns,
including economic recessions and three financial crises: the savings and loan (S&L)
crisis from January 1986 to December 1987, the Mexican peso crisis from January 1994
to December 1995, and the European sovereign debt crisis from September 2008 to
December 2012. The stylized pattern shown in Figure 2 is consistent with our model’s
prediction that a large increase in misallocation generally represents a period of time
with macroeconomic recessions and financial turmoil.

We now elaborate on the construction of independent and dependent variables ãi,t

and z̃i,t in specification (54). These two variables are empirical measures of log capital
and productivity for firm i in year t, respectively, constructed using the U.S. Compustat
data. Specifically, following the standard practice, we exclude firms from financial
industry, utility industry, and public administration (SIC codes between 6, 000 − 6, 999,
4, 900 − 4, 999, and 9, 000 − 9, 999). We construct the independent variable ãi,t using the
average log capital of firm i over the past T years, i.e., ãi,t ≡ T−1 ∑T

τ=1 ln(capitali,t+1−τ),
with T = 3. The empirical results are robust to alternative choices of T. Firm i’s capital
is measured by its net property, plant and equipment, i.e., capitali,t = ppenti,t.13

13 All the empirical results are robust if we use a firm’s tangible net worth to construct its capital, i.e.,
capitali,t = tangible_net_worthi,t. A firm’s tangible net worth is constructed as tangible_net_worthi,t =
ppenti,t + current_assetsi,t + other_assetsi,t − total_liabilitiesi,t, which is the firm’s net property, plant
and equipment plus current assets plus other assets minus total liabilities. As emphasized by the seminal
work of Chava and Roberts (2008), lenders commonly use a firm’s tangible net worth to assess its ability
to support and pay back loans. Naturally, tangible net worth, as a measure for firms’ borrowing capacity,
is widely reflected in loan covenants (e.g., DeAngelo, DeAngelo and Wruck, 2002; Roberts and Sufi,
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Note: The red solid line plots the time series of our empirical misallocation measure Mt (corresponding
to the left y-axis). The pink bars represent its year-on-year changes ∆Mt (corresponding to the right
y-axis). The shaded areas represent recessions or severe financial crises.

Figure 2: Time series plot of our empirical misallocation measure Mt.

We construct the dependent variable z̃i,t using the average log productivity of firm
i over the past T years, i.e., z̃i,t ≡ T−1 ∑T

τ=1 ln(productivityi,t+1−τ). In our model, firms’
technology has constant returns to scale, and thus firms’ output and sales are linear
in capital after substituting out labor and intermediate inputs using Lemma 1, i.e.,
yi,t = qtzi,tki,t for zi,t ≥ zt, where qt = (ε/pt)

ε
α(1−ε) [(1 − α)(1 − ε)/wt]

1−α
α . This equation

suggests that the ratio of sales (yi,t) to production capital ki,t is qtzi,t, which captures
firms’ productivity zi,t in our model. Motivated by this structural relationship, we thus
measure firm i’s productivity using productivityi,t = salesi,t/production_capitali,t.14

Following the model, production_capitali,t is measured by the sum of the firm’s own
capital (ppenti,t) and rented capital. We measure the amount of rented capital by
capitalizing rental expenses, following standard accounting practice and the literature
(e.g., Rauh and Sufi, 2011; Rampini and Viswanathan, 2013). Specifically, firm i’s rented

2009; Sufi, 2009; Prilmeier, 2017). Thus, measuring a firm’s capital based on its tangible net worth could
be more consistent with the specification of borrowing constraint (17) in our model. In Figure OA.2 of
Online Appendix C.1, we show that the misallocation measure constructed using tangible net worth has
similar cyclical patterns to that constructed using net property, plant and equipment (see Figure 2).

14Note that although this productivity measure depends on qt according to our model, the estimated
coefficient βt in specification (54) will not be affected because the independent variable z̃i,t is the log of
productivity, and thus the aggregate variable qt is absorbed by the constant term αt when estimating
(54).
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Table 5: Misallocation, R&D, and growth in the data.

Panel A: R&D intensity

t t + 1

β −0.076∗∗ −0.079∗∗

[0.032] [0.031]

R-squared 0.102 0.116

Panel B: Consumption growth

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

β −0.035 −0.060 −0.100∗ −0.154∗∗ −0.208∗∗∗

[0.024] [0.040] [0.052] [0.060] [0.066]

R-squared 0.040 0.042 0.069 0.120 0.173

Panel C: Output growth

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

β −0.034 −0.062 −0.092 −0.153∗ −0.216∗∗∗

[0.040] [0.062] [0.075] [0.082] [0.083]

R-squared 0.015 0.020 0.029 0.067 0.123

Note: The sample period is 1965-2016. Standard errors are reported in brackets. *, **, and *** indicate
statistical significance at 10%, 5%, and 1%, respectively.

capital in year t is its total rental expenses in the year multiplied by a factor 10 and
capped by a fraction, 0.25, of ppenti,t.15

4.2 Growth Forecasts

Time-varying growth prospects in consumption are at the core of the long-run risk lit-
erature following Bansal and Yaron (2004). However, the empirical evidence regarding
this channel is still controversial. Few instruments have been shown to successfully
predict consumption growth over long horizons. Our model implies that the degree of
misallocation predicts R&D intensity, which determines future economic growth. Thus,
the empirical misallocation measure Mt motivated by our model naturally provides an
economically meaningful predictor for R&D intensity and aggregate growth rates. In
this subsection, we present empirical evidence for this model implication.

We obtain data on private business R&D investment from the National Science

15All empirical results are robust if we use a factor 5, 6, or 8 to capitalize rental expenses or cap the
amount by a fraction, 0, 0.5, 1, or 2, of ppenti,t.
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Foundation (NSF) and the R&D stock from the Bureau of Labor Statistics (BLS).
Following Kung and Schmid (2015), these two time series are considered as empirical
counterparts for St and Nt, respectively. The ratio of the two (i.e., St/Nt) is our
empirical measure for R&D intensity. We regress R&D intensity in the current year (t)
and the next year (t + 1) on the misallocation measure Mt, as follows:

St+h
Nt+h

= α + βMt + νt, (55)

where h = 0, 1. Panel A of Table 5 presents the empirical results, which indicate that a
higher misallocation is associated with a decline in contemporaneous R&D intensity
and predicts a lower R&D intensity in the next year.

Next, we empirically test whether misallocation negatively predicts future consump-
tion growth. We obtain annual data for consumption from the Bureau of Economic
Analysis (BEA). Consumption is measured as per-capita expenditures on nondurable
goods and services. The nominal variables are converted to real terms using the
consumer price index (CPI), obtained from the Center for Research in Security Prices
(CRSP). Inspired by Kung and Schmid (2015), we run the following regression:

∆ ln Ct,t+1 + · · ·+ ∆ ln Ct+h−1,t+h = α + βMt + νt,t+h, (56)

where h = 1, · · · , 5 and ∆ ln Ct+h−1,t+h is the one-year log consumption growth from
year t + h − 1 to t + h. Panel B of Table 5 presents the results of projecting future
consumption growth over horizons of one to five years on the misallocation measure
Mt. The slope coefficients are negative and decreasing with horizons. Specifically,
the slope coefficients are statistically significant in the last two columns of panel B,
which correspond to consumption growth over horizons of three to five years. The
R-squared monotonically increases from 0.069 to 0.173 when time horizon increases
from t → t + 3 to t → t + 5.

We further run regressions similar to (56) using future log output growth as
the dependent variable, where output is measured by CPI-deflated GDP per capita,
obtained from BEA. Panel C of Table 5 presents the results of projecting future output
growth over horizons of one to five years on the misallocation measure Mt. The
slope coefficients are negative and decreasing with horizons, and become statistically
significant in the last two columns with an R-squared of 0.067 and 0.123, respectively.
These empirical findings are robust for an alternative sample period from 1970 to 2016
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(see Table OA.3 in Online Appendix C.1).
Taken together, we find evidence that the aggregate growth rates of consumption

and output can be predicted by our misallocation measure Mt over long horizons. Our
findings lend empirical support to the notion of misallocation-driven low-frequency
variation in growth, consistent with the implications of the model. Our model thus
helps rationalize and identify misallocation as an economic source of long-run risks in
the data.

4.3 Cross-Sectional Evidence

A core implication of our model is that fluctuations in misallocation drive the low-
frequency component of consumption growth. We provide cross-sectional evidence to
support this prediction.

Our starting point is the robust evidence found in the asset pricing literature
(Bansal, Dittmar and Lundblad, 2005; Parker and Julliard, 2005; Hansen, Heaton and
Li, 2008; Santos and Veronesi, 2010): the cash flows of value firms load more positively
on accumulated consumption growth than those of growth firms. Given that a higher
misallocation results in a lower consumption growth in our model, we expect the
cash flows of value firms to load more negatively on misallocation if fluctuations in
misallocation indeed drive the low-frequency variations in consumption growth, as
implied by our model.

To test this prediction, we follow the empirical strategy of Santos and Veronesi
(2010). In June of each year t, we sort firms into quintiles based on their book-to-market
ratios BEi,t−1/MEi,t−1 in year t − 1, where BEi,t−1 is the book equity from Compustat
and MEi,t−1 is the market equity from CRSP. For each quintile portfolio, we compute
the value-weighted return on equity (ROE) across all firms within the portfolio, where
a firms’ ROE is its income before extraordinary items divided by its common equity.
Let ROEp

t+j,j+1 denote the value-weighted ROE at year t + j of the portfolio p, which
was formed j + 1 years earlier, i.e., in year t − 1. We run a regression similar to the
specification adopted by Santos and Veronesi (2010), except for including accumulated
misallocation shocks as an additional independent variable:

4

∑
j=0

ρjROEp
t+j,j+1 = β

p
0 + β

p
1

4

∑
j=0

ρj∆Mt+j + β
p
2

4

∑
j=0

ρjROEMkt
t+j + νt, (57)
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Table 6: Misallocation, R&D, and growth in the data.

BEi,t−1/MEi,t−1 Q1 (low) Q2 Q3 Q4 Q5 (high)

β
p
1 −0.179 −0.242∗ −0.352∗∗∗ −0.373∗∗ −0.692∗∗

[0.270] [0.145] [0.126] [0.163] [0.340]

Note: In June of each year t, we sort firms into quintiles on their book-to-market ratios BEi,t−1/MEi,t−1
in year t − 1. For each quintile portfolio, we estimate β

p
1 according to specification (57). The sample

period is 1965-2016. Standard errors are reported in brackets. *, **, and *** indicate statistical significance
at 10%, 5%, and 1%, respectively.

where ρ = 0.95 is a constant as in Santos and Veronesi (2010). The variable ∆Mt is
the year-on-year changes in Mt and the variable ROEMkt

t is the ROE of the market
portfolio. The coefficient of interest is β

p
1 , which captures the loadings of accumulated

ROE on accumulated misallocation shocks.
Table 6 presents the results. The accumulated ROE of firms with high book-to-

market ratios (i.e., value firms in the quintile group 5 labeled as Q5) is significantly
more negatively exposed to accumulated misallocation shocks than that of firms with
low book-to-market ratios (i.e., growth firms in the quintile group 1 labeled as Q1).
The loadings monotonically decreases from −0.179 to −0.692 as the book-to-market
ratio increases from Q1 to Q5.

4.4 Asset Pricing Implications

Our model implies that the misallocation Mt plays a significant role in determining
the SDF of representative agent through its effects on aggregate consumption growth.
Thus, we should expect innovations in misallocation Mt, as a macroeconomic risk
factor, to explain cross-sectional asset returns in the data. In this subsection, we study
the cross-sectional asset pricing implications of misallocation to lend further support
to our model.

Specifically, we study whether our empirical misallocation measure Mt is a risk
factor significantly priced in the cross section of standard test assets, including 25
size-sorted and book-to-market-sorted portfolios, 10 momentum-sorted portfolios, and
6 maturity-sorted Treasury bond portfolios. For each asset i, we estimate the factor
loadings using the following time-series regression:

Re
i,t = ci + ∑

k
βi,k fk,t + νi,t, (58)
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where Re
i,t = Ri,t − R f ,t is the excess return of asset i over the risk-free rate and fk,t

represents risk factor k. We then estimate the cross-sectional price of risk associated
with the factors fk,t by running a cross-sectional regression of time-series average
excess returns, E[Re

i,t], on risk factor exposures estimated in equation (58) as follows,

E[Re
i,t] = α + ∑

k
β̂i,kλk + ϵi, (59)

where the estimated λ̂k is the price of risk for factor k and α̂ is the average cross-
sectional pricing error or zero-beta rate.

The above estimation procedure is implemented using different linear factor models.
The results are presented in Table 7 and visualized in Figures 3 and 4. As a benchmark,
column (1) of Table 7 reports the results of CAPM, which includes market excess
returns as the single risk factor. It clearly shows that the exposure to market risk
cannot explain the spread in average returns across portfolios. The cross-sectional
intercept is statistically significant and the factor price of risk is statistically insignificant.
The pricing errors are large, with a high total MAPE of 2.76% and a low adjusted R-
squared of 0.30. column (2) of Table 7 presents the results based on a two-factor model
that includes the year-on-year changes in the empirical misallocation measure, ∆Mt,
as an additional risk factor. The price of risk for ∆Mt is −0.12, which is negative and
statistically significant as predicted by our model.16 Relative to CAPM, the R-squared
increases significantly to 0.53 and the total MAPE declines significantly to 1.82%. The
test assets are lined up very close to the 45-degree line in the two factor model (panel
B of Figure 3), which is in sharp contrast to the prediction of CAPM (panel A of Figure
3).

As another benchmark, column (3) of Table 7 presents the results of Fama-French
three-factor (FF3) models. Comparing columns (2) and (3) of Table 7, the FF3 model
achieves a higher R-squared of 0.62. However, the two-factor model with market
returns and the misallocation factor ∆Mt has a lower total MAPE. In addition, we
break up the MAPE by asset class. In the cross section of 25 size-sorted and book-
to-market-sorted portfolios, the FF3 model generates a lower MAPE of 1.30% while
the two-factor model generates a MAPE of 1.77%. This is not surprising given that
the excess returns of small caps over big caps and of value stocks over growth stocks

16The magnitude of the price of risk for ∆Mt does not represent the risk premium of ∆Mt because the
misallocation factor ∆Mt does not lie in the space of excess returns.
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Table 7: Portfolio returns and model fit.

(1) (2) (3) (4) (5) (6) (7) (8)

Mkt Mkt, ∆M FF FF, ∆M Mkt, CG Mkt, ∆M, CG FF, CG FF, ∆M, CG

Panel A: Prices of risk

Intercept 3.34∗∗∗ 2.96∗∗∗ 2.67∗∗∗ 2.25∗∗∗ 2.42∗∗∗ 2.83∗∗∗ 2.31∗∗∗ 2.18∗∗∗

t-FM [3.60] [3.20] [3.99] [3.55] [2.59] [3.05] [3.51] [3.37]

t-Shanken [3.47] [1.46] [3.65] [1.60] [1.72] [1.50] [2.57] [1.55]

Mkt 4.92∗ 3.82 3.66 4.86∗ 4.63 3.88 4.59∗ 5.05∗∗

t-FM [1.73] [1.36] [1.42] [1.91] [1.64] [1.38] [1.80] [1.99]

t-Shanken [1.28] [0.58] [0.98] [0.79] [0.94] [0.62] [1.08] [0.83]

∆M −0.12∗∗∗ −0.12∗∗∗ −0.10∗∗∗ −0.11∗∗∗

t-FM [−4.66] [−5.74] [−4.52] [−5.34]

t-Shanken [−2.10] [−2.54] [−2.20] [−2.41]

SMB 3.01 2.40 2.61 2.55

t-FM [1.54] [1.23] [1.35] [1.31]

t-Shanken [1.05] [0.52] [0.80] [0.55]

HML 4.36∗∗ 4.05∗∗ 4.40∗∗ 4.18∗∗

t-FM [2.16] [2.00] [2.18] [2.07]

t-Shanken [1.46] [0.84] [1.30] [0.87]

CG 0.02∗∗∗ 0.01 0.02∗∗∗ 0.01

t-FM [3.32] [0.67] [4.06] [1.07]

t-Shanken [2.13] [0.32] [2.71] [0.48]

Panel B: Test diagnostics

Total MAPE 2.76 1.82 1.90 1.70 2.03 1.78 1.95 1.71

Size and B/M 25 2.77 1.77 1.30 1.68 1.50 1.68 1.39 1.68

Momentum 10 3.30 2.62 3.72 2.30 3.59 2.34 3.69 2.33

Bond 6 1.85 1.26 1.36 0.74 1.61 1.28 1.43 0.78

Adjusted R-squared 0.30 0.53 0.62 0.68 0.55 0.60 0.63 0.69

Note: This table presents pricing results for 41 test assets, including 25 size-sorted and book-to-market-
sorted portfolios, 10 momentum-sorted portfolios, and 6 maturity-sorted Treasury bond portfolios. Each
model is estimated using equation (59). Mkt is the market’s excess return over the risk-free rate. ∆M is
the misallocation factor, which is the year-on-year changes in the empirical misallocation measure Mt.
SMB and HML are the two factors in the FF3 model, capturing the excess returns of small caps over
big caps and of value stocks over growth stocks, repectively. Panel A reports the prices of risk with
Fama-McBeth and Shanken t-statistics. Panel B reports test diagnostics, including MAPE and R-squared.
All numbers are in annualized percentage unit. The sample is yearly and spans the period from 1965 to
2016. *, **, and *** indicate statistical significance according to t-FM at 10%, 5%, and 1%, respectively.
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are the two factors in the FF3 model. We find that the two-factor model outperforms
the FF3 model in terms of total MAPE mainly because it generates lower MAPE for
the 10 momentum-sorted portfolios. Specifically, in this cross section, the two-factor
model implies a MAPE of 2.62% while the FF3 model implies a MAPE of 3.72%. It is
well known that the FF3 model has a poor explanatory power for momentum-sorted
portfolio returns. The cross-sectional fit is clearly displayed in panels B and C of Figure
3, which shows that the two-factor model outperforms the FF3 model mainly due to
the improved fit for momentum-sorted portfolios. In column (4) of Table 7, we further
include the misallocation factor ∆Mt to the FF3 model to construct a four-factor model.
Compared with the FF3 model, the cross-sectional fit further improves as shown by
the lower total MAPE and higher adjusted R-squared in the four-factor model. The
improvement is mainly due to improved explanatory power for momentum-sorted
portfolio.

Our theory suggests that the main channel through which the low-frequency com-
ponent of consumption growth prices assets is the persistent variation in misallocation.
Thus, we expect long-run expected consumption growth to have little explanatory
power for portfolio returns if the misallocation factor ∆Mt is already included in the
cross-sectional regression. Following Parker and Julliard (2005), we use accumulated
future consumption growth to approximate long-run expected consumption growth.
Column (5) of Table 7 and panel A of Figure 4 shows that the two-factor model with
market returns and accumulated future consumption growth can fit the returns of our
test portfolios well (R-squared= 0.55). In column (6) of Table 7 and panel B of Figure
4, we augment this two-factor model with the misallocation factor ∆Mt to construct
a three-factor model. We find that the relation between realized mean excess returns
and predicted mean excess returns across our test portfolios stays almost unchanged,
implying that expected consumption growth and misallocation are indeed similarly
priced in the cross section of test assets. However, the coefficient on accumulated
future consumption growth becomes statistically insignificant after including ∆Mt as a
factor, which has a statistically significant coefficient. Similar patterns are shown in
columns (7) and (8) of Table 7 and panels C and D of Figure 4, when we include the
misallocation factor ∆Mt in a four-factor model that contains the Fama-French three
factors and accumulated future consumption growth.
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Note: This figure plots the realized mean excess returns of 35 equity portfolios (25 size-sorted and
book-to-market-sorted portfolios and 10 momentum-sorted portfolios) and 6 maturity-sorted Treasury
bond portfolios against the expected excess returns predicted by various linear factor asset pricing
models. The sample is yearly and spans the period from 1965 to 2016.

Figure 3: Realized versus predicted mean excess returns in factor models with Mt.

4.5 Empirical Test on the Model’s Core Mechanism

The core mechanism of our model is that misallocation drives long-run growth through
its impact on R&D. In this subsection, we provide evidence for this mechanism by
examining industry-level responses to a policy shock that alleviates firms’ financial
constraints.

The AJCA passed in 2004 allows domestic firms in the U.S. to repatriate their
foreign profits at a tax rate of 5.25%, whereas the tax rate is 35% under the prior
law. The passage of this law effectively relaxes the financial constraints of treated
firms, significantly boosting the investments of firms that are financially constrained
(Faulkender and Petersen, 2012). According to our model, relaxed financial constraints
would lead to lower misallocation, providing firms more incentive to conduct R&D. To
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Note: This figure plots the realized mean excess returns of 35 equity portfolios (25 size-sorted and
book-to-market-sorted portfolios and 10 momentum-sorted portfolios) and 6 maturity-sorted Treasury
bond portfolios against the expected excess returns predicted by various linear factor asset pricing
models. The sample is yearly and spans the period from 1965 to 2016.

Figure 4: Realized versus predicted mean excess returns in factor models with Mt and
accumulated future consumption growth.

test this prediction, we estimate the impact of AJCA on industry-level misallocation
and R&D expenditure by exploiting industries’ differential exposure to AJCA using a
DID method.

Specifically, we construct industry-level measures for misallocation, R&D-capital
ratio, and AJCA exposure using U.S. Compustat data. We use three-digit SIC codes
(SIC3) to define industries. For each industry, we construct the industry-level misallo-
cation following the procedures described in Section 4.1, except for running regression
(54) based on firms within each industry. The industry-level R&D-capital ratio is
constructed as the ratio of the total R&D expenditure to total capital of firms within the
industry, where a firm’s capital is measured by its net property, plant and equipment.
To capture an industry’s exposure to AJCA, we construct an industry-level measure
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for foreign business intensity, which is the average proportion of pre-tax income from
abroad during the 3-year period prior to AJCA (i.e., from 2001 to 2003) across all firms
within each industry. We consider industries with foreign business intensity above 30%
as treated industries and the other industries as untreated industries. Treated industries
are matched with untreated industries using the nearest neighbor matching method
(see Online Appendix C.2 for details) based on eight industry-level characteristics.17

All industry-level characteristics are averaged over the 3-year period prior to AJCA.
We run the following regression using industry-year observations for the period of

2001-2007:
Ys,t = αTreats × Postt≥2004 + β1Treats + β2Postt + ϵs,t, (60)

where Treats = 1 if industry s is a treated industry and Treats = 0 otherwise. The
variable Postt≥2004 is a time indicator that equals one for years after 2004. The coefficient
of interest is α, which estimates the average effect of AJCA on the outcome variable Ys,t

of treated industries. Our interested outcome variables are industry-level misallocation
(Ms,t) and R&D-capital ratio (RDs,t). The estimated coefficients are presented in column
(1) of panels A and B in Table 8. Our results indicate that AJCA results in significantly
lower misallocation and higher R&D-capital ratio in treated industries.

Next, we estimate the effect of AJCA in each year for the period of 2000-2007 by
running the following regression:

Ys,t =
3

∑
τ=−4

ατTreats × Yearτ
t + β1Treats +

3

∑
τ=−4

β2,τYearτ
t + ϵs,t, (61)

where Yearτ
t is an indicator variable that captures the time difference relative to year

2004, and it equals 1 if t = 2004 + τ and 0 otherwise. The coefficient ατ estimates
the impact of AJCA on the outcome variable Ys,t of treated industries τ year after
(or before if τ < 0) the year (i.e., 2004) in which this policy was implemented. The
estimated impacts on industry-level misallocation and R&D-capital ratio are presented
in columns (2) to (8) of panels A and B in Table 8, respectively, and visualized in
Figure 5. The leading terms of the estimated treatment effects are close to 0 and

17The eight industry-level characteristics are the Herfindahl index computed using firms’ market
shares in terms of sales, average total sales of firms, mean and standard deviation of firms’ profit margin,
mean and standard deviation of firms’ ROE, mean and standard deviation of firms’ Tobin’s Q. We
construct a firm’s (net) profit margin using its income before extraordinary items divided by its sales
as in Dou, Ji and Wu (2021), and a firm’s Tobin’s Q as Tobin_Qi,t = (total_assetsi,t + market_equityi,t −
book_equityi,t)/total_asseti,t, following Gompers, Ishii and Metrick (2003).
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Table 8: Impacts of AJCA on misallocation and R&D.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Industry-level misallocation

α α−4 α−3 α−2 α0 α1 α2 α3

−2.936∗∗ −0.809 −0.590 0.685 −1.847∗∗ −2.673∗∗∗ −3.377∗∗∗ −3.713∗∗∗

[1.231] [2.335] [2.392] [0.701] [0.776] [1.005] [1.211] [1.325]

Panel B: Industry-level R&D-capital ratio

α α−4 α−3 α−2 α0 α1 α2 α3

0.009∗∗ 0.000 −0.001 −0.003 0.004∗∗∗ 0.009∗∗ 0.012∗∗ 0.007

[0.004] 0.005 [0.003] [0.002] [0.001] [0.004] [0.005] [0.006]

Panel C: Industry-level R&D-capital ratio controlling for misallocation

α α−4 α−3 α−2 α0 α1 α2 α3

0.002 −0.001 −0.004 −0.006∗ 0.000 0.002 0.004 −0.004

[0.008] 0.006 [0.005] [0.003] [0.005] [0.008] [0.010] [0.012]

Note: Panel A estimates the impacts of AJCA, which alleviates the financial constraints of treated firms,
on industry-level misallocation. Column (1) reports the estimated α̂ in specification (60). Columns
(2) to (8) report the estimated ατ in specification (61) for τ = −4,−3,−2, 0, 1, 2, 3. All coefficients are
normalized relative to τ = −1. Panel B estimates the impacts of AJCA on industry-level R&D-capital
ratio. Panel C estimates the impacts of AJCA on industry-level R&D-capital ratio, controlling for
industry-level misallocation. Standard errors are reported in brackets. *, **, and *** indicate statistical
significance at 10%, 5%, and 1%, respectively.

statistically insignificant, suggesting that the parallel trend assumption is satisfied in
the years before 2004. Regarding the three years after 2004, we estimate that AJCA
has significant negative effects on industry-level misallocation and significant positive
effects on industry-level R&D-capital ratio.

Furthermore, we provide evidence that the positive impact of AJCA on the industry-
level R&D-capital ratio is achieved through the change in industry-level misallocation.
Specifically, we modify specification (60) as follows:

RDs,t = αTreats × Postt≥2004 + β1Treats + β2Postt + β3Ms,t + β4Treats × Ms,t + ϵs,t,
(62)

which controls for industry-level misallocation Ms,t and its interaction term with
Treats. The estimated coefficient is presented in column (1) of panel C in Table 8,
which indicates that AJCA no longer has a significant effect on R&D-capital ratio after
controlling for industry-level misallocation.
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Note: The solid lines visualize the empirical estimates in columns (2) to (8) of panels A and B in Table 8,
respectively, in which all coefficients are normalized relative to τ = −1. The vertical bars represent the
corresponding 95% confidence intervals.

Figure 5: Impacts of AJCA on misallocation and R&D.

We further estimate the impact of AJCA on industry-level R&D-capital ratio in each
year, controlling for industry-level misallocation, by running the following regression:

RDs,t =
3

∑
τ=−4

ατTreats ×Yearτ
t + β1Treats +

3

∑
τ=−4

β2,τYearτ
t + β3Ms,t + β4Treats × Ms,t + ϵs,t,

(63)
Columns (2) to (8) of panel C in Table 8 report the estimates in each year, which
indicate that the impacts of AJCA on industry-level R&D-capital ratio are statistically
insignificant after controlling for industry-level misallocation.

Complementary to the DID specification, we also consider an alternative empirical
specification and show that our findings above are robust. Specifically, we run the
following cross-sectional regression:

∆RDs = αTreats + βXs + ϵs, (64)

where the independent variable Xs is a vector of average industry-level characteristics
over the 3-year period prior to AJCA, including industry s’s Herfindahl index, average
total sales of firms, mean and standard deviation of firms’ profit margin, and mean
and standard deviation of firms’ ROE. The dependent variable ∆RDs is the change
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in industry-level average R&D-capital ratio between the 3-year period prior to AJCA
and the 3-year period after AJCA, i.e., ∆RDs =

1
3 ∑2007

t=2005 RDs,t − 1
3 ∑2003

t=2001 RDs,t. The
estimated coefficient α̂ in specification (64) is 0.010, with a p-value of 0.037, indicating
that AJCA significantly increases the R&D-capital ratio of treated industries relative to
untreated industries.

Moreover, we estimate the impact of AJCA on R&D-capital ratio, controlling
for changes in industry-level misallocation by running the following cross-sectional
regression:

∆RDs = αTreats + βXs + βM∆Ms + ϵs, (65)

where Ms =
1
3 ∑2007

t=2005 Ms,t − 1
3 ∑2003

t=2001 Ms,t. The estimated coefficient α̂ in specification
(65) is 0.009, with a p-value of 0.072, suggesting that AJCA no longer significantly
increases the R&D-capital ratio of treated industries relative to untreated industries,
after controlling for changes in industry-level misallocation. In other words, our results
suggest that AJCA has positive impacts on treated industries’ R&D-capital ratio mainly
through the channel of reducing industry-level misallocation.

5 Conclusion

This paper provides a misallocation-based explanation for long-run consumption
risk, a mechanism that quantitatively justifies many asset pricing moments. We
develop a novel analytically tractable growth model with heterogenous firms, in which
misallocation emerges as an endogenous state variable.

The model delineates the tight link between an economy’s misallocation and its
growth prospects. We show that short-run i.i.d. shocks that impact the economy’s
misallocation can have persistent effect on the economy’s aggregate consumption
growth, thereby generating endogenous long-run consumption risk. In the data, we
construct a misallocation measure implied by the model and find evidence that the
aggregate growth rates of consumption and output can be predicted by misallocation
over long horizons. Moreover, as an asset pricing factor, misallocation explains the
cross-sectional asset returns of standard test portfolios. By connecting the persistence
of idiosyncratic productivity with the persistence of aggregate consumption growth,
our model implies that long-run risk in aggregate consumption can be estimated based
on granular firm-level data, which can potentially help address the issues of weak
identification in the long-run risk literature (Chen, Dou and Kogan, 2022; Cheng, Dou
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and Liao, 2022).
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Online Appendix

A Proofs

A.1 Proof of Proposition 1

To ensure that shareholders do not intervene, the manager pays a dividend flow of
ζai,tdt to shareholders over [t, t + dt) where ζ is to be determined. Thus, firm i’s total
dividend payment is (τ + ζ)ai,tdt over [t, t + dt), which includes the rents paid to the
manager and the dividends paid to shareholders. If the manager follows this payout
policy consistently, shareholders will be willing to defer intervention continuously.
Payouts and rents evolve in lockstep.

We now derive the relation between ζ, ρ, and τ. Per our discussion in Online
Appendix A.2, the manager’s value is proportional to the firm’s capital, given by ξi,tai,t,
where ξi,t depends on the firm’s idiosyncratic productivity zi,t and the aggregate state
of the economy. If shareholders do not intervene, they receive a dividend payment
that is a fraction ζ/τ of the manager’s private benefits. Thus, shareholders’ value is
(ζ/τ)ξi,tai,t. If shareholders intervene, the firm’s value will drop to (1− τ/ρ)ξi,tai,t due
to the loss of capital. However, because shareholders now are also managers, they will
have the claim to all dividends, which generate a value of (1 + ζ/τ)(1 − τ/ρ)ξi,tai,t.
Thus, the manager chooses the intensity ζ of dividends to shareholders such that
shareholders are indifferent about having an intervention or not:

ζ

τ
ξi,tai,t = (1 + ζ/τ)(1 − τ/ρ)ξi,tai,t, (66)

which implies ζ = (1 − τ/ρ)τ/[1 − (1 − τ/ρ)]. The firm’s total dividend payout ratio
is

τ + ζ = ρ. (67)

A.2 Proof of Lemma 1

Given capital ki,t = ai,t + âi,t, utilization intensity ui,t, and intermediate composite xi,t,
firm i solves a static maximization problem when choosing ℓi,t and xi,j,t. Taking the
first-order condition with respect to ℓi,t on the right-hand side of equation (19) of the
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main text, we obtain the optimal labor demand:

ℓi,t =

[
wt

(1 − α)(1 − ε)(zi,tui,tki,t)α(1−ε)xε
i,t

] 1
(1−α)(1−ε)−1

. (68)

Substituting equations (2), (16), and (19) of the main text and equation (68) into
equation (3) of the main text:

dai,t =−
∫ Nt

0
pj,txi,j,tdjdt − ui,tki,t (δkdt + σkdWt) + ai,t(−δadt + σadWt)− r f ,t âi,tdt − ρai,tdt

+ [1 − (1 − α)(1 − ε)]

[
wt

(1 − α)(1 − ε)

] (1−α)(1−ε)
(1−α)(1−ε)−1

(zi,tui,tki,t)
α(1−ε)

1−(1−α)(1−ε) x
ε

1−(1−α)(1−ε)

i,t dt.

(69)

Taking the first-order condition with respect to xi,j,t in the right-hand side of
equation (69), we derive firm i’s optimal demand for intermediate goods j ∈ [0, Nt]:

xi,j,t =

 ε

pj,t

[
wt

(1 − α)(1 − ε)

] (1−α)(1−ε)
(1−α)(1−ε)−1

(zi,tui,tki,t)
α(1−ε)

1−(1−α)(1−ε) x
1−ν− α(1−ε)

1−(1−α)(1−ε)

i,t

 1
1−ν

. (70)

Substituting into equation (4) of the main text, we derive xi,t:

xi,t =

(
ε

pt

) 1−(1−α)(1−ε)
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1−α
α

zi,tui,tki,t, (71)

where the price index pt is given by

pt =

(∫ Nt

0
p

ν
ν−1
j,t dj

) ν−1
ν

. (72)

Substituting equation (71) into (68), we obtain equation (24) of the main text.
Substituting equation (71) into (70), we obtain (25). Substituting equation (71) and
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∫ Nt

0
pj,txi,j,tdj = ptxi,t into (69), we obtain

dai,t =− ui,tki,t (δkdt + σkdWt) + ai,t(−δadt + σadWt)− r f ,t âi,tdt − ρai,tdt

+ α(1 − ε)

(
ε

pt

) ε
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1−α
α

zi,tui,tki,tdt. (73)

Thus, the manager’s problem (18) can be simplified and characterized recursively
as follows:

0 = max
âi,t,ui,t

τai,tdt + Et

[
dΛt

Λt
Ji,t + dJi,t +

dΛt

Λt
dJi,t

]
. (74)

subject to the budget constraint (73). Because the technology, budget constraint, and
collateral constraint are all linear in ai,t, the value Ji,t is also linear in ai,t with the
following form:

Ji,t ≡ Jt(ai,t, zi,t) = ξt(zi,t)ai,t, (75)

where ξi,t ≡ ξt(zi,t) captures the marginal value of capital to firm i’s manager, which
depends on the firm’s idiosyncratic productivity zi,t and the aggregate state of the
economy. Substituting equation (20) of the main text and equation (75) into (74), we
obtain

0 = max
âi,t,ui,t

τai,tdt + Et
[
(−r f ,tdt − ηtdWt)ξi,tai,t

]
+ Et

[
(1 − r f ,tdt − ηtdWt)(dξi,tai,t + ξi,tdai,t + dξi,tdai,t)

]
. (76)

The variable ξi,t evolves as follows:

dξi,t

ξi,t
= µξ,i,tdt + σξ,i,tdWt + σw,i,tdWi,t, (77)

where µξ,i,t ≡ µξ,t(zi,t), σξ,i,t ≡ σξ,t(zi,t), and σw,i,t ≡ σw,t(zi,t) are endogenously de-
termined in equilibrium. Using equations (73) and (77), and the properties that
(dWt)2 = dt, Et[dWi,t] = Et[dWt] = Et[dWtdWi,t] = 0, we obtain the following
equations after omitting higher-order terms:

Et
[
(−r f ,tdt − ηtdWt)ξi,tai,t

]
=− r f ,tai,tξi,tdt, (78)

Et
[
(1 − r f ,tdt − ηtdWt)dξi,tai,t

]
=µξ,i,tai,tξi,tdt − ηtσξ,i,tai,tξi,tdt. (79)
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Et
[
(1 − r f ,tdt − ηtdWt)(ξi,tdai,t + dξi,tdai,t)

]
= Et

[
(1 + σξ,i,tdWt − ηtdWt)ξi,tdai,t

]
=[σk(ηt − σξ,i,t)− δk]ui,tki,tξi,tdt − σa(ηt − σξ,i,t)ξi,tai,tdt − r f ,t âi,tξi,tdt − (ρ + δa)ai,tξi,tdt

+ α(1 − ε)

(
ε

pt

) ε
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1−α
α

zi,tui,tki,tξi,tdt. (80)

Substituting equations (78), (79), (80) into (76), we obtain

0 = max
âi,t,ui,t

τai,tdt − r f ,tai,tξi,tdt + µξ,i,tai,tξi,tdt − ηtσξ,i,tai,tξi,tdt

[σk(ηt − σξ,i,t)− δk]ui,tki,tξi,tdt − σa(ηt − σξ,i,t)ξi,tai,tdt − r f ,t âi,tξi,tdt − (ρ + δa)ai,tξi,tdt

+ α(1 − ε)

(
ε

pt

) ε
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1−α
α

zi,tui,tki,tξi,tdt. (81)

Using ki,t = ai,t + âi,t, we can see that maximizing equation (81) is essentially the
same as maximizing

0 = max
âi,t,ui,t

[σk(ηt − σξ,i,t)− δk]ui,t âi,tξi,tdt − r f ,t âi,tξi,tdt

+ α(1 − ε)

(
ε

pt

) ε
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1−α
α

zi,tui,t âi,tξi,tdt. (82)

Because a positive shock (dWt > 0) increases misallocation through higher capital
depreciation of productive firms, we have ηt < 0 in equilibrium. Moreover, because ξi,t

is not affected by the manager’s choice of âi,t. The objective function (82) is linear in
both âi,t and ui,t. Thus, conditional on ui,t = 1, we can characterize the productivity
cutoff zt that makes the manager indifferent about leasing capital as follows:

ztκt = r f ,t + δk + σk(σξ,t(zt)− ηt), (83)

where

κt = α(1 − ε)

(
ε

pt

) ε
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1−α
α

. (84)

Because r f ,t > 0 in equilibrium, it is clear that firms will optimally choose ui,t = 1
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for zi,t ≥ zt.18 The optimal leasing amount follows a bang-bang solution:

ât(a, z) =

{
λa, z ≥ zt

−a z < zt
, (85)

which leads to the bang-bang solution in capital:

kt(a, z) =

{
(1 + λ)a, z ≥ zt

0 z < zt
. (86)

The optimal capacity utilization intensity is given by

ut(z) =

{
1, z ≥ zt

0 z < zt
. (87)

In fact, any utilization intensity ui,t ∈ [0, 1] is optimal when zi,t < zt because ki,t = 0.
We set its value to zero without loss of generality.

A.3 Proof of Proposition 2

Define the productivity Ht of the final goods sector as

Ht =

[
1
Kt

∫ ∞

zt

∫ ∞

0
zut(z)kt(a, z)φt(a, z)dkdz

]α

, (88)

Using equations (23), (32), and (38) of the main text and kt(a, z) = a + ât(a, z), Ht

can be written as

Ht =

[
(1 + λ)

At

Kt

∫ ∞

zt

zωt(z)dz
]α

. (89)

Substituting equation (86) into the capital market-clearing condition (33) of the
main text, we obtain

(1 + λ)
∫ ∞

zt

∫ ∞

0
aφt(a, z)dkdz = Kt. (90)

Given the definition of capital share in (38)of the main text, the left-hand side of

18In other words, the (latent) cutoff productivity for ui,t is lower than the cutoff productivity zt for âi,t
when r f ,t > 0.
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equation (90) can be simplified as

(1 + λ)
∫ ∞

zt

∫ ∞

0
aφt(a, z)dkdz = (1 + λ)At

∫ ∞

zt

ωt(z)dz = (1 + λ)At(1 − Ωt(zt)). (91)

Thus, we have the following equation

(1 + λ)[1 − Ωt(zt)] =
Kt

At
, (92)

which determines the equilibrium Kt/At. Substituting equation (92) into (89), we
obtain

Ht =

[∫ ∞
zt

zωt(z)dz

1 − Ωt(zt)

]α

. (93)

Substituting equation (7) of the main text into equation (6) of the main text, we
obtain

πj,t = max
pj,t

(pj,t − 1)
(

pj,t

pt

) 1
ν−1

Xt, (94)

Taking the first-order condition, we obtain

pj,t =
1
ν

for all j. (95)

Substituting equation (95) into the price index (26) of the main text, we obtain

pt = N
ν−1

ν
t pj,t = N

ν−1
ν

t /ν. (96)

Substituting equation (24) of the main text into (35) of the main text and using (88),
we obtain

Lt =

(
ε

pt

) ε
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1
α
∫ ∞

zt

∫ ∞

0
zut(z)kt(a, z)φt(a, z)dadz

=

(
ε

pt

) ε
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1
α

H
1
α
t Kt. (97)

Substituting equation (96) into (97), we derive the equilibrium wage wt:

wt = (1 − α)(1 − ε)(εν)
ε

1−ε N
(1−ν)ε
ν(1−ε)

t Ht(Kt/Lt)
α. (98)
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By definition, the aggregate output Yt is

Yt =
∫ ∞

zt

∫ ∞

0

[
(zut(z)kt(a, z))α(ℓt(a, z))1−α

]1−ε
xt(a, z)ε φt(a, z)dadz. (99)

Substituting equations (24) and (27) of the main text into (99), we obtain

Yt =

(
ε

pt

) ε
α(1−ε)

[
(1 − α)(1 − ε)

wt

] 1−α
α
∫ ∞

zt

∫ ∞

0
zut(z)kt(a, z)φt(a, z)dadz. (100)

Further, substituting equations (88), (96) and (98) into the above equation, we obtain

Yt =(εν)
ε

1−ε HtN
(1−ν)ε
ν(1−ε)

t Kα
t L1−α

t

=(εν)
ε

1−ε HtN1−α
t Kα

t L1−α
t . (101)

Using equation (101), the equilibrium wage wt in (98) can be simplified as

wt = (1 − α)(1 − ε)
Yt

Lt
. (102)

Equation (29) of the main text can be simplified by substituting out wt and pt using
equations (96) and (102):

κt =α(1 − ε)(εν)
ε

1−ε H
α−1

α
t N

(1−ν)ε
ν(1−ε)

t Kα−1
t L1−α

t

=α(1 − ε)H− 1
α

t
Yt

Kt
. (103)

Substituting equations (27) of the main text and equations (95) and (96) into (94)
and using (88), we obtain

πt =
1 − ν

ν
(εν)

1−(1−α)(1−ε)
α(1−ε) H

1
α
t N

1−ν
ν

[
1−(1−α)(1−ε)

α(1−ε)
− 1

1−ν

]
t

[
(1 − α)(1 − ε)

wt

] 1−α
α

Kt. (104)

Further, substituting equation (98) into the above equation and using (101), we obtain

πt =
1 − ν

ν
(εv)

1
1−ε HtN

ε−ν
ν(1−ε)

t Kα
t L1−α

t

=(1 − ν)ε
Yt

Nt
. (105)
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Thus, we have ∫ Nt

j=0
πtdj = Ntπt = (1 − ν)εYt. (106)

Substituting equation (10) of the main text into (11) of the main text, we obtain

St = (χvt)
1
h Nt. (107)

A.4 Resource Constraint

By definition, the aggregate output Ytdt is

Ytdt =
∫ ∞

zt

∫ ∞

0
yt(a, z)dtφt(a, z)dadz =

∫ ∞

0

∫ ∞

0
yt(a, z)dtφt(a, z)dadz. (108)

Substituting equations (3) and (19) of the main text into the above equation and using
(16), (23), (32), (33), (35), and (36) of the main text, we obtain

Ytdt =dAt + (δadt − σadWt)At + wtLtdt + (δkdt + σkdWt)Kt + r f ,tBtdt + ρAtdt

+
∫ ∞

0

∫ ∞

0

(∫ Nt

0
pj,txj,t(a, z)djdt

)
φt(a, z)dadz, (109)

where the last term is the revenue of the intermediate goods sector. Using equations (7)
and (25) of the main text and the definition Xt ≡

∫
i∈I xi,tdi =

∫ ∞
0

∫ ∞
0 xt(a, z)φt(a, z)dadz,

it can be simplified as follows

∫ ∞

0

∫ ∞

0

(∫ Nt

0
pj,txj,t(a, z)djdt

)
φt(a, z)dadz =

∫ Nt

0

(∫ ∞

0

∫ ∞

0
pj,txj,t(a, z)φt(a, z)dadz

)
djdt

=
∫ Nt

0
pj,tej,tdjdt

=
∫ Nt

0
πj,tdjdt +

∫ Nt

0
ej,tdjdt. (110)

Substituting equation (110) into (109), we obtain

Ytdt =dAt + (δadt − σadWt)At + wtLtdt + (δkdt + σkdWt)Kt + r f ,tBtdt + ρAtdt

+
∫ Nt

0
πj,tdjdt +

∫ Nt

0
ej,tdjdt. (111)
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Substituting equations (14) and (31) of the main text into (111), we obtain the resource
constraint

Ytdt =dAt + (δadt − σadWt)Atdt + (δkdt + σkdWt)Kt︸ ︷︷ ︸
investment in the final goods sector

+ Stdt +
∫ Nt

0
ej,tdjdt︸ ︷︷ ︸

R&D and intangible goods production

+Ctdt − dBt. (112)

Note that the resource constraint (112) holds by Walras’s law in equilibrium. This
can be proved by substituting equations (44) and (50) of the main text into (111), and
using the condition below

∫ ∞

0

∫ ∞

0

(∫ Nt

0
pj,txj,t(a, z)djdt

)
φt(a, z)dkdz = εYtdt, (113)

which simply says that the cost of purchasing intangible goods is equal to a share ε of
Yt (the derivation is similar to equation (45) of the main text).

A.5 Proof of Lemma 2

We provide a heuristic proof for Lemma 2, that is, the actual distribution of ãi,t ≡ ln ai,t

is approximately normal. In the absence of aggregate shocks, consider the balanced
growth path. Thus, all equilibrium prices are constant as shown in the proof of
Proposition 5. The productivity cutoff z determined by equation (83) becomes:

zκ = r f + δk. (114)

Rewriting equations (3) and (30) of the main text using (114) as follows:

dai,t

dt
= s(zi,t)ai,t, (115)

where
s(z) = (1 + λ)κ max {z − z, 0}+ r f − ρ − δa, (116)
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and κ is given by equation (103), with Ht ≡ H and Yt/Kt being a constant in the
balanced growth path, as follows:

κ = α(1 − ε)H− 1
α

Yt

Kt
. (117)

To better illustrate intuitions, we rewrite equation (115) in discrete time with a time
interval ∆t ≈ 0:

ai,t+∆t = [1 + s(zi,t)∆t] ai,t. (118)

We denote ai,n ≡ ai,n∆t and zi,n ≡ zi,n∆t for n = 1, 2, .... Then, it follows that

ai,n+1 = [1 + s(zi,n)∆t] ai,n. (119)

Define ξi,n ≡ ln(1+ s(zi,n)∆t)− ξ with ξ ≡ E [ln(1 + s(zi,n)∆t)], thus equation (119)
can be written as

ln ai,n+1 = ln ai,n + ξ̄ + ξi,n. (120)

For a large T > 0, suppose we set NT = T/∆t (without loss of generality, we
assume that NT is an integer), then equation (120) implies

ln ai,t = ln ai,1 + (NT − 1)ξ̄ +
NT−1

∑
n=1

ξi,n. (121)

In the balanced growth path, zi,n follows a stationary process evolving according to
equation (5) of the main text. Thus, the process ξi,n is also stationary.

The evolution of ln zi,n can be directly obtained from equation (5) of the main text,
as follows:

ln zi,n+1 = e−θ∆t ln zi,n + σ∆εi,n+1, (122)

where εi,n+1 is a standard normal variable and

σ∆ = σ

√
1 − e−2θ∆t

2
. (123)

According to Andrews (1983), the process zi,n is strong mixing with mixing coeffi-

OA-10



cients dominated by an exponentially declining sequence. Let

σ2
NT

= E
[
ξ2

i,1

]
+ 2

NT−1

∑
n=1

(
1 − n

NT

)
E [ξi,1ξi,n] . (124)

Using the Berry-Esseen bound developed by Tikhomirov (1980) and Bentkus, Gotze
and Tikhomoirov (1997), we obtain

sup
x

∣∣∣∣∣P
{

NT−1

∑
n=1

ξi,n ≤ σNT x

}
− Φ(x)

∣∣∣∣∣ ≤ AN−1/2
T ln2 NT, (125)

where Φ(x) is the CDF of a standard normal random variable, and A is a constant that
depends on model parameters.

A.6 Proof of Lemma 3

Let ψt(ã, z̃) be the joint distribution of ã and z̃. Define Γt ≡ Cov(ãi,t, z̃i,t). Under Lemma
2, ψt(ã, z̃) is the PDF of a joint normal distribution, with the covariance between ã and
z̃ being Γt.

The PDF φt(a, z) is related to ψt(ã, z̃) through the Jacobian matrix J, as follows:

φt(a, z) = |J|ψt(ã, z̃), (126)

where J is defined by

J =

(
∂ã/∂a ∂ã/∂z
∂z̃/∂a ∂z̃/∂z

)
. (127)

Thus, we have

φt(a, z) =
1
az

ψt(ã, z̃). (128)

Using equation (128), the term
∫ ∞

0 aφt(a, z)da in equation (38) of the main text can
be written as ∫ ∞

0
aφt(a, z)da =

∫ ∞

−∞

a
z

ψt(ã, z̃)dã. (129)

Let f (z̃) be the PDF of z̃, which follows a normal distribution, N(0, σ2/2), in the
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stationary equilibrium. Thus, equation (129) can be written as

∫ ∞

0
aφt(a, z)da =

∫ ∞

−∞

a
z

ψt(ã|z̃) f (z̃)dã = E [exp(ãi,t)|z̃]
f (z̃)

z
. (130)

Using equation (128), the variable At defined in (32) can be written as

At =
∫ ∞

−∞

∫ ∞

−∞
a

1
az

ψt(ã, z̃)azdãdz̃ = E [exp(ãi,t)] . (131)

Substituting equations (130) and (131) into equation (38) of the main text, we obtain

ωt(z) =
E[exp(ãi,t)|z̃]
E[exp(ãi,t)]

f (z̃)
z

. (132)

Because ãi,t and z̃i,t follow a joint normal distribution with covariance Γt, we have

E[exp(ãi,t)|z̃] = exp
(

E[ãi,t|z̃] +
1
2

var(ãi,t|z̃)
)

, (133)

E[exp(ãi,t)] = exp
(

E[ãi,t] +
1
2

var(ãi,t)

)
, (134)

where

E[ãi,t|z̃] =E[ãi,t] + 2z̃Γt/σ2, (135)

var(ãi,t|z̃) =var(ãi,t)− 2Γ2
t /σ2. (136)

Substituting equations (133) to (136) into (132), we obtain

ωt(z) =
f (z̃)

z
exp

(
2z̃Γt

σ2

)
exp

(
−Γ2

t
σ2

)
=

1
zσ

√
π

exp
(
− (ln z − Γt)2

σ2

)
. (137)

This formula turns out to be the same as equation (29) of Moll (2014). Substituting out
Γt = −Mtvar(z̃i,t), we obtain equation (47) in the main text.
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A.7 Proof of Proposition 3

Define Γt ≡ Cov(ãi,t, z̃i,t) = −Mtvar(z̃i,t) = −Mtσ
2/2. Substituting equation (47) of

the main text into (42) of the main text, we obtain the equation that determines the
productivity cutoff zt under our approximation of ωt(z):

1
1 + λ

Kt

At
= 1 − Ωt(zt) =

∫ ∞

z̃t

1
σ
√

π
exp

(
− (z̃ − Γt)2

σ2

)
dz̃ = Φ

(
Γt − z̃t

σ/
√

2

)
. (138)

Rearranging the above equation, we obtain zt:

zt = exp
(

Γt − Φ−1
(

1
1 + λ

Kt

At

)
σ√
2

)
. (139)

The term
∫ ∞

zt
zωt(z)dz can be simplified using (47) of the main text, as follows

∫ ∞

zt

zωt(z)dz =
∫ ∞

zt

z
1

zσ
√

π
exp

(
− (z̃ − Γt)2

σ2

)
dz

=
∫ ∞

z̃t

1
σ
√

π
exp

(
− (z̃ − Γt − σ2/2)2

σ2

)
exp

(
Γt +

σ2

4

)
dz̃

= exp
(

Γt +
σ2

4

)
Φ
(

Γt + σ2/2 − z̃t

σ/
√

2

)
. (140)

Substituting equation (140) into (41) of the main text, we obtain

Ht =

[
(1 + λ)

At

Kt
exp

(
Γt +

σ2

4

)
Φ
(

Γt + σ2/2 − z̃t

σ/
√

2

)]α

. (141)

Further, substituting equation (139) into the above equation, we obtain

Ht =

[
(1 + λ)

At

Kt
exp

(
Γt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

. (142)

Substituting out Γt = −Mtvar(z̃i,t) = −Mtσ
2/2 and using equation (41) of the main

text, we obtain equation (48) of the main text,

Zt = (εν)
ε

1−ε N1−α
t

[
(1 + λ)

At

Kt
exp

(
−σ2

2
Mt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

.

(143)
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A.8 Proof of Proposition 4

Equation (32) of the main text implies

At+dt − At =
∫ ∞

0

∫ ∞

0
dat(a, z)φt(a, z)dadz. (144)

Substituting equations (2), (3), and (30) of the main text into the above equation, we
obtain

At+dt − At = (1 + λ)κt

∫ ∞

zt

∫ ∞

0
zadtφt(a, z)dadz − (1 + λ)r f ,t

∫ ∞

zt

∫ ∞

0
adtφt(a, z)dadz

− (1 + λ) (δkdt + σkdWt)
∫ ∞

zt

∫ ∞

0
aφt(a, z)dadz + σa AtdWt + (r f ,t − ρ − δa)Atdt.

(145)

Using equations (88), (90), and (103), the above equation can be simplified as

dAt = α(1 − ε)Ytdt − (r f ,t + δk)Ktdt − (ρ + δa − r f ,t)Atdt + (σa At − σkKt)dWt. (146)

Substituting equations (11) and (46) of the main text into equation (9) of the main
text, we obtain

dNt

Nt
= χ (χvt)

1−h
h dt − δbdt. (147)

Define Γt ≡ Cov(ãi,t, z̃i,t) = −Mtvar(z̃i,t) = −Mtσ
2/2. Next, we derive the evolu-

tion of Γt. By definition, Γt+dt ≡ Cov(ãi,t+dt, z̃i,t+dt). According to equation (5) of the
main text, we have

z̃i,t+dt = z̃i,t − θz̃i,tdt + σ
√

θdWi,t. (148)

Thus,

dΓt =Cov
(

ãi,t + dãi,t, z̃i,t − θz̃i,tdt + σ
√

θdWi,t

)
− Γt

=(1 − θdt)Cov(ãi,t + dãi,t, z̃i,t)− Γt

=− θΓtdt + (1 − θdt)Cov(z̃i,t, dãi,t). (149)

Omitting the higher-order term Cov(z̃i,t, dãi,t)dt, we obtain

dΓt = −θΓtdt + Cov(z̃i,t, dãi,t). (150)

OA-14



Substituting out Γt = −Mtvar(z̃i,t) = −Mtσ
2/2, we obtain equation (52) of the main

text.
We now derive the expression for Cov(z̃i,t, dãi,t) under Lemma 2. Using Ito’s lemma

dãi,t =
1

ai,t
dai,t −

1
2a2

i,t
(dai,t)

2. (151)

Substituting equation (2), (3), and (30) of the main text into the above equation, we
obtain the evolution of ãi,t. In particular, for zi,t < zt, we have

dãi,t = (r f ,t − ρ − δa)dt + σadWt. (152)

For zi,t ≥ zt, we have

dãi,t = (1 + λ)
[
κtzi,tdt − (δkdt + σkdWt)− r f ,tdt

]
+ (r f ,t − ρ − δa)dt + σadWt. (153)

Because E[z̃i,t] = 0, we have

Cov(z̃i,t, dãi,t) = E[z̃i,tdãi,t]. (154)

Substituting equations (152) and (153) into (154), we obtain

Cov(z̃i,t, dãi,t) = (1+λ)κtdt
∫ ∞

z̃t

z̃z f (z̃)dz̃− (1+λ)
[
(r f ,t + δk)dt + σkdWt

] ∫ ∞

z̃t

z̃ f (z̃)dz̃,

(155)
where f (z̃) is the PDF of z̃, which follows a normal distribution, N(0, σ2/2), in the
stationary equilibrium.

Substituting out f (z̃), the term
∫ ∞

z̃t
z̃ f (z̃)dz̃ in equation (155) can be simplified as

follows:

∫ ∞

z̃t

z̃ f (z̃)dz̃ =
∫ ∞

z̃t

z̃
1

σ
√

π
exp

(
− z̃2

σ2

)
dz̃ = − σ

2
√

π

∫ ∞

z̃t

d exp
(
− z̃2

σ2

)
=

σ

2
√

π
exp

(
− z̃2

t
σ2

)
.

(156)
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The term
∫ ∞

z̃t
z̃z f (z̃)dz̃ in equation (155) can be simplified as follows:

∫ ∞

z̃t

z̃z f (z̃)dz̃ =
1

σ
√

π

∫ ∞

z̃t

z̃ exp
(

z̃ − z̃2

σ2

)
dz̃

=
1

σ
√

π
exp

(
σ2

4

) ∫ ∞

z̃t

z̃ exp

(
− 1

σ2

(
z̃ − σ2

2

)2)
dz̃ (157)

=
1

σ
√

π
exp

(
σ2

4

)[∫ ∞

z̃t

(
z̃ − σ2

2

)
exp

(
− 1

σ2

(
z̃ − σ2

2

)2)
dz̃ +

∫ ∞

z̃t

σ2

2
exp

(
− 1

σ2

(
z̃ − σ2

2

)2)
dz̃

]
.

Integrating both terms on the right-hand side of the above equation, we obtain∫ ∞

z̃t

z̃z f (z̃)dz̃

=− σ

2
√

π
exp

(
σ2

4

) ∫ ∞

z̃t

d exp

(
− 1

σ2

(
z̃ − σ2

2

)2)
+

σ2

2
exp

(
σ2

4

)
Φ
(

σ2/2 − z̃t

σ/
√

2

)

=
σ

2
exp

(
σ2

4

)[
1√
π

exp

(
− 1

σ2

(
z̃t −

σ2

2

)2)
+ σΦ

(
σ2/2 − z̃t

σ/
√

2

)]
. (158)

Substituting equations (156) and (158) into (155), we obtain

Cov(z̃i,t, dãi,t) =
(1 + λ)σ2κt

2
exp

(
σ2

4

)
Φ
(

σ2/2 − z̃t

σ/
√

2

)
dt

+
(1 + λ)σ

2
√

π
[(ztκt − r f ,t − δk)dt − σkdWt] exp

(
− z̃2

t
σ2

)
. (159)

A.9 Proof of Proposition 5

In the absence of aggregate shocks, the evolution of aggregate capital At (equation (50)
of the main text) becomes

dAt

At
= α(1 − ε)

Yt

At
dt − (r f ,t + δk)

Kt

At
dt − (ρ + δa − r f ,t)dt. (160)

In the balanced growth path, aggregate output Yt, consumption Ct, capital At, and
knowledge stock Nt all grow at a constant rate g:

dYt

Yt
=

dCt

Ct
=

dAt

At
=

dNt

Nt
= gdt. (161)
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The variables Et, Kt/At, Yt/At, Γt, Ht, zt, κt, r f ,t, and vt are all constant. From now on,
we omit the subscript t for these variables. The risk-free rate r f is determined by the
representative agent’s first-order condition

dCt

Ct
= ψ(r f − δ)dt. (162)

Substituting equation (161) into (162), (51) of the main text, and (160), respectively, we
obtain

r f = g/ψ + δ, (163)

g = χ(χv)
1−h

h − δb, (164)

Yt

At
=

g + ρ + δa − r f + (r f + δk)Kt/At

α(1 − ε)
. (165)

Dividing both sides of equation (40) of the main text by At and using Lt ≡ 1, we
obtain

E =

[
1

(εν)
ε

1−ε H

Yt

At

(
At

Kt

)α
] 1

1−α

, (166)

The flow profit π to each intermediate-goods producer is a constant and given by
equation (45) of the main text,

π = (1 − ν)ε
Yt

Nt
= (1 − ν)ε

1
E

Yt

At
. (167)

Substituting equation (167) into equation (8) of the main text, we obtain the value of
blue prints v

v =
π

r f + δb
. (168)

Substituting equations (163), (166), and (167) into (168), we obtain v

v =
(1 − ν)ε(εν)

ε
(1−ε)(1−α)

g/ψ + δ + δb

(
At

Yt

Kt

At

) α
1−α

H
1

1−α . (169)

Define Γt ≡ Cov(ãi,t, z̃i,t) = −Mtvar(z̃i,t) = −Mtσ
2/2. The steady-state value of H

is given by Zt/((εν)ε/(1−ε)N1−α
t ) according to equation (41) of the main text. Using
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equation (48) of the main text, we obtain H as follows:

H =

[
(1 + λ)

At

Kt
exp

(
Γ +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

, (170)

where the covariance Γ in the balanced growth path is obtained by setting dMt = 0 in
equation (52) of the main text:

Γ =
Cov(z̃i,t, dãi,t)

θdt
. (171)

In the balanced growth path, Cov(z̃i,t, dãi,t) given by equation (159) becomes

Cov(z̃i,t, dãi,t) =
(1 + λ)σ2κ

2
exp

(
σ2

4

)
Φ
(

σ2/2 − z̃
σ/

√
2

)
dt

+
(1 + λ)σ

2
√

π
(zκ − r f − δk) exp

(
− z̃2

σ2

)
dt. (172)

Substituting equation (172) into (171):

Γ =
(1 + λ)σ2κ

2θ
exp

(
σ2

4

)
Φ
(

σ2/2 − ln z
σ/

√
2

)
+

(1 + λ)σ

2θ
√

π
(zκ − r f − δk) exp

(
− z̃2

σ2

)
.

(173)
When solving above equations, we need to know Kt/At, z, and κ. They are given by

equation (139), (28) of the main text (setting σk = 0), and (103), respectively, as follows

z = exp
(

Γ − Φ−1
(

1
1 + λ

Kt

At

)
σ√
2

)
, (174)

zκ = r f + δk, (175)

κ = α(1 − ε)H− 1
α

Yt

At

At

Kt
. (176)

A.10 Proof of Proposition 6

Substituting equation (167) into (168), we obtain

vt =
(1 − ν)ε

r f ,t + δb

Yt

Nt
. (177)
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Substituting equations (40) and (48) of the main text into (177), and using Lt ≡ 1, we
obtain

ln(vt) =− ασ2

2
Mt +

ασ2

4
+ ln

(
(1 − ν)ε(εν)

ε
1−ε

r f ,t + δb

)
+ α ln(1 + λ) + α ln

(
At

Nt

)
+ α ln

(
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

))
. (178)

Substituting equation (178) into (46) of the main text, we obtain

ln
(

St

At

)
=− ασ2

2h
Mt +

ασ2

4h
+

1
h

ln(χ) +
α

h
ln(1 + λ) +

(α

h
− 1
)

ln
(

At

Nt

)
+

1
h

ln

(
(1 − ν)ε(εν)

ε
1−ε

r f ,t + δb

)
+

α

h
ln
(

Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

))
. (179)

B Assessment of Our Analytical Approximation Method

In this appendix section, we evaluate the accuracy of our analytical approximation
method. In Subsection B.1, we review the existing numerical approximation methods
and point out their differences from our analytical approximation method in the end.
In Subsection B.2, we exactly solve the model in the absence of aggregate shocks and
show that the implied variables and distributions in the balanced growth path are
similar to the solutions obtained using our analytical approximation method. These
results are also theoretically supported by our heuristic proof in Online Appendix A.5.

In the presence of aggregate shocks, it is extremely difficult to accurately solve the
model using existing numerical methods. This is because agents need to base their
optimal decisions today on the evolution of future prices that are consistent with the
economy’s law of motion. Because of the heterogeneity across agents, future prices
will, through market-clearing conditions, depend on the future distribution of agents,
which is infinite dimensional. Thus, the cross-sectional distribution of agents becomes
part of the aggregate state space, substantially increasing the computational complexity.
In principle, it is impossible to “exactly solve” dynamic stochastic general equilibrium
models with heterogeneous agents, which features three crucial parts, heterogeneous
agents, aggregate shocks, and endogenous equilibrium prices.19 Despite the difficulties,

19It is the combination of all three features that makes it impossible to solve the model exactly. For
example, without heterogeneous agents, the aggregate state space has a finite dimension. The model
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in Subsection B.3, we take an off-the-shelf higher-degree numerical approximation
method to solve the model. We show that this method yields results similar to those
obtained based on our analytical approximation method.

B.1 Discussions of Existing Numerical Approximation Methods

The literature has proposed various approximation algorithms since the influential
work of Krusell and Smith (1998a). Generally speaking, there are three methods classi-
fied by how we approximate the cross-sectional distribution and solve for aggregate
dynamics. The first method is proposed by Algan, Allais and Den Haan (2008), who
approximate the cross-sectional distribution using a flexible parametric family, which
reduces the infinite-dimensional distribution to a finite number of parameters. They
then solve for the dynamics of these parameters using a globally accurate projection
technique. The second method is proposed by Reiter (2009), who approximates the
distribution with a fine histogram, which again reduces the infinite dimensional dis-
tribution to a finite number of parameters representing the probability mass of each
discretized agent type. Because it requires a large number of discretized bins to approx-
imate the distribution, Reiter (2009) needs to solve the model using locally accurate
approximations with respect to the aggregate state vector. The third method is recently
proposed by Winberry (2018), who approximates the cross-sectional distribution using
the parametric family proposed by Algan, Allais and Den Haan (2008). Instead of
solving the model using a global projection method, Winberry (2018) solves the model
using a locally accurate perturbation method, similar to Reiter (2009).

Our proposed analytical approximation method in Section 2.6 of the main text is
related to the numerical approximation methods discussed above with one crucial
difference. In our method, the cross-sectional distribution of agents is assumed to
be joint log normal (in zi,t and ai,t) at any point in time, which allows us to derive
“analytical formulas” for the evolution of the parameters (i.e., the misallocation measure

can be solved using standard iteration or projection methods based on discretized grids of the aggregate
state space. Moreover, without aggregate shocks, there exists a deterministic steady state with stationary
cross-sectional distributions, which can be solved using a standard shooting algorithm (e.g., Buera and
Shin, 2013; Dabla-Norris et al., 2021; Dou and Ji, 2021; Ji, Teng and Townsend, 2021). Finally, without
endogenous equilibrium prices (i.e., a model in partial equilibrium), agents make decisions based on
the exogenously specified evolution of aggregate prices, and the future cross-sectional distribution is
irrelevant from agents’ perspective. Thus, the distribution of agents is not part of the aggregate state
space when we solve for the optimal policy functions, making standard iteration and projection methods
tractable.
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Mt) that characterize the distribution. By contrast, in the numerical approximation
methods of Algan, Allais and Den Haan (2008) and Winberry (2018), the assumed
parametric function is used to “numerically fit” the cross-sectional distribution of
agents, and as a result, analytical formulas are not derived.

Broadly speaking, our idea of approximating the joint distribution of firms using the
covariance between log productivity and log capital is related to several seminal papers
in the macroeconomics literature. In the model of Krusell and Smith (1998b), agents
face idiosyncratic labor productivity shocks (employed or unemployed). Because the
covariance between individual productivity and individual wealth does not affect
aggregate output, Krusell and Smith (1998b) find that the behavior of macroeconomic
aggregates can be almost perfectly described by the mean of the wealth distribution.
By contrast, in our model, the covariance between firm productivity and firm capital
determines the degree of misallocation, the aggregate TFP, and the growth rate. Thus,
both the mean of the capital distribution and the covariance have to be included
to describe the behavior of macroeconomic aggregates. Angeletos (2007) considers
idiosyncratic investment risk and endognenous wealth accumulation. In his model,
the covariance between individual productivity and individual wealth affects the
aggregate output. However, by assuming that productivity shocks are i.i.d. over
time, the covariance is no longer a state variable; and the mean of wealth serves as a
single state variable that sufficiently captures the economy’s dynamics. Our model
is closest to that of Moll (2014), who considers persistent idiosyncratic productivity
shocks and endogenous wealth accumulation in a general equilibrium model with
heterogeneous agents. Moll (2014) solves the model without aggregate shocks using
the finite difference method for partial differential equations (PDE). Building on
Moll (2014)’s characterization of wealth shares, we propose an analytically tractable
approximation for the infinite-dimensional joint distribution using the covariance
between log productivity and log capital across firms. Thus, misallocation naturally
emerges as a crucial endogenous state variable. Our approximation method remains
tractable even in the presence of aggregate shocks.

B.2 Deterministic Steady States without Aggregate Shocks

We begin by evaluating the accuracy of our analytical approximation method in the
balanced growth path. Because there are no aggregate shocks, the capital share
distribution, ω(z), is stationary in the balanced growth path. We are able to solve
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Table OA.1: Accuracy of our analytical approximation in the balanced growth path.

Variables exp(−θ) = 0.5 exp(−θ) = 0.7 exp(−θ) = 0.85

baseline histogram baseline histogram baseline histogram

Firm profitability, κ 0.049 0.049 0.044 0.044 0.036 0.036

Productivity cutoff, z 1.085 1.084 1.219 1.213 1.483 1.470

Value of blueprints, v 0.274 0.274 0.290 0.290 0.319 0.319

Productivity, H 1.449 1.424 1.507 1.475 1.607 1.549

Flow profit of innovators, π 0.060 0.060 0.064 0.064 0.070 0.070

Wage-capital ratio, w/A 0.331 0.341 0.331 0.342 0.331 0.351

Dividend-capital ratio, D/A 0.061 0.061 0.061 0.061 0.061 0.061

R&D-capital ratio, S/A 0.197 0.203 0.197 0.203 0.197 0.209

Knowledge stock-capital ratio, N/A 3.292 3.393 3.105 3.210 2.822 2.999

Balanced growth rate, g (%) 1.893 1.888 1.886 1.855 1.894 1.844

Risk-free rate, r f (%) 2.023 2.021 2.020 2.003 2.024 1.997

Note: This table evaluates the accuracy of our analytical approximation method in the balanced growth
path (i.e., no aggregate shocks) for different persistence of idiosyncratic productivity (θ). The columns
labeled “baseline” present the steady-state values of corresponding variables solved by our analytical
approximation method. The columns labeled “histogram” present the steady-state values solved by the
histogram method with 1, 001 equal-spaced grids for productivity zi,t. All the parameter values are taken
from our benchmark calibration in Table 1 except for θ (we consider three values, exp(−θ) = 0.5, 0.7, 0.85)
and ψ (we set its value to match a growth rate of about 1.88% for corresponding θ).

it accurately by approximating ω(z) nonparametrically using a fine histogram, as in
Buera and Shin (2013) and Moll (2014). To ensure accuracy, we choose 1, 001 equal-
spaced grids for idiosyncratic productivity z over the interval [zmin, zmax], with zmin = 0
and zmax = 10. We verify that the solution does not change when the number of grids
is further increased.

Table OA.1 compares the solution of our analytical approximation method and
the solution based on the histogram method for various key endogenous aggregate
variables. When the yearly autocorrelation in idiosyncratic productivity is 0.5 (i.e.,
exp(−θ) = 0.5), our analytical approximation method yields solutions almost iden-
tical to those of the histogram method. When idiosyncratic productivity becomes
more persistent, the accuracy of method becomes slightly worse. Importantly, in the
benchmark calibration with exp(−θ) = 0.85, our analytical approximation method
still yields results very similar to the histogram solution. Not only for these aggregate
variables, our baseline approximation method also well captures the endogenous
capital share distribution. Figure OA.1 compares the capital share distribution ω(z)
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Note: This figure compares the capital share ω(z) in the balanced growth path (i.e., no aggregate shocks)
solved by our analytical approximation method (see equation (47) of the main text) and that solved by
the histogram method with 1001 equal-spaced grids for productivity zi,t. The blue solid line in each
panel represents the our analytical approximation method and the black dashed line represents the
histogram method. All the parameter values are taken from our benchmark calibration in Table 1 except
for θ (consider three values, exp(−θ) = 0.5, 0.7, 0.85) and ψ (set its value to match a 1.89% growth rate
for corresponding θ).

Figure OA.1: Accuracy of capital share distributions in the balanced growth path.

solved by our analytical approximation method (blue solid line) and that solved by
the histogram method (black dashed line). Panels A and B show that when the yearly
autocorrelation of idiosyncratic productivity zi,t is 0.5 or 0.7, the two curves are almost
overlapping with each other, indicating that our analytical approximation method
provides extremely high accuracy. Panel C shows that when the yearly autocorrelation
is 0.85, as in our benchmark calibration, the endogenous capital share distributions
solved by the two solution methods remain very similar.

If idiosyncratic productivity becomes more persistent, the capital share distribution
solved by our analytical approximation method will further diverge from that solved
by the histogram method. Intuitively, an extremely high persistence of idiosyncratic
productivity will endogenously generate a fat right tail for the capital share distribu-
tion because productive firms will accumulate significant amounts of capital in the
balanced growth path. This fat right tail cannot be well approximated by a log-normal
distribution specified in equation (47) of the main text, resulting in relatively large
numerical errors from our analytical approximation method. Despite the potential bad
performance at extremely low values of θ (i.e., high values of persistence, exp(−θ)),
Figure OA.1 shows that our analytical approximation method is sufficiently accurate
for a wide range of empirically relevant θ estimated by (Asker, Collard-Wexler and
Loecker, 2014) based on the U.S. data.
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Table OA.2: Accuracy of our analytical approximation in stochastic steady states.

Variables Baseline 2nd-order 3rd-order 4th-order

Firm profitability, E[κt] 0.035 0.035 0.034 0.035

Productivity cutoff, E[log(zt)] 0.437 0.410 0.465 0.390

Value of blueprints, E[vt] 0.332 0.331 0.331 0.330

Productivity, E[ln(Ht)] 0.486 0.494 0.514 0.488

Flow profit of innovators, E[πt] 0.071 0.071 0.072 0.071

Wage-capital ratio, E[ln(wt/At)] −1.120 −1.155 −1.152 −1.168

Dividend-capital ratio, E[ln(Dt/At)] −2.892 −2.837 −2.830 −2.798

Consumption-capital ratio, E[ln(Ct/At)] −0.963 −0.984 −0.980 −0.988

R&D-capital ratio, E[ln(St/At)] −1.611 −1.662 −1.662 −1.688

Knowledge stock-capital ratio, E[ln(Nt/At)] 1.011 0.977 0.967 0.964

Capital growth, E[∆ ln At] (%) 1.883 1.617 1.789 1.564

Consumption growth, E[∆ ln Ct] (%) 1.882 1.616 1.788 1.564

Volatility of consumption growth, var[∆ ln Ct] (%) 2.585 2.206 1.725 1.828

Autocorrelation in consumption, AC1(∆ ln Ct) 0.484 0.529 0.503 0.459

Risk-free rate, E[r f ,t] (%) 1.473 1.503 1.733 1.536

Return on wealth, E[ln(Rw,t)] (%) 2.502 2.208 2.183 1.919

Volatility of return on wealth, var[ln(Rw,t)] (%) 2.765 2.454 1.936 1.869

Note: This table evaluates the accuracy of our analytical approximation method in the full stochastic
steady states with aggregate shocks. The column labeled “baseline” presents the steady-state values
of corresponding variables solved by our analytical approximation method. The columns labeled
“2nd-order”, “3rd-order”, and “4th-order” present the results corresponding to the second-, third-,
and fourth-order numerical approximation methods for the capital share distribution ωt(z) based on
equation (241). All the parameter values are taken from our benchmark calibration in Table 1.

B.3 Stochastic Steady States with Aggregate Shocks

Per our discussions in Subsection B.1, there are three numerical approximation methods
that we can benchmark to when assessing the accuracy of our analytical approximation
method. Among these three methods, we choose the most recent method proposed
by Winberry (2018) for its numerical tractability and stability.20 The main advan-
tages of this method are the fast computation speed and flexibility in the degree of
approximation for the cross-sectional distribution.

20Because of our model has large nonlinearities introduced by the endogenous SDF, the projection
method of Algan, Allais and Den Haan (2008) is difficult to implement at higher-order approximations.
Moreover, our model features kinked decision rules introduced by the endogenous time-varying
productivity cutoff zt. Thus, the method of Reiter (2009) is difficult to be implemented accurately as
the fixed grids of histograms generate large numerical errors around the cutoff zt when using local
pertubation approaches to approximate the evolution of aggregate state space.
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In particular, we use a flexible parametric family to approximate the capital share
ωt(z) at any point in time t. With a 4th-order approximation, this boils down to
using 4 parameters to match the mean, variance, skewness, and kurtosis of ωt(z).
The evolution of these 4 parameters can be computed using numerical integration
methods (Gauss-Hermite and Gauss Legendre quadratures) based on Kolmogorov
forward equations. The implementation details of this method are presented in Online
Appendix G. Consistent with Winberry (2018), we find that a 4th-order approximation
for the distribution can sufficiently capture complicated shapes, and further increasing
the degree of approximation will not change the model-implied dynamics much.

In Table OA.2, we compare the key variables solved by our analytical approximation
method and those solved by the higher-degree numerical approximation methods. To
ensure that the results obtained from the two solution methods are comparable, we
implement both methods using the perturbation approach around the corresponding
deterministic steady state. Table OA.2 presents the results of our baseline analytical
approximation method and the 2nd-order, 3rd-order, and 4th-order numerical approxi-
mation methods. The results of our analytical approximation method are very similar
to the results of the 2nd-order numerical approximation method, because our analytical
approximation method essentially keeps track of the first and second moments of
ωt(z).21 However, the results of our analytical approximation method do not exactly
match the results of the 2nd-order numerical approximation method because there
are fundamental differences when implementing the two methods. A discussion is
provided in Online Appendix G.

Table OA.2 also shows that the differences between our analytical approximation
method and the 4th-order numerical approximation method are generally within 15%
for most variables. Notably, the persistence in aggregate consumption growth, a key
variable of our interest, has a yearly autocorrelation of 0.484, which is quite close to
the value of 0.459 implied by the 4th-order numerical approximation method .

21The first moment is m1,t = −Mtσ
2/2 and the second moment is m2,t = σ2/2, which is a constant

under our analytical approximation method.
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Note: The red solid line plots the time series of our empirical misallocation measure Mt (corresponding
to the left y-axis). The measure Mt is constructed according to Section 4.1 of the main text, where ãi,t is
constructed using firms’ tangible net worth (see footnote 13). The pink bars represent its year-on-year
changes ∆Mt (corresponding to the right y-axis). The shaded areas represent recessions or severe
financial crises.

Figure OA.2: Time series plot of our empirical misallocation measure Mt.

C Supplemental Material for Empirical Analyses

C.1 Robustness of Empirical Results

Figure OA.2 plots the time series of our misallocation measure MisAlloct. The mea-
sure MisAlloct is constructed according to Section 4.1 of the main text, where ai,t is
constructed using firms’ tangible net worth, i.e., firms’ current assets plus net physical
plant, property, and equipment plus other assets minus total liabilities.

Table OA.3 shows that the empirical findings in Table 5 of the main text are robust
for an alternative sample period from 1970 to 2016.

C.2 Procedure for Nearest Neighbor Matching

For each SIC-3 industry s, we calculate the average industry characteristics during the
3-year period before AJCA (i.e., from 2001 to 2003), Xs =

1
3 ∑2003

t=2001 Xs,t, where Xs,t is a
vector of eight industry characteristics, including the Herfindahl index computed using
firms’ market shares in terms of sales, average total sales of firms, mean and standard
deviation of firms’ profit margin, mean and standard deviation of firms’ ROE, mean
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Table OA.3: Misallocation, R&D, and growth in the data.

Panel A: R&D intensity

t t + 1

β −0.073∗∗ −0.071∗∗

[0.029] [0.029]

R-squared 0.121 0.117

Panel B: Consumption growth

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

β −0.033 −0.059 −0.100∗ −0.156∗∗∗ −0.205∗∗∗

[0.024] [0.041] [0.052] [0.059] [0.064]

R-squared 0.039 0.044 0.076 0.139 0.190

Panel C: Output growth

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

β −0.031 −0.061 −0.098 −0.159∗ −0.214∗∗

[0.040] [0.064] [0.077] [0.083] [0.084]

R-squared 0.013 0.020 0.035 0.078 0.132

Note: The sample period is 1970-2016. Standard errors are reported in brackets. *, **, and *** indicate
statistical significance at 10%, 5%, and 1%, respectively.

and standard deviation of firms’ Tobin’s Q. We construct a firm’s (net) profit margin
using its income before extraordinary items divided by its sales as in Dou, Ji and
Wu (2021), and a firm’s Tobin’s Q as Tobin_Qi,t = (total_assetsi,t + market_equityi,t −
book_equityi,t)/total_asseti,t, following Gompers, Ishii and Metrick (2003).

Next, we match each treated industry with n = 5 untreated industries which
have the shortest Mahalanobis distances from the treated industry. The Mahalanobis

distance between any two industries s and r is given by
√
(Xs − µ)′Ω−1(Xr − µ),

where Xs and Xr represent the vectors of the eight characteristics of industries s
and r, and µ and Ω represent the mean vector and covariance matrix of the eight
characteristics. This matching process is performed with replacement in untreated
industries.

The DID specifications (60) to (63) are estimated with the following weights. Each
treated industry is assigned with a weight of 1 and each of the 5 untreated industries
matched to it is assigned with a weight of 1/5. Because we allow for replacement,
some untreated industries could be matched with multiple treated industries. The
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weight for such industries is the sum of weights across matches. For example, if
an untreated industry is matched with k treated industries, its weight is k/5. If an
untreated industry is not matched with any treated industry, its weight is 0.

D TFP Formulas

Our TFP Zt in equation (41) of the main text depends on the final goods sector’s
productivity Ht (can be thought of as the TFP of the final goods sector) and the
economy’s aggregate knowledge stock Nt. In this appendix section, we show that our
formula for Ht is consistent with the TFP formula of Hsieh and Klenow (2009) when
goods are homogeneous and the industry is not distorted by wedges.

The final-goods sector’s productivity Ht given by equation (41) of the main text is
equivalent to (88) with ut(z) being set at its optimal value, 1:

Ht =

[
1
Kt

∫ ∞

zt

∫ ∞

0
zkt(a, z)φt(a, z)dkdz

]α

, (180)

The above equation is equivalent to

Ht =

[
1
Kt

∫ ∞

0

∫ ∞

0
zkt(a, z)φt(a, z)dkdz

]α

, (181)

because kt(a, z) = 0 for z ≤ zt according to equation (23) of the main text. Without loss
of generality, we rewrite equation (181) to focus on a countable number of firms,

Ht =

(
1
Kt

∑
i

ziki

)α

, (182)

We do a change of variables by replacing zi with z1/α
i (this is because the firm-level

productivity in equation (1) of the main text is zα
i not zi), equation (182) becomes

Ht =

(
1
Kt

∑
i

z1/α
i ki

)α

, (183)

Next, we show that equation (183) is consistent with the industry-level TFP formula
used by Hsieh and Klenow (2009) when goods are homogeneous and the industry
is not distorted by wedges. In the model of Hsieh and Klenow (2009), there are s
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industries and each industry has Ms firms. They define a single industry’s TFP as

TFPs =
Ys

Kαs
s L1−αs

s
. (184)

To be consistent with our model setup, we focus on deriving TFPs in one single
industry in the model of Hsieh and Klenow (2009), which corresponds to our final
goods sector. Moreover, without loss of generality, we also normalize the aggregate
labor in industry s to one, i.e., Ls = 1, as in our model. We derive the formula of TFPs

using the original notations of Hsieh and Klenow (2009).
Substituting Ls = 1 and equation (3) of Hsieh and Klenow (2009) into (184),

TFPs =
1

Kαs
s

(
Ms

∑
i=1

Y
σ−1

σ
si

) σ
σ−1

. (185)

Substituting equation (4) of Hsieh and Klenow (2009) into the above equation,

TFPs =
1

Kαs
s

[
Ms

∑
i=1

(
AsiK

αs
si L1−αs

si

) σ−1
σ

] σ
σ−1

. (186)

Using the first-order condition, labor Lsi in the model of Hsieh and Klenow (2009) can
be solved as follows

Lsi =

[
(1 − τYsi)Psi AsiK

αs
si (1 − αs)

w

] 1
αs

. (187)

Substituting equation (187) into (186), we obtain

TFPs =
1

Kαs
s

(
1 − αs

w

) 1−αs
αs
[

Ms

∑
i=1

[
A1/αs

si Ksi [(1 − τYsi)Psi]
1−αs

αs

] σ−1
σ

] σ
σ−1

. (188)

The labor market clearing condition in the model of Hsieh and Klenow (2009) implies

Ms

∑
i=1

[
(1 − τYsi)Psi AsiK

αs
si (1 − αs)

w

] 1
αs

= 1. (189)
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Substituting (189) into (188),

TFPs =
1

Kαs
s

[
∑Ms

i=1

[
A1/αs

si Ksi [(1 − τYsi)Psi]
1−αs

αs

] σ−1
σ

] σ
σ−1

[
∑Ms

i=1 A1/αs
si Ksi [(1 − τYsi)Psi]

1/αs
]1−αs

. (190)

Let σ → ∞ and τYsi = 0, then Psi is equalized across all i, i.e., Psi ≡ Ps. This assumption
allows us to simplify equation (190) as follows,

TFPs =
1

Kαs
s

∑Ms
i=1 A1/αs

si Ksi(
∑Ms

i=1 A1/αs
si Ksi

)1−αs
=

[
1

Ks

Ms

∑
i=1

A1/αs
si Ksi

]αs

. (191)

Except for notational differences, the formula (191) is identical to (183).

E Numerical Algorithm

Our model can be solved either using a local perturbation approach or a global
approach based on value function iterations.22 In this appendix section, we present the
numerical algorithm for the global approach based on value function iterations.

We discretize the model with time interval ∆t. The Brownian motion shock dWt

takes two value,
√

∆t and −
√

∆t, with equal probabilities. Define Γt ≡ Cov(ãi,t, z̃i,t) =

−Mtvar(z̃i,t) = −Mtσ
2/2. The economy is summarized by the evolution of two

endogenous state variables, Et ≡ Nt/At and Γt.
We use superscripts + and − to denote variables at t + ∆t, corresponding to

dWt =
√

∆t and dWt = −
√

∆t, respectively. The endogenous state variable Γt evolves
according to equation (150):

Γt+∆t =Γt − θΓtdt + Cov(z̃i,t, dãi,t), (192)

22Because the aggregate dynamics do not feature occasionally binding constraints or region-dependent
policy rules, the local perturbation approach can be easily implemented in dynare.
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where Cov(z̃i,t, dãi,t) is given by equation (159), as follows:

Cov(z̃i,t, dãi,t) =
(1 + λ)σ2κt

2
exp

(
σ2

4

)
Φ
(

σ2/2 − z̃t

σ/
√

2

)
∆t

+
(1 + λ)σ

2
√

π
[(ztκt − r f ,t − δk)∆t − σkdWt] exp

(
− z̃2

t
σ2

)
. (193)

Let Γ+
t+∆t and Γ−

t+∆t be the value of Γt+∆t corresponding to dWt =
√

∆t and dWt =

−
√

∆t, respectively. In equation (193), the variables κt, z̃t, and r f ,t are given by
equations (103), (139), and the SDF, respectively, as follows:

κt = α(1 − ε)H− 1
α

t
Yt

At

At

Kt
, (194)

z̃t = Γt − Φ−1
(

1
1 + λ

Kt

At

)
σ√
2

, (195)

r f ,t = − 1
∆t

ln
(

Et

[
Λt+∆t

Λt

])
, (196)

where Yt/At, Ht, and Kt/At are functions of state variables Et and Γt, given by
equations (101), (142), and (28), respectively, as follows:

Yt

At
= (εν)

ε
1−ε HtE1−α

t

(
Kt

At

)α

, (197)

Ht =

[
(1 + λ)

At

Kt
exp

(
Γt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

, (198)

ztκt = r f ,t + δk + σk(σξ,t(zt)− ηt). (199)

The endogenous state variable Et evolves according to

∆Et

Et
=

∆Nt

Nt
− ∆At

At
. (200)

Substituting equations (146) and (147) into the above equation, we obtain

Et+∆t

Et
=1 + χ (χvt)

1−h
h ∆t − α(1 − ε)

Yt

At
∆t + (r f ,t + δk)

Kt

At
∆t

+ (ρ + δa − δb − r f ,t)∆t −
(

σa − σk
Kt

At

)
dWt. (201)
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Let E+
t+∆t and E−

t+∆t be the value of Et+∆t corresponding to dWt =
√

∆t and dWt =

−
√

∆t, respectively.
In equation (201), the variable vt = v(Et, Γt) is given by equation (8); it is a function

of state variables (Et, Γt) and can be solved recursively as follows

v(Et, Γt) =
1

1 + δb∆t

(
πt∆t + Et

[
Λt+∆t

Λt
v(Et+∆t, Γt+∆t)

])
=

1
1 + δb∆t

(
πt∆t +

1
2

Λ+
t+∆t
Λt

v(E+
t+∆t, Γ+

t+∆t) +
1
2

Λ−
t+∆t
Λt

v(E−
t+∆t, Γ−

t+∆t)

]
, (202)

where πt is given by equation (105):

πt =
(1 − ν)ε

Et

Yt

At
. (203)

Epstein and Zin (1989) show that the SDF in equation (15) is equivalent to

Λt+∆t

Λt
=e−

δ(1−γ)
1−1/ψ ∆t

(
Ct+∆t

Ct

)− 1−γ
ψ(1−1/ψ)

(1 + Rw,t+∆t∆t)
1/ψ−γ
1−1/ψ , (204)

where Rw,t+∆t the net return on wealth

1 + Rw,t+∆t∆t =
Wt+∆t

Wt − Ct∆t
. (205)

We have
Et

[
Λt+∆t

Λt
(1 + Rw,t+∆∆t)

]
= 1. (206)

Substituting equations (204) and (205) into (206), we obtain

1 = Et

e−
δ(1−γ)
1−1/ψ ∆t

(
Ct+∆t

Ct

)− 1−γ
ψ−1
(

Wt+∆t

Ct+∆t

Ct+∆t

Ct

1
Wt/Ct − ∆t

) 1−γ
1−1/ψ

 . (207)

Rearranging the above equation, we obtain

Wt

Ct
= ∆t + e−δ∆tEt

(Ct+∆t

Ct

)1−γ (Wt+∆t

Ct+∆t

) 1−γ
1−1/ψ


1−1/ψ

1−γ

. (208)
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The wealth-consumption ratio Wt/Ct is a function of state variables, denoted by
WCt ≡ WC(Et, Γt). Let C+

t+∆t and C−
t+∆t be the value of Ct+∆t corresponding to

dWt =
√

∆t and dWt = −
√

∆t, respectively. We can rewrite equation (208) as

WCt = ∆t + e−δ∆t

1
2

(
C+

t+∆t
Ct

)1−γ

(WC+
t+∆t)

1−γ
1−1/ψ +

1
2

(
C−

t+∆t
Ct

)1−γ

(WC−
t+∆t)

1−γ
1−1/ψ

 ,

(209)
where

WC+
t+∆t = WC(E+

t+∆t, Γ+
t+∆t), (210)

WC−
t+∆t = WC(E−

t+∆t, Γ−
t+∆t). (211)

The aggregate consumption is given by equation (14):

Ct

At
=

wt

At
+

Dt

At
+ r f ,t

Bt

At
−
(

Bt+∆t

At+∆t

At+∆t

At
− Bt

At

)
1

∆t

=
wt

At
+

Dt

At
+ r f ,t

(
Kt

At
− 1
)
−
[(

Kt+∆t

At+∆t
− 1
)

At+∆t

At
−
(

Kt

At
− 1
)]

1
∆t

. (212)

Because Ct is known (i.e., dBt/Bt is locally deterministic), theoretically we have(
K+

t+∆t

A+
t+∆t

− 1

)
A+

t+∆t
At

=

(
K−

t+∆t

A−
t+∆t

− 1

)
A−

t+∆t
At

, (213)

where K+
t+∆t, A+

t+∆t and K−
t+∆t, A−

t+∆t are the values of Kt+∆t, At+∆t corresponding
to dWt =

√
∆t and dWt = −

√
∆t, respectively. Because of property (213), the nu-

merical error caused by discretization is minimized by using 0.5
(

K+
t+∆t

A+
t+∆t

− 1
)

A+
t+∆t
At

+

0.5
(

K−
t+∆t

A−
t+∆t

− 1
)

A−
t+∆t
At

to approximate
(

Kt+∆t
At+∆t

− 1
)

At+∆t
At

in equation (212). Thus, the

term Ct/At ≡ CA(Et, Γt) in equation (212) can be solved as a function of state vari-
ables Et and Γt.

The consumption growth terms in equation (209) are given by

C+
t+∆t
Ct

=
CA(E+

t+∆t, Γ+
t+∆t)

CA(Et, Γt)

At+∆t

At
, (214)

C−
t+∆t
Ct

=
CA(E−

t+∆t, Γ−
t+∆t)

CA(Et, Γt)

At+∆t

At
. (215)
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The variables wt/At and Dt/At are given by equations (44) and (31) of the main
text:

wt

At
≡wA(Et, Γt) = (1 − α)(1 − ε)

Yt

At
, (216)

Dt

At
≡DA(Et, Γt) = ρ + (1 − ν)ε

Yt

At
− St

At
, (217)

where St/At is given by equation (46) of the main text:

St

At
=

St

Nt
Et = (χv(Et, Γt))

1
h Et. (218)

The variables At+∆t/At is given by equation (146):

At+∆t

At
= 1 + α(1 − ε)

Yt

At
∆t − (r f ,t + δk)

Kt

At
∆t − (ρ + δa − r f ,t)∆t +

(
σa − σk

Kt

At

)
dWt.

(219)
After solving the WC(Et, Γt) ratio from equation (209), substituting into the equation

(204) to obtain the SDF:

Λ+
t+∆t
Λt

= e−
δ(1−γ)
1−1/ψ ∆t

(
C+

t+∆t
Ct

)−γ(
WC(E+

t+∆t, Γ+
t+∆t)

WC(Et, Γt)− ∆t

) 1/ψ−γ
1−1/ψ

, (220)

Λ−
t+∆t
Λt

= e−
δ(1−γ)
1−1/ψ ∆t

(
C−

t+∆t
Ct

)−γ(
WC(E−

t+∆t, Γ−
t+∆t)

WC(Et, Γt)− ∆t

) 1/ψ−γ
1−1/ψ

. (221)

Welfare. In discrete time, the preference specified in equation (12) of the main text is

Ut =

[
(1 − e−δ∆t)C1−1/ψ

t + e−δ∆t
(

Et

[
(Ut+∆t)

1−γ
]) 1−1/ψ

1−γ

] 1
1−1/ψ

. (222)

Dividing both sides by Ct,

(
Ut

Ct

)1−1/ψ

= (1 − e−δ∆t) + e−δ∆t

(
Et

[(
Ct+∆t

Ct

Ut+∆t

Ct+∆t

)1−γ
]) 1−1/ψ

1−γ

. (223)
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Steps of Implementing the Numerical Algorithm. Following the standard practice,
we discretize the state variables (Et, Γt) into dense grids. The values that not fall on any
grid are obtained by linear interpolation or extrapolation. We then solve the model in
the steps listed below. Because we need to solve a large number of nonlinear equations,
we use the commercial nonlinear solver knitro.23 All the programs are written in C++
with parallel computing in a state-of-the-art server of 56 cores.

(1) Guess v(Et, Γt) = 0.1 for all states.

(2) Guess σξ(zt, Et, Γt) = 0 for all states.

(3) Guess η(Et, Γt) = 0 for all states.

(4) Solve the evolution of endogenous state variables Et and Γt.

(5) Solve equation (208) using knitro to obtain the wealth-consumption ratio as a
function of state variables, i.e., WC(Et, Γt).

(6) Solve equations (220) and (221) to obtain the SDF as a function of state variables,
i.e.,

Λ+
t+∆t
Λt

≡ SDF(E+
t+∆t, Γ+

t+∆t), (224)

Λ−
t+∆t
Λt

≡ SDF(E−
t+∆t, Γ−

t+∆t). (225)

Next, calculate the market price of risk ηt in equation (20) of the main text as
follows

η̂(Et, Γt) = −
SDF(E+

t+∆t, Γ+
t+∆t)− SDF(E−

t+∆t, Γ−
t+∆t)

2
√

∆t
. (226)

If max |η̂(Et, Γt)− η(Et, Γt)| < 10−9, stop. Otherwise, jump to step (4) using
η̂(Et, Γt) as the initial guess of η(Et, Γt).

(7) Solve managers’ problem in equation (18) of the main text to obtain σξ(zt, Et, Γt).
This is achieved in the following substeps.

(7.1) Problem (18) of the main text can be simplified because it is linear in ai,t as in
equation (75). This means that we only need to solve ξ(zi,t, Et, Γt) recursively

23See https://www.artelys.com/solvers/knitro for more details.
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as follows

ξ(zi,t, Et, Γt) = τ∆t + Et

[
Λt+∆t

Λt

ai,t+∆t

ai,t
ξ(zi,t+∆t, Et+∆t, Γt+∆t)

]
(227)

The evolution ai,t+∆t/ai,t is given by equations (2), (3), (30) of the main text:

ai,t+∆t

ai,t
=1 + (1 + λ)

(
κtzi,tdt − δkdt + σkdWt − r f ,tdt

)
1zi,t≥zt

+ (r f ,t − ρ − δa)dt + σadWt, (228)

Substituting equation (228) into (227), we obtain

ξi,t =τ∆t + Et

[
Λt+∆t

Λt

[
1 + (1 + λ)

(
κtzi,tdt − δkdt + σkdWt − r f ,tdt

)
1zi,t≥zt

]
ξi,t+∆t

]
+ Et

[
Λt+∆t

Λt

[
(r f ,t − ρ − δa)dt + σadWt

]
ξi,t+∆t

]
(229)

(7.2) Calculate σ̂ξ(zi,t, Et, Γt) as follows

σ̂ξ(zi,t, Et, Γt) =
ξ+t+∆t − ξ−t+∆t

2ξ(zi,t, Et, Γt)
√

∆t
, (230)

where

ξ+t+∆t =Et
[
ξ(zi,t+∆t, E+

t+∆t, Γ+
t+∆t)

]
, (231)

ξ−t+∆t =Et
[
ξ(zi,t+∆t, E−

t+∆t, Γ−
t+∆t)

]
. (232)

The expectation is taken with respect to idiosyncratic shocks in zi,t+∆t.

(7.3) Solve z(Et, Γt) using equation (199), and then find the value of σ̂ξ(zt, Et, Γt).

(7.4) If max
∣∣σ̂ξ(zt, Et, Γt)− σξ(zt, Et, Γt)

∣∣ < 10−9, stop. Otherwise, jump to step
(3) using σ̂ξ(zt, Et, Γt) as the initial guess for σξ(zt, Et, Γt).

(8) Solve equation (202) to obtain v̂(Et, Γt).

(9) If max |v̂(Et, Γt)− v(Et, Γt)| < 10−9, stop. Otherwise, jump to step (2) using
v̂(Et, Γt) as the initial guess for v(Et, Γt).
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F Household Budget Constraint

Consider a household h with wealth Wh
t at t. The budget constraint is

Wh
t+dt = Wh

t − Ch
t dt + wtLh

t dt + (Qt+dt − Qt)Z
h
t + DtZ

h
t dt + r f ,tBh

t dt, (233)

where Ch
t dt is the household’s consumption over [t, t + dt), which is assumed to be

locally deterministic. The variable wtLh
t dt is the labor income over [t, t + dt). The

variable (Qt+dt − Qt)Zh
t is the change in the household’s stock value, where Qt is the

stock market value per share and Z
h
t is the number of shares held by the household

at t. The variable DtZ
h
t dt is the dividend and r f ,tBh

t dt is the interest earnings over
[t, t + dt).

The wealth Wh
t consists bonds Bh

t and a share Zh
t of the stock market:

Wh
t = QtZ

h
t + Bh

t , (234)

Substituting equations (234) into (233), we obtain

Qt+dtZ
h
t+dt + Bh

t+dt = −Ch
t dt + wtLh

t dt + Qt+dtZ
h
t + DtZ

h
t dt + (1 + r f ,tdt)Bh

t . (235)

Aggregating equation (235) over all households, we obtain

Ctdt + Qt+dtZt+dt + Bt+dt = wtLtdt + Qt+dtZt + DtZtdt + (1 + r f ,tdt)Bt. (236)

In equilibrium, the total share is normalized to be one:

Zt ≡ 1 for all t. (237)

Thus, equation (236) becomes

dBt = wtLtdt + Dtdt + r f ,tBtdt − Ctdt, (238)

which is the equation (14) of the main text. Equation (238) shows that dBt/dt is locally
deterministic because of our assumption that Ct is locally deterministic.
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To compute dBt, we use equation (42) of the main text,

Bt = Kt − At = At

(
Kt

At
− 1
)
= [λ − (1 + λ)Ωt(zt)]At. (239)

Thus,
dBt = [λ − (1 + λ)Ωt(zt+dt)]At+dt − [λ − (1 + λ)Ωt(zt)]At. (240)

The diffusion term on the right-hand side of equation (240) will cancel out because
dBt is locally deterministic.

G Higher-Degree Approximation

Following Algan, Allais and Den Haan (2008), we use the following functional form to
approximate the capital share distribution ωt(z̃) defined in equation (38) of the main
text with z̃ = ln(z):

ωt(z̃) ≈ g0,t exp

(
g1,t(z̃ − m1,t) +

n

∑
i=2

[
gi,t(z̃ − m1,t)

i − mi,t

])
, (241)

where m1,t, ..., mn,t correspond to the 1st, ..., nth moments of ωt(z̃), given by

m1,t =
∫ ∞

−∞
z̃ωt(z̃)dz̃, (242)

mi,t =
∫ ∞

−∞
(z̃ − m1,t)

iωt(z̃)dz̃ for i = 2, ..., n. (243)

When n = 2, the approximation based on equation (241) is similar to our analytical
approximation method in equation (47) of the main text, with m1,t = −Mtσ

2/2 and
m2,t = σ2/2.24

24Even when n = 2, the numerical approximation method does not produce identical results as
our analytical approximation method (see Table OA.2). This is because there is a subtle difference
between the two methods. In our analytical approximation method, by assuming a normal distribution
for ã, we derive a normal-density function of ωt(z̃) for all t ≥ 0. Then we track the evolution of
Γt = −Mtσ

2/2, which captures the first moment m1,t of ωt(z̃). In the numerical approximation method
with n = 2, we fit ωt(z̃) at t using a normal density function as specified by equation (241), and then
we compute the non-parametric distribution of ωt+∆t(z̃) at t + ∆t based on the evolution of z̃i,t and
ãi,t. Next, we fit ωt+∆t(z̃) using a normal density function by matching the first and second moments,
m1,t+∆t and m2,t+∆t, implied by ωt+∆t(z̃). Because of this subtle difference, the results of our analytical
approximation method are slightly different from those of the numerical approximation method with
n = 2 (see Table OA.2).
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The evolution of mi,t for i = 1, 2, ..., n can be derived as follows. Consider a small
time interval [t, t + ∆t), equation (5) of the main text implies that z̃i,t+∆t is given by

z̃i,t+∆t = (1 − θ∆t)z̃i,t + σ
√

θ∆tεi,t, with εi,t ∼ N(0, 1). (244)

Thus, conditioning on z̃i,t at t, the probability of having zi,t+∆t falling in a small
interval [z̃, z̃ + ∆z̃] at t + ∆t is given by

P(zi,t+∆t ∈ [z̃, z̃ + ∆z̃]|z̃i,t) =Φ
(

z̃ + ∆z̃ − (1 − θ∆t)z̃i,t

σ
√

θ∆t

)
− Φ

(
z̃ − (1 − θ∆t)z̃i,t

σ
√

θ∆t

)
=ϕ

(
z̃ − (1 − θ∆t)z̃i,t

σ
√

θ∆t

)
∆z̃

σ
√

θ∆t
. (245)

Equations (2), (3), and (30) of the main text imply that ai,t+∆t is given by

ai,t+∆t

ai,t
= [1+(r f ,t − δa − ρ)∆t]+σa∆Wt +(1+λ)

[
(κtzi,t − δk − r f ,t)∆t − σk∆Wt)

]
1zi,t≥zt .

(246)
Thus, conditioning on z̃i,t at t and given the aggregate shock ∆Wt, to have ai,t+∆t ∈
[a, a + ∆a], we need

ai,t ∈
[

a
Ψt(z̃i,t)

,
a + ∆a
Ψt(z̃i,t)

]
, (247)

where

Ψt(z̃i,t) = [1+(r f ,t − δa − ρ)∆t]+σa∆Wt +(1+λ)
[
(κtzi,t − δk − r f ,t)∆t − σk∆Wt)

]
1zi,t≥zt .
(248)

Thus, the density φt+∆t(a, z̃) is given by

φt+∆t(a, z̃)∆a∆z̃ =
∫ ∞

−∞
φt(a/Ψt(z̃i,t), z̃i,t)

∆a
Ψt(z̃i,t)

P(zi,t+∆t ∈ [z̃, z̃ + ∆z̃]|z̃i,t)dz̃i,t. (249)

Substituting equation (245) into (249), we obtain

φt+∆t(a, z̃) =
1

σ
√

θ∆t

∫ ∞

−∞

1
Ψt(x̃)

φt(a/Ψt(x̃), x̃)ϕ
(

z̃ − (1 − θ∆t)x̃
σ
√

θ∆t

)
dx̃. (250)

By definition of equation (38) of the main text, the capital share at t + ∆t is

ωt+∆t(z̃) =
1

At+∆t

∫ ∞

0
aφt+∆t(a, z̃)da. (251)

OA-39



Substituting equation (250) into (251), we obtain

ωt+∆t(z̃) =
1

σ
√

θ∆t
1

At+∆t

∫ ∞

−∞

(∫ ∞

0

a
Ψt(x̃)

φt(a/Ψt(x̃), x̃)da
)

ϕ

(
z̃ − (1 − θ∆t)x̃

σ
√

θ∆t

)
dx̃.

(252)
Define a′ = a/Ψt(x̃). Using the definition of (38), the term

∫ ∞
0

a
Ψi,t

φt(a/Ψt(x̃), x̃)da
in equation (252) can be written as∫ ∞

0

a
Ψt(x̃)

φt(a/Ψt(x̃), x̃)da = Ψt(x̃)
∫ ∞

0
a′φt(a′, x̃)da′ = Ψt(x̃)ωt(x̃)At. (253)

Substituting equation (253) into (252), we obtain

ωt+∆t(z̃) =
1

σ
√

θ∆t
At

At+∆t

∫ ∞

−∞
Ψt(x̃)ωt(x̃)ϕ

(
z̃ − (1 − θ∆t)x̃

σ
√

θ∆t

)
dx̃, (254)

where Ψt(x̃) is defined in equation (248) with x̃ = ln(x).
Using ωt+∆t(z̃) in equation (254), we can compute the moments at t + ∆t as follows

m1,t+∆t =
∫ ∞

−∞
z̃ωt+∆t(z̃)dz̃, (255)

mi,t+∆t =
∫ ∞

−∞
(z̃ − m1,t+∆t)

iωt+∆t(z̃)dz̃ for i = 2, ..., n, (256)

which can be numerically integrated using Gauss-Legendre quadratures.

Implementation Details. Equation (254) cannot be directly computed if we use a local
perturbation approach because the function Ψt(x̃) has a kink at x̃ = z̃t. Substituting
out Ψt(x̃) using (248), we rewrite equation (254) as follows:

ωt+∆t(z̃) =
1

σ
√

θ∆t
At

At+∆t

[∫ z̃t

−∞
Ψl,tωt(x̃)ϕ

(
z̃ − (1 − θ∆t)x̃

σ
√

θ∆t

)
dx̃

+
∫ ∞

z̃t

Ψh,t(x̃)ωt(x̃)ϕ
(

z̃ − (1 − θ∆t)x̃
σ
√

θ∆t

)
dx̃
]

, (257)

where

Ψl,t =[1 + (r f ,t − δa − ρ)∆t] + σa∆Wt, (258)

Ψh,t(x̃) =[1 + (r f ,t − δa − ρ)∆t] + σa∆Wt + (1 + λ)
[
(κt exp(x̃)− δk − r f ,t)∆t − σk∆Wt)

]
.

(259)
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By doing a change of variables, equation (257) can be rewritten as

ωt+∆t(z̃) =
1

σ
√

θ∆t
At

At+∆t

[∫ ∞

0
Ψl,tωt(z̃t − x̃)ϕ

(
z̃ − (1 − θ∆t)(z̃t − x̃)

σ
√

θ∆t

)
dx̃ (260)

+
∫ ∞

0
Ψh,t(z̃t + x̃)ωt(z̃t + x̃)ϕ

(
z̃ − (1 − θ∆t)(z̃t + x̃)

σ
√

θ∆t

)
dx̃
]

,

so that the integration regions are [0, ∞). Further, we make another change of variables
by defining ẽ = (1−θ∆t)x̃

σ
√

2θ∆t
. Equation (260) becomes

ωt+∆t(z̃) =
√

2
1 − θ∆t

At

At+∆t

[∫ ∞

0
Ψl,tωt

(
z̃t −

σ
√

2θ∆tẽ
1 − θ∆t

)
ϕ

(
z̃ − (1 − θ∆t)z̃t

σ
√

θ∆t
+
√

2ẽ
)

dẽ

+
∫ ∞

0
Ψh,t

(
z̃t +

σ
√

2θ∆tẽ
1 − θ∆t

)
ωt

(
z̃t +

σ
√

2θ∆tẽ
1 − θ∆t

)
ϕ

(
z̃ − (1 − θ∆t)z̃t

σ
√

θ∆t
−
√

2ẽ
)

dẽ

]
.

(261)

Substituting the PDF of the standard normal distribution for ϕ(·), equation (261)
becomes

ωt+∆t(z̃) =
1√

π(1 − θ∆t)
exp

(
−1

2

[
z̃ − (1 − θ∆t)z̃t

σ
√

θ∆t

]2
)

At

At+∆t

[∫ ∞

0
fl,t(ẽ|z̃) exp(−ẽ2)dẽ

+
∫ ∞

0
fh,t(ẽ|z̃) exp(−ẽ2)dẽ

]
, (262)

where

fl,t(ẽ|z̃) =Ψl,tωt

(
z̃t −

σ
√

2θ∆tẽ
1 − θ∆t

)
exp

(
−
√

2(z̃ − (1 − θ∆t)z̃t)

σ
√

θ∆t
ẽ

)
, (263)

fh,t(ẽ|z̃) =Ψh,t

(
z̃t +

σ
√

2θ∆tẽ
1 − θ∆t

)
ωt

(
z̃t +

σ
√

2θ∆tẽ
1 − θ∆t

)
exp

(√
2(z̃ − (1 − θ∆t)z̃t)

σ
√

θ∆t
ẽ

)
.

(264)

Equation (262) can be computed using one-sided Gauss-Hermite quadrature (Steen,
Byrne and Gelbard, 1969).25 The results presented in Table OA.2 are computed based
on this integration method.

25The term exp
(√

2(z̃−(1−θ∆t)z̃t)

σ
√

θ∆t
ẽ
)

can introduce large numerical errors if it is too large. Thus, the
choice ∆t cannot be too small.
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Alternatively, we can compute an approximation of equation (254) by changing the
timing assumption of our model. Note that equation (254) is obtained based on the
timing assumption that the shock to idiosyncratic productivity zi,t+∆t at t + ∆t occurs
after capital accumulation over [t, t + ∆t) based on productivity zi,t. When ∆t ≈ 0,
this timing assumption yields similar results to an alternative timing assumption
under which the value of idiosyncratic productivity zi,t+∆t at t + ∆t is realized at the
beginning of [t, t + ∆t). Then capital accumulation over [t, t + ∆t) is based on zi,t+∆t.
In this case, equation (254) becomes

ωt+∆t(z̃) =
Ψt(z̃)

σ
√

θ∆t
At

At+∆t

∫ ∞

−∞
ωt(x̃)ϕ

(
z̃ − (1 − θ∆t)x̃

σ
√

θ∆t

)
dx̃, (265)

which can be rewritten as (by making a change of variable ẽ = z̃−(1−θ∆t)x̃
σ
√

2θ∆t
):

ωt+∆t(z̃) =
Ψt(z̃)√

π(1 − θ∆t)
At

At+∆t

∫ ∞

−∞
ωt

(
z̃ − σ

√
2θ∆tẽ

1 − θ∆t

)
exp(−ẽ2)dẽ. (266)

Equation (266) can be easily implemented in dynare because the kinked function Ψt(z̃)
is not part of the integrand. Thus, the integral in equation (266) can be easily computed
using Gauss-Hermite quadratures. The integral in equations (255) and (256) can then
be computed as the sum of two integrals over [−∞, z̃) and [z̃,+∞), respectively. The
integral in each interval can be computed using Gauss-Legendre quadratures.
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