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Abstract

This note includes additional materials for the paper titled “Misallocation and Asset Prices”

(Dou et al., 2024). Section 1 provides supplemental material for the model. Section 2 provides

supplemental material for empirical analyses. Section 3 describes the numerical algorithm that

solves the model.

1 Supplemental Material for Model

1.1 Discussions for the Parametric Approximation of the Distribution of ln ai,t

We provide a heuristic discussion that the actual distribution of ãi,t ≡ ln ai,t is approximately a normal
distribution. In the absence of aggregate shocks, consider the deterministic balanced growth path.
Thus, all equilibrium prices are constant as shown in Online Appendix 3.7. The productivity cutoff z
determined by equation (IA.19) in the online appendix becomes:

zκ = r f + δk. (ON.1)

Rewrite equations (2) and (21) in the main text using (ON.1) as follows:

dai,t

dt
= s(zi,t)ai,t, (ON.2)

where
s(z) = (1 + λ)κ max {z − z, 0}+ r f − ρ − δa, (ON.3)

and κ is given by equation (IA.79) in the online appendix.
To better illustrate intuitions, we rewrite (ON.2) in discrete time with a time interval ∆t ≈ 0:

ai,t+∆t = [1 + s(zi,t)∆t] ai,t. (ON.4)
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We denote ai,n ≡ ai,n∆t and zi,n ≡ zi,n∆t for n = 1, 2, .... Then, it follows that

ai,n+1 = [1 + s(zi,n)∆t] ai,n. (ON.5)

Define ξi,n ≡ ln(1 + s(zi,n)∆t)− ξ with ξ ≡ E [ln(1 + s(zi,n)∆t)], and thus (ON.5) can be written as

ln ai,n+1 = ln ai,n + ξ̄ + ξi,n. (ON.6)

For a large T > 0, suppose we set NT = T/∆t (without loss of generality, we assume that NT is
an integer), then equation (ON.6) implies

ln ai,T = ln ai,1 + (NT − 1)ξ̄ +
NT−1

∑
n=1

ξi,n. (ON.7)

In the deterministic balanced growth path, zi,n follows a stationary process evolving according to
equation (3) in the main text. Thus, the process ξi,n is also stationary.

The evolution of ln zi,n can be directly obtained from equation (3) in the main text, as follows:

ln zi,n+1 = e−θ∆t ln zi,n + σ

√
1 − e−2θ∆t

2
ε i,n+1, (ON.8)

where ε i,n+1 is a standard normal variable.
According to Andrews (1983), the process zi,n is strong mixing with mixing coefficients dominated

by an exponentially declining sequence. Let

σ2
NT

= E
[
ξ2

i,1
]
+ 2

NT−1

∑
n=1

(
1 − n

NT

)
E [ξi,1ξi,n] . (ON.9)

Using the Berry-Esseen bound developed by Tikhomirov (1980) and Bentkus, Gotze and Tikho-
moirov (1997), we obtain

sup
x

∣∣∣∣∣P
{

NT−1

∑
n=1

ξi,n ≤ σNT x

}
− Φ(x)

∣∣∣∣∣ ≤ AN−1/2
T ln2 NT, (ON.10)

where Φ(x) is the CDF of a standard normal random variable, and A is a constant that depends on
model parameters.

1.2 Output Gains from Capital Reallocation

In both the data and model, capital reallocation is procyclical as the aggregate reallocation rate is
higher in booms than recessions. Eisfeldt and Shi (2018) propose a method to quantify the cost
of misallocation fluctuations over business cycles. The key idea of this method is to measure the
potential output gain if the amount of capital reallocation observed in booms could be achieved in
recessions. This method’s main advantage is that it incorporates flow data on capital reallocation to
help measure the cost of increased misallocation during recessions. The quantity data on flows are
presumably more precisely measured than MRPK, which depends on particular model specifications.
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In the model, productive firms (zi,t ≥ zt) lease capital from unproductive firms (zi,t < zt) as
shown in Lemma 1. Thus, the aggregate reallocation rate over [t, t + dt) is given by

Realloct =
1
At

∫ ∞

zt

∫ ∞

0
λaφt(a, z)dadz = λ(1 − Ωt(zt)), (ON.11)

where 1 − Ωt(zt) captures the share of aggregate capital in the final goods sector held by productive
firms (zi,t ≥ zt). Under our calibration, zt is countercyclical, with corr(ln zt, ∆C̃t) ≈ −0.35. Thus, the
aggregate reallocation rate Realloct is procyclical even with a constant λ.

Using the method proposed by Eisfeldt and Shi (2018), we quantify the potential output gain in
recessions if the reallocation rate of capital among firms during recessions is assumed to be as high
as that during booms.1 We apply this method to both the actual data in our 1965-2016 sample and
the simulated data of our model. The estimated potential gains in recessions from capital reallocation
are 3.58% and 3.09%, respectively, indicating that misallocation fluctuations have large effects on
output fluctuations. The similarity in the two estimates provides a further validation of the model.

1.3 Budget Constraint

Consider an agent h with wealth Wh
t at t. The agent’s budget constraint is

Wh
t+dt = Wh

t − Ch
t dt + wtLh

t dt + (Qt+dt − Qt)Z
h
t + DtZ

h
t dt + r f ,tBh

t dt, (ON.12)

where Ch
t dt is the agent’s consumption over [t, t + dt), which is assumed to be locally deterministic.

The variable wtLh
t dt is the labor income over [t, t + dt). The variable (Qt+dt − Qt)Zh

t is the change in
the agent’s stock value, where Qt is the stock market value per share and Z

h
t is the number of shares

held by the agent at t. The variable DtZ
h
t dt is the dividend and r f ,tBh

t dt is the interest earnings over
[t, t + dt), with the aggregate dividend intensity Dt given by

Dt = ρAt +
∫ Nt

j=0
πj,tdj − St. (ON.13)

The wealth Wh
t consists of bonds Bh

t and a share Zh
t of the stock market:

Wh
t = QtZ

h
t + Bh

t . (ON.14)

Substituting equation (ON.14) into (ON.12), we obtain

Qt+dtZ
h
t+dt + Bh

t+dt = −Ch
t dt + wtLh

t dt + Qt+dtZ
h
t + DtZ

h
t dt + (1 + r f ,tdt)Bh

t . (ON.15)

Aggregating equation (ON.15) over all agents, we obtain

Ctdt + Qt+dtZt+dt + Bt+dt = wtLtdt + Qt+dtZt + DtZtdt + (1 + r f ,tdt)Bt. (ON.16)

1The implementation details are in Section 2.6 of this online note.
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In equilibrium, the total share is normalized to be one:

Zt = ∑
h
Z

h
t ≡ 1 for all t. (ON.17)

Thus, equation (ON.16) becomes

dBt = wtLtdt + Dtdt + r f ,tBtdt − Ctdt, (ON.18)

which is the budget constraint. Equation (ON.18) shows that dBt/dt is locally deterministic because
of our assumption that Ct is locally deterministic.

To compute dBt, we use equation (IA.25) in the online appendix,

Bt = Kt − At = At

(
Kt

At
− 1
)
= [λ − (1 + λ)Ωt(zt)]At. (ON.19)

Thus,
dBt = [λ − (1 + λ)Ωt(zt+dt)]At+dt − [λ − (1 + λ)Ωt(zt)]At. (ON.20)

The diffusion term on the right-hand side of equation (ON.20) will cancel out because dBt is locally
deterministic.

1.4 Resource Constraint

By definition, the aggregate output Ytdt is

Ytdt =
∫ ∞

zt

∫ ∞

0
yt(a, z)dtφt(a, z)dadz =

∫ ∞

0

∫ ∞

0
yt(a, z)dtφt(a, z)dadz. (ON.21)

Substituting equations (2) and (16) in the main text into the above equation and using (13), (17), (26),
(23), (24), and (25) in the main text, we obtain

Ytdt =dAt + (δadt − σa,tdWt)At + wtLtdt + (δkdt + σkdWt)Kt + r f ,tBtdt + ρAtdt

+
∫ ∞

0

∫ ∞

0

(∫ Nt

0
pj,txj,t(a, z)djdt

)
φt(a, z)dadz, (ON.22)

where the last term is the revenue of the intermediate goods sector. Using equations (5) and (19) in
the main text and the definition Xt ≡

∫
i∈I xi,tdi =

∫ ∞
0

∫ ∞
0 xt(a, z)φt(a, z)dadz, it can be simplified as

follows∫ ∞

0

∫ ∞

0

(∫ Nt

0
pj,txj,t(a, z)djdt

)
φt(a, z)dadz =

∫ Nt

0

(∫ ∞

0

∫ ∞

0
pj,txj,t(a, z)φt(a, z)dadz

)
djdt

=
∫ Nt

0
pj,tej,tdjdt

=
∫ Nt

0
πj,tdjdt +

∫ Nt

0
ej,tdjdt. (ON.23)
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Substituting equation (ON.23) into (ON.22), we obtain

Ytdt =dAt + (δadt − σa,tdWt)At + wtLtdt + (δkdt + σkdWt)Kt + r f ,tBtdt + ρAtdt

+
∫ Nt

0
πj,tdjdt +

∫ Nt

0
ej,tdjdt. (ON.24)

Substituting equation (ON.13) and the budget constraint (ON.18) into (ON.24) and using σa,t =

Kt/Atσk, we obtain the resource constraint

Ytdt = dAt + (δa At + δkKt)dt︸ ︷︷ ︸
investment in the final goods sector

+ Stdt +
∫ Nt

0
ej,tdjdt︸ ︷︷ ︸

R&D and intangible goods production

+ Ctdt + dBt. (ON.25)

Note that the resource constraint (ON.25) holds by Walras’s law in equilibrium. This can be
proved by substituting equations (30) and (36) in the main text into (ON.24), and using the condition
below ∫ ∞

0

∫ ∞

0

(∫ Nt

0
pj,txj,t(a, z)djdt

)
φt(a, z)dadz = εYtdt, (ON.26)

which simply says that the cost of purchasing intangible goods is equal to a share ε of Yt (the
derivation is similar to equation (31) in the main text).

1.5 Inspection of Key Parameters and Mechanisms

We conduct counterfactual and sensitivity analyses to illustrate the key mechanisms of the model.
Table ON.I shows how the main variables of our model respond to changes in key parameters and
variables. Column (1) presents the baseline case of our full model. In column (2), we consider a
less persistent idiosyncratic productivity by increasing θ from 0.1625 to 0.6931, which corresponds
to a reduction in the yearly autocorrelation of ln zi,t from 0.85 to 0.5. Compared with the baseline,
the average misallocation Mt increases from −0.40 to −0.12 because productive firms are more
likely to become unproductive in the future when productivity is more transitory, weakening the
self-financing channel through capital accumulation. As a result, the final goods sector’s productivity
Ht decreases from 1.94 to 1.57. The average consumption growth rate decreases to 0.21%. A lower
persistence of idiosyncratic productivity reduces the volatility of consumption growth to 1.14% and
the yearly autocorrelation of consumption growth to 0.42; moreover, aggregate TFP, output, and
misallocation all become less persistent. The Sharpe ratio declines from 0.39 in the baseline to 0.07 in
column (2).

In column (3), we consider a more restrictive collateral constraint by reducing λ from 1.1 to 1. The
average misallocation Mt remains roughly unchanged compared to the baseline. This is because the
equilibrium misallocation is mainly determined by firms’ differential speed of capital accumulation
across different productivity zi,t (i.e., the term Cov(z̃i,t, dãi,t) in equation (38) in the main text). A
change in λ does not affect this difference much because a lower λ scales down the revenue of both
high-productivity and low-productivity firms. However, reducing λ directly leads to a lower TFP
Zt in equation (33) in the main text, reflecting the instantaneous reallocation of capital through the
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Table ON.I: Inspection of key parameters.

(1) (2) (3) (4) (5) (6)

Baseline θ = 0.69 λ = 1 χ = 1.3 σk = 0.15 Mt ≡ E[Mt]

E[Mt] −0.39 −0.12 −0.39 −0.38 −0.39 −0.39

E[Ht] 1.94 1.57 1.92 1.95 1.81 1.63

E[∆C̃t] (%) 1.75 0.21 1.55 1.19 1.66 1.63

σ(∆C̃t) (%) 1.66 1.14 1.52 1.69 1.27 0.00

AC1(∆C̃t) 0.46 0.42 0.51 0.45 0.47 1.00

AC1(Mt) 0.73 0.25 0.74 0.74 0.76 1.00

σ(Mt) (%) 8.96 14.33 9.65 9.01 10.84 0.00

Sharpe ratio 0.39 0.07 0.39 0.38 0.27 −

Note: The notation ∆X̃t = ln Xt+1 − ln Xt represents difference in ln Xt between year t and year t − 1. AC1(∆C̃t) and
AC1(Mt) refer to the yearly autocorrelation of consumption growth and misallocation. When constructing the model
moments, we simulate a sample for 1, 000 years with a 100-year burn-in period, which is long enough to guarantee the
stability of these moments.

capital leasing market. The lower Ht reduces the average consumption growth rate to 1.55% and
the volatility of consumption growth to 1.52%. The persistence of consumption growth increases
from 0.46 to 0.51. The Sharpe ratio remains unchanged at 0.39 due to the offsetting effects of a lower
σ(∆C̃t) and a higher AC1(∆C̃t).

In column (4), we consider a lower productivity of R&D by reducing χ from 1.35 to 1.3. Compared
with our baseline in column (1), column (4) shows that all variables remain roughly unchanged,
except for a lower consumption growth rate (1.19% vs. 1.75% in the baseline). The lower growth rate
is determined by the productivity of R&D, rather than a better allocation of capital among firms
because Ht is roughly unchanged. The parameter χ plays a role of a scaling factor that determines
the equilibrium growth rate.

In column (5), we reduce the volatility of aggregate shocks from σk = 0.19 to σk = 0.15. This
change has a negligible effect on the average level of misallocation. However, the average productivity
of the final goods sector declines because aggregate risks change firms’ leverage decisions and hence
the aggregate Kt/At ratio. The volatility of consumption growth declines significantly from 1.66% to
1.27% whereas the yearly autocorrelation in consumption growth remains roughly unchanged. The
Sharpe ratio drops from 0.39 to 0.27 due to the lower volatility of consumption growth.

Finally, in column (6), we exogenously fix Mt at its long-run mean −0.39. In this case, the volatility
of consumption growth drops to zero and Sharpe ratio is not defined. It is not a surprising result
because in our model, aggregate shocks affect the economy through the state variable Mt.

2 Supplemental Material for Empirical Analyses

2.1 Time-series of the empirical measure of misallocation Mt.

Figure ON.1 presents a comparison between the empirical measure of misallocation Mt (illustrated by
the red solid line) and the smoothed earnings-price ratio (shown as the black dashed line) introduced
by Campbell and Shiller (1988). The smoothed earnings-price ratio and its variants are frequently
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Note: This figure plots the time series of Mt (left y-axis) and the smoothed earnings-price ratio (right y-axis) proposed by
Campbell and Shiller (1988).

Figure ON.1: Time-series plot of the empirical measure of misallocation Mt.

employed as empirical proxies for the aggregate discount rate (e.g., Gourio, 2012; Hall, 2017; Dou,
Ji and Wu, 2021, 2022). The time-series variation of this ratio typically aligns with the frequency
of business cycles. Clearly, the empirical measure of misallocation, Mt, exhibits greater persistence
compared to the smoothed earnings-price ratio, despite the two time series exhibiting positive
comovement. The yearly autocorrelation of Mt is 0.75, which is close to the calibrated persistence
of 0.77 that Bansal and Yaron (2004) find for the predictable component of consumption growth. If
misallocation Mt affects economic growth, as suggested by our model, the highly persistent and
volatile Mt appears to capture the low-frequency growth fluctuations, referred to as the medium-term
business cycle by Comin and Gertler (2006) or the growth cycle by Kung and Schmid (2015). The
observed positive comovement aligns with the model-implied interaction between misallocation and
the discount rate.

2.2 Cross-Sectional Evidence

Our theory’s main implication is that the volatile and persistent time-series variation in misallocation
captures the low-frequency component of the time-series variation in aggregate growth. Although
our model does not analyze cross-sectional implications, we provide cross-sectional evidence to
further support the theoretical mechanism. In Subsection 2.2.1, we estimate the market price of risk
for the misallocation factor and study its cross-sectional asset pricing implications. In Subsection
2.2.2, we show that firms with higher book-to-market ratios are more negatively exposed to the
misallocation factor, which provides further support that the slow-moving misallocation captures
low-frequency growth fluctuations.

2.2.1 Misallocation as A Macroeconomic Risk Factor

Our model implies that the misallocation Mt plays a significant role in determining the SDF of
representative agent through its effects on aggregate consumption growth. To examine the empirical
relevance of this mechanism, we test whether the empirical misallocation measure Mt is a risk factor
significantly priced in the cross section of assets.
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We consider standard test assets, including 25 size-sorted and book-to-market-sorted portfolios,
10 momentum-sorted portfolios, and 6 maturity-sorted Treasury bond portfolios. For each asset i, we
estimate the factor loadings using the following time-series regression:

Re
i,t = ci + ∑

k
βi,k fk,t + ε i,t, (ON.27)

where Re
i,t = Ri,t − r f ,t is the excess return of asset i over the risk-free rate and fk,t represents risk

factor k. We then estimate the cross-sectional price of risk associated with the factors fk,t by running
a cross-sectional regression of time-series average excess returns, E[Re

i,t], on risk factor exposures
estimated in equation (ON.27) as follows,

E[Re
i,t] = α + ∑

k
β̂i,kλk + ϵi, (ON.28)

where the estimated λ̂k is the price of risk for factor k and α̂ is the average cross-sectional pricing
error or zero-beta rate.

The above estimation procedure is implemented using different linear factor models. The results
are presented in Table ON.II and visualized in Figures ON.2 and ON.3. As a benchmark, column (1)
of Table ON.II reports the results of CAPM, which includes market excess returns as the single risk
factor. It clearly shows that the exposure to market risk cannot explain the spread in average returns
across portfolios. The cross-sectional intercept is statistically significant and the factor price of risk
is statistically insignificant. The pricing errors are large, with a high total mean absolute pricing
error (MAPE) of 2.764% and a low adjusted R-squared of 0.303. Column (2) of Table ON.II presents
the results based on a two-factor model that includes the year-on-year changes in the empirical
misallocation measure, ∆Mt, as an additional risk factor. The price of risk for ∆Mt is −0.079, which
is negative and statistically significant as implied by our model.2 Relative to CAPM, the adjusted
R-squared increases significantly to 0.446 and the total MAPE declines significantly to 1.465%. The
test assets are lined up very close to the 45-degree line in the two factor model (Panel B of Figure
ON.2), which is in sharp contrast to the prediction of CAPM (Panel A of Figure ON.2).

As another benchmark, column (3) of Table ON.II presents the results of the Fama-French
three-factor (FF3) model. Comparing columns (2) and (3) of Table ON.II, the FF3 model achieves
a higher adjusted R-squared of 0.619. However, the two-factor model with market returns and
the misallocation factor ∆Mt has a lower total MAPE. The two-factor model outperforms the FF3
model especially for the 10 momentum-sorted portfolios (3.721% compared to 1.964%). It is well
known that the FF3 model has a poor explanatory power for momentum-sorted portfolio returns.
The cross-sectional fit is clearly displayed in Panels B and C of Figure ON.2, which shows that the
two-factor model outperforms the FF3 model mainly due to the improved fit for momentum-sorted
portfolios. In column (4) of Table ON.II, we further include the misallocation factor ∆Mt to the FF3
model to construct a four-factor model. Compared with the FF3 model, the cross-sectional fit further
improves as shown by the lower total MAPE and higher adjusted R-squared in the four-factor model.
The improvement is mainly due to improved explanatory power for momentum-sorted portfolio.

2The magnitude of the price of risk for ∆Mt does not represent the risk premium of ∆Mt because the misallocation
factor ∆Mt does not lie in the space of excess returns.
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Table ON.II: Portfolio returns and model fit.

(1) (2) (3) (4) (5) (6) (7) (8)

Mkt Mkt, ∆M FF FF, ∆M Mkt, CG Mkt, ∆M, CG FF, CG FF, ∆M, CG

Panel A: Prices of risk

Intercept 3.336 1.425 2.665 1.781 2.438 1.412 2.336 1.464

(0.962) (1.702) (0.730) (1.177) (1.385) (1.594) (0.882) (1.263)

Mkt 4.919 6.076 3.658 5.353 4.610 5.828 4.533 6.196

(3.851) (6.237) (3.742) (5.589) (4.874) (5.750) (4.211) (5.903)

∆M −0.079 −0.078 −0.070 −0.079

(0.031) (0.030) (0.025) (0.032)

SMB 3.006 2.182 2.641 1.831

(2.874) (4.307) (3.232) (4.555)

HML 4.355 4.804 4.396 4.842

(2.975) (4.458) (3.354) (4.724)

CG 0.023 0.011 0.019 0.019

(0.011) (0.013) (0.007) (0.011)

Panel B: Test diagnostics

Total MAPE 2.764 1.465 1.902 1.450 2.029 1.393 1.955 1.469

Size and B/M 25 2.768 1.527 1.304 1.472 1.493 1.401 1.377 1.576

Momentum 10 3.304 1.964 3.721 1.975 3.617 1.970 3.713 1.753

Bond 6 1.847 0.375 1.361 0.483 1.613 0.398 1.433 0.550

Adjusted R-squared 0.303 0.446 0.619 0.705 0.453 0.531 0.629 0.718

Note: This table presents pricing results for 41 test assets, including 25 size-sorted and book-to-market-sorted portfolios,
10 momentum-sorted portfolios, and 6 maturity-sorted Treasury bond portfolios. Each model is estimated using equation
(ON.28). Mkt is the market’s excess return over the risk-free rate. ∆M is the misallocation factor, which is the year-on-year
changes in the empirical misallocation measure Mt. SMB and HML are the two factors in the FF3 model, capturing the
excess returns of small caps over big caps and of value stocks over growth stocks, respectively. Panel A reports the prices of
risk. Shanken standard errors are reported in brackets. Panel B reports test diagnostics, including MAPE and the adjusted
R-squared. The sample is yearly and spans the period from 1965 to 2016.

Our model suggests that the low-frequency component of aggregate consumption growth is
generated by the slow-moving misallocation. If this mechanism is empirically relevant, we expect the
long-run expected consumption growth to have little explanatory power for portfolio returns after
including the misallocation factor ∆Mt in linear factor models. Following Parker and Julliard (2005),
we use accumulated future consumption growth to approximate long-run expected consumption
growth. Column (5) of Table ON.II and Panel A of Figure ON.3 show that the two-factor model with
market returns and accumulated future consumption growth can fit the returns of our test portfolios
well, with an adjusted R-squared of 0.453. In column (6) of Table ON.II and Panel B of Figure ON.3,
we augment this two-factor model with the misallocation factor ∆Mt to construct a three-factor model.
We find that the relation between realized mean excess returns and predicted mean excess returns
across our test portfolios stays almost unchanged, implying that expected consumption growth and
misallocation are indeed similarly priced in the cross section of test assets. However, the coefficient
on accumulated future consumption growth becomes statistically insignificant after including ∆Mt

as a factor whereas the coefficient on ∆Mt is statistically significant. Similar patterns are shown
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Note: This figure plots the realized mean excess returns of portfolios against the expected excess returns predicted by
various linear factor asset pricing models. The sample is yearly and spans the period from 1965 to 2016.

Figure ON.2: Realized versus predicted mean excess returns in factor models with Mt.

in columns (7) and (8) of Table ON.II and Panels C and D of Figure ON.3, when we include the
misallocation factor ∆Mt in a four-factor model that contains the Fama-French three factors and
accumulated future consumption growth.

The strong pricing power of misallocation factor, as a (macro) nontradable asset pricing factor, is
an important, nontrivial empirical finding. As emphasized by Cochrane (2017), it is the sole job of
macro-finance to understand what are the primitive sources of systematic risk, by suggesting (macro)
nontradable factors, and explain why they earn a premium.3 However, not many studies find that
(macro) nontradable factors motivated by macro-finance models empirically outperform or drive out
(ad hoc) tradable factors such as Fama-French factors in explaining the cross section of expected asset
returns,4 partly because the measurement error in nontradable factors causes attenuation bias in the
estimates of factor exposures.

3Other recent reviews on macro-finance models also highlight this point (e.g., Brunnermeier, Eisenbach and Sannikov,
2012; Dou et al., 2020).

4A few exceptions include durable consumption growth (Yogo, 2006; Gomes, Kogan and Yogo, 2009), expenditure
shares of housing (Piazzesi, Schneider and Tuzel, 2007), market liquidity (Pástor and Stambaugh, 2003), intermediary
leverages (Adrian, Etula and Muir, 2014; He, Kelly and Manela, 2017), and common fund flows (Dou, Kogan and Wu,
2023), among others.
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Note: This figure plots the realized mean excess returns of portfolios against the expected excess returns predicted by
various linear factor asset pricing models. The sample is yearly and spans the period from 1965 to 2016.

Figure ON.3: Realized versus predicted mean excess returns in factor models with Mt and accumu-
lated future consumption growth.

2.2.2 Cash Flow Exposure to the Misallocation Factor

To support the key theoretical mechanism that the slow-moving misallocation drives low-frequency
growth fluctuations, we provide further cross-sectional evidence on firms’ cash flow exposure to the
misallocation factor. Our starting point is the robust evidence found in the asset pricing literature
(Bansal, Dittmar and Lundblad, 2005; Parker and Julliard, 2005; Hansen, Heaton and Li, 2008; Santos
and Veronesi, 2010): the cash flows of value firms load more positively on accumulated consumption
growth than those of growth firms. Given that a higher misallocation predicts a lower consumption
growth over long horizons in both the data and model (Panel B of Table III in the main text), if the
theoretical mechanism has empirical relevance, we should find the cash flows of value firms load
more negatively on misallocation in the data.

To test this prediction, we follow the empirical strategy of Santos and Veronesi (2010). In each
year t, we sort firms into quintiles based on their book-to-market ratios BEi,t−1/MEi,t−1 in year t − 1,
where BEi,t−1 is the book equity from Compustat and MEi,t−1 is the market equity from CRSP. For
each quintile portfolio, we compute the value-weighted return on equity (ROE) across all firms
within the portfolio, where a firm’s ROE is its income before extraordinary items divided by its
common equity. Let ROEp

t+j,j+1 denote the value-weighted ROE at year t + j of the portfolio p, which
was formed j + 1 years earlier, i.e., in year t − 1. We run a regression similar to the specification
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Table ON.III: Exposure to misallocation Mt across firms sorted on the book-to-market ratio.

BEi,t−1/MEi,t−1 Q1 (low) Q2 Q3 Q4 Q5 (high) Q5−Q1

β
p
1 0.026 −0.169 −0.331 −0.421 −0.510 −0.536

(0.143) (0.089) (0.107) (0.173) (0.183) (0.196)

Note: In each year t, we sort firms into quintiles on their book-to-market ratios BEi,t−1/MEi,t−1 in year t − 1. For each
quintile portfolio, we estimate β

p
1 according to specification (ON.29). The sample spans the period from 1965 to 2016.

Robust standard errors are reported in brackets.

adopted by Santos and Veronesi (2010), except for including accumulated misallocation shocks as an
additional independent variable:

4

∑
j=0

ρjROEp
t+j,j+1 = β

p
0 + β

p
1

4

∑
j=0

ρj∆Mt+j + β
p
2

4

∑
j=0

ρjROEMkt
t+j + εt, (ON.29)

where ρ = 0.95 is a constant as in Santos and Veronesi (2010). The variable ∆Mt is the year-on-year
changes in Mt and the variable ROEMkt

t is the ROE of the market portfolio. The coefficient of interest
is β

p
1 , which captures the loadings of accumulated ROE on accumulated misallocation shocks.
Table ON.III presents the results. The accumulated ROE of firms with high book-to-market ratios

(i.e., value firms in the quintile group 5 labeled as Q5) is significantly more negatively exposed to
accumulated year-on-year changes in misallocation than that of firms with low book-to-market ratios
(i.e., growth firms in the quintile group 1 labeled as Q1). The loadings monotonically decrease from
0.026 to −0.510 as the book-to-market ratio increases from Q1 to Q5. The difference in the loadings
between Q1 and Q5 (Q5−Q1) is −0.536, which is statistically significant.

2.3 Procedure for Nearest Neighbor Matching

For each SIC-3 industry j, we calculate the average industry characteristics during the 3-year period
before the AJCA (i.e., from 2001 to 2003), X j =

1
3 ∑2003

t=2001 Xj,t, where Xj,t is a vector of six industry
characteristics, including mean and standard deviation of firms’ sales, mean and standard deviation
of firms’ profit margin, mean and standard deviation of firms’ Tobin’s Q. We construct a firm’s
net profit margin using its income before extraordinary items divided by its sales as in Dou, Ji
and Wu (2021, 2022), and a firm’s Tobin’s Q as Tobin_Qi,t = (total_assetsi,t + market_equityi,t −
book_equityi,t)/total_asseti,t, following Gompers, Ishii and Metrick (2003).

Next, we match each treated industry with an untreated industry which has the shortest Maha-
lanobis distance from the treated industry. The Mahalanobis distance between any two industries j

and k is given by
√
(X j − µ)′Ω−1(Xk − µ), where X j and Xk represent the vectors of the six charac-

teristics of industries j and k, and µ and Ω represent the mean vector and covariance matrix of the
six characteristics. This matching process is performed with replacement in untreated industries.

The DID specifications (IA.1) to (IA.4) in the online appendix are estimated with the following
weights. Each treated industry is assigned with a weight of 1 and each untreated industry matched
to it is also assigned with a weight of 1. Because we allow for replacement, some untreated industries
could be matched to multiple treated industries. The weight for such industries is the sum of weights
across matches. For example, if an untreated industry is matched with n treated industries, its weight
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is n. If an untreated industry is not matched with any treated industry, its weight is 0.

2.4 Impacts of the AJCA on R&D

Complementary to the DID specification in Section 2 in the online appendix, we consider an
alternative empirical specification and show that our findings are robust. Specifically, we run the
following cross-sectional regression:

∆RDj = αTreatj + βX j + ε j, (ON.30)

where the independent variable X j is a vector of average industry-level characteristics over the
3-year period prior to the AJCA, including industry j’s mean and standard deviation of firms’
sales, mean and standard deviation of firms’ profit margin, mean and standard deviation of firms’
Tobin’s Q. The dependent variable ∆RDj is the change in industry-level average R&D-capital ratio
between the 3-year period prior to the AJCA and the 3-year period after the AJCA, i.e., ∆RDj =
1
3 ∑2007

t=2005 RDj,t − 1
3 ∑2003

t=2001 RDj,t. The estimated coefficient α̂ in specification (ON.30) is 0.013, with a
p-value of 0.036, indicating that the AJCA significantly increases the R&D-capital ratio of treated
industries relative to untreated industries.

Moreover, we estimate the impact of the AJCA on R&D-capital ratio, controlling for changes in
industry-level misallocation by running the following cross-sectional regression:

∆RDj = αTreatj + βX j + βM∆Mj + ε j, (ON.31)

where Mj =
1
3 ∑2007

t=2005 Mj,t − 1
3 ∑2003

t=2001 Mj,t. The estimated coefficient α̂ in specification (ON.31) is
0.013, with a p-value of 0.066, suggesting that the AJCA no longer significantly increases the R&D-
capital ratio of treated industries relative to untreated industries, after controlling for changes in
industry-level misallocation. In other words, our results suggest that the AJCA has positive impacts
on treated industries’ R&D-capital ratio mainly through the channel of reducing industry-level
misallocation.

2.5 Estimation Method of Alvarez and Jermann (2004)

We describe the estimation method of Alvarez and Jermann (2004). Alvarez and Jermann (2004)
measure the cost of business cycles and the cost of all consumption uncertainty using an approach
that does not require the specification of preferences and instead uses asset prices.

2.5.1 Measuring the Costs of Business Cycles and Uncertainty

Let V0[{x}] be the time 0 price of a security that pays {x}, which is a stochastic process for payoffs for
t ≥ 1. Consider three types of aggregate consumption processes. The process {c} represents aggregate
consumption; the process {C} represents aggregate consumption that eliminates all uncertainty, i.e.,
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Ct = E0[ct]; and the process {C} represents a moving average of aggregate consumption, given by

Ct =
K

∑
k=0

ak(1 + g)kct−k, (ON.32)

where g = E[ct+1/ct]− 1 is the unconditional expectation of consumption growth, and the one-sided
moving average coefficients {ak} satisfy ∑K

k=0 ak = 1 and are chosen to represent a low-pass filter that
lets pass frequencies that correspond to cycles of eight years and more, which is designed to remove
business cycle fluctuations. The initial condition is c0/c−k = (1 + g)k for k = 1, ..., K.

The cost of all uncertainty is defined as the ratio of the value of a claim to the deterministic
consumption process {C} to the value of a claim to the consumption process {c}:

ωun
0 =

V0[{C}]
V0[{c}] − 1 =

r0 − g
y0 − g

− 1, (ON.33)

where y0 and r0 are the yields to maturity that correspond to the prices V0[{C}] and V0[{c}],
respectively, given by

V0[{C}]
c0

=
1 + g
y0 − g

and
V0[{c}]

c0
=

1 + g
r0 − g

. (ON.34)

The cost of business cycles is defined as the ratio of the value of a claim to the smoothed
consumption process {C} to the value of a claim to the consumption process {c}:

ωbc
0 =

V0[{C}]
V0[{c}] − 1 ≈ (r0 − y)

K

∑
k=0

akk, (ON.35)

where ∑K
k=0 akk = 0.387 as set by Alvarez and Jermann (2004) based on the optimal one-sided filter

weights with K = 20. The variable y represents the real interest, which is assumed to be a constant.
Under this assumption, we have y = y0 because y0 is the yield to maturity of the deterministic
process {C}.

2.5.2 Valuing Consumption Claims

To estimate the costs of business cycles and uncertainty in equations (ON.33) and (ON.35), a crucial
step is to estimate r0, the yield to maturity of the claim to aggregate consumption {c}. This boils
down to estimating the price-dividend ratio of {c} according to equation (ON.34). Below, we describe
the estimation methods under the assumption of i.i.d. consumption growth. The estimation of the
non i.i.d. case follows Appendix C of Alvarez and Jermann (2004). When consumption growth is
i.i.d., the price-dividend ratio of {c} is a constant, Vt/ct ≡ v. Let q denote the constant price of a
security with a single payoff c′/c = ct+1/ct. Then, the price-dividend ratio is given by v = q/(1 − q).
Alvarez and Jermann (2004) present three methods to estimate q.

The first method estimates q by projecting consumption growth onto the payoff space spanned
by a set of tradable assets. Consider an observed set of J + 1 reference assets, which include a
risk-free asset. Denote by R the vector of the real total returns of these assets. Next, we project the
consumption payoff c′/c onto the payoff space by estimating the regression c′/c = bTR + u, where
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E[uR] = 0. The estimated q is the price of the part of consumption payoff c′/c spanned by R, i.e.,
q∗ = bT1, where 1 is a vector of 1.

The second method focuses on estimating a lower bound of the price q, denoted by q, based on
the J + 1 reference assets used in the first method. The lower bound of q will provide an upper
bound for the estimated costs of business cycles and uncertainty. Specifically, q solves

q = min
m≥0

E

[
m

c′

c

]
, (ON.36)

subject to

1 = E[mR] and
σ(m)

E[m]
≤ h, (ON.37)

where m is the SDF that prices all reference assets and limits the Sharpe ratio of any return to be
lower than h, with h = 1. As shown by Cochrane and Saa-Requejo (2000), without imposing the
constraint m ≥ 0, the solution of problem (ON.36) is

q = q∗ − 1
1 + y

√
h2 − h̃2

√
1 − R2 σ

(
c′

c

)
, (ON.38)

where R2 is the R-squared from the regression of c′/c on R and h̃ is the highest Sharpe ratio
achievable with the reference assets

The third method estimates q based on a parametric model for the SDF. In particular, mt+1 is
specified as follows

mt+1 = δ exp(λTft+1), (ON.39)

where ft+1 is a vector of factors with loading vector λ and δ is a constant. Using the reference assets,
factor loadings λ are estimated by generalized method of moments on

0 = E
[
exp(λTft+1) (Rt+1 − (1 + y))

]
. (ON.40)

Under the assumption that the factors and the returns are i.i.d., we estimate q through the sample
analogue to

0 = E

[
exp(λTft+1)

(
ct+1/ct

q
− (1 + y)

)]
. (ON.41)

2.5.3 Results

The implementation details of all three methods closely follow Alvarez and Jermann (2004). We use
the average real annual yield for long-term government bonds from the Federal Reserve Economic
Database to measure y, which is equal to y0 under the assumption of a constant real interest rate. The
aggregate annual consumption is measured by per-capita real personal consumption expenditures
on nondurable goods and services.

Table ON.IV presents the estimates for the costs of business cycles and uncertainty for different
specifications. Panels A and B present the estimates of the first and second methods, respectively. We
consider three sets of reference assets. In addition to a risk-free rate, the three sets include the returns
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Table ON.IV: Marginal cost of consumption fluctuations: 1965-2016.

Business cycle frequency (%) All uncertainty (%)

Panel A: Method 1

i.i.d. non i.i.d. i.i.d. non i.i.d.

Reference assets: R(Market) 0.05 0.08 21.82 33.77

Reference assets: R(10dec) 0.06 0.29 23.97 117.09

Reference assets: R(17ind) 0.01 0.16 6.03 65.24

Panel B: Method 2 (i.e., estimation of upper bound)

i.i.d. non i.i.d. i.i.d. non i.i.d.

Reference assets: R(Market) 0.53 0.84 213.08 338.12

Reference assets: R(10dec) 0.49 0.86 198.64 346.39

Reference assets: R(17ind) 0.40 0.37 160.92 150.04

Panel C: Method 3

Factors: ∆ ln ct 0.72 291.78

Factors: ∆ ln ct, R(Market) 0.47 188.78

Note: R(Market) stands for the CRSP value-weighted return covering NYSE and AMEX; R(10dec) stands for the returns of
the 10 CRSP size-decile portfolios; R(17ind) stands for the returns of the 17 industry portfolios from Kenneth R. French
Data Library. All returns are real. ∆ ln ct stands for consumption growth. The sample is yearly and spans the period from
1965 to 2016.

of the Center for Research in Security Prices (CRSP) value-weighted portfolio covering the New York
Stock Exchange (NYSE) and the American Stock Exchange (AMEX), 10 CRSP size-decile portfolios,
and 17 industry portfolios from the Kenneth R. French Data Library, respectively. For each set of
reference assets, we do the estimation for both the specification of i.i.d. consumption growth and
the specification in which consumption growth is captured by a two-state Markov regime-switching
process. Regimes are determined by splitting the sample into high and low consumption growth.
We set the cutoff at 0.5% below the average consumption growth rate in the sample to capture the
difference between recessions and expansions. Within each regime, consumption growth is i.i.d.
Panel C presents the estimates of the third method. We consider two sets of factors. In one set, we
use the log consumption growth rate as the only factor and choose λ to fit the market return. In the
other set, we additionally include the log market return as a second factor and choose λ to fit the
market return and the return difference between the smallest and largest CRSP size-decile portfolios.

2.6 Estimation Method of Eisfeldt and Shi (2018)

Following the method of Eisfeldt and Shi (2018), we compute the average output gain in recessions if
the amount of capital reallocation observed in booms could be achieved. The estimation is conducted
using the sample for constructing the empirical misallocation measure in Section 4.1 in the main text;
it takes several steps, which we describe below.
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2.6.1 Estimating Production Function

Because our goal is to get a benchmark estimate that can be compared to our model-implied estimate
for validation purposes, we estimate a production function similar to that estimated by Eisfeldt and
Shi (2018). This production function is different from the one specified in our model due to the
absence of intermediate goods. Specifically, following Eisfeldt and Shi (2018), we assume that firm i
uses a Cobb-Douglas production function to produce output Yi,t using capital Ki,t and labor Li,t.

Yi,t = zi,tKα
i,tL

βi
i,t, (ON.42)

where the parameter α is the capital share, assumed to be identical across firms, βi is the labor share,
and zi,t is the firm’s productivity. In the data, we measure firm i’s output Yi,t and capital Ki,t in year t
using its sales, salei,t, and net property, plant and equipment, ppenti,t, respectively, as in Eisfeldt and
Shi (2018). We measure firm i’s labor Li,t using its number of employees, empi,t, as in the literature
(e.g., Griffith, Harrison and Reenen, 2006).

The parameters α and βi are estimated to minimize the total squared error of the residuals,

∑i ∑t ε2
i,t, where ε i,t is the residual from the time series regression for firm i,

ln Yi,t − α ln Ki,t = ci + ϕidt + βi ln Li,t + ε i,t. (ON.43)

The dummy variable dt is an indicator for whether year t is a boom or recession year. Booms and
recessions are defined as years in which per-capita real GDP is above or below its HP filtered trend,
respectively. As in Eisfeldt and Shi (2018), firms with β̂i less than 0 or greater than 1 are dropped to
ensure that the production function has decreasing returns to scale in labor. The productivity zi,t for
each firm-year is estimated by

ẑi,t = Yi,t/(Kα̂
i,tL

β̂i
i,t). (ON.44)

2.6.2 Reallocation of Capital

In the data, the observed aggregate capital reallocation rate in year t is calculated by

Rt =
∑i sppei,t + aqci,t

∑i ati,t−1
. (ON.45)

The variables sppei,t and aqci,t are firm i’s sale of property and acquisitions in year t, which measure
capital sales and purchases by firm i, respectively. The variable ati,t−1 is firm i’s total assets in year
t− 1. We compute the average rate of capital reallocation in booms and recessions, denoted by Rb and
Rr, as the simple average of Rt over all boom years and recessions years in our sample, respectively.
We find that Rb

> Rr, consistent with the finding of Eisfeldt and Shi (2018) that capital reallocation is
procyclical.

To gauge the average output gain in recessions if the amount of capital reallocation observed in
booms could be achieved, we perform two counterfactual experiments for capital reallocation in all
recession years in our sample.

In the first counterfactual experiment, we efficiently reallocate the incremental amount of capital
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in each recession year t based on the capital stock in year t − 1 to maximize the aggregate output in
year t, subject to the observed aggregate capital reallocation rate Rt. Specifically, in each recession
year t, we solve the following problem:

Yt(Rt) = max
{K̃i,t}i

∑
i

ẑi,tK̃α̂
i,tL

β̂i
i,t, (ON.46)

subject to

∑i |K̃i,t − Ki,t−1|
∑i ati,t−1

=Rt, (ON.47)

∑
i
(K̃i,t − Ki,t−1) =0. (ON.48)

Intuitively, the constraint (ON.47) restricts the reallocation rate in year t to be the same as the one
calculated by equation (ON.45) in the data. The constraint (ON.48) restricts the total purchase of
capital to be the same as the total sales of capital. The optimal solution of K̃i,t can be obtained by a
simple numerical algorithm, which essentially reallocates the capital of firms with lowest marginal
product of capital (MPK) to those with the highest MPK. We describe the algorithm at the end of this
section.

In the second counterfactual experiment, we efficiently reallocate the incremental amount of
capital in each recession year t to maximize the aggregate output in year t, subject to the average
capital reallocation rate in booms. The constrained maximization problem is similar to (ON.46) except
for replacing Rt in the constraint (ON.47) with Rb. This constraint now becomes looser because Rb is
usually greater than Rt in recession years. Let Yt(Rb

) denote the aggregate output in recession year t
in the second counterfactual experiment.

Below, we describe the algorithm that solves problem (ON.46) in each recession year t.

(i) Based on the estimated production function, we compute the ex-ante MPK as

MPKi,t = ẑi,tα̂Kα̂−1
i,t−1Lβ̂i

i,t.

To alleviate the effect of outliers, we follow Eisfeldt and Shi (2018) and drop firms whose MPKi,t

are in the top and bottom 1%.

(ii) Sort firms by MPKi,t in descending order. Consider two cutoff productivities MPKb
t and MPKs

t ,
satisfying

min
i
(MPKi,t) < MPKs

t < MPKb
t < max

i
(MPKi,t). (ON.49)

Capital is reallocated according to the following rule

(a) Firms whose MPKi,t > MPKb
t buy an amount of capital equal to K̃i,t − Ki,t−1, where

K̃i,t =

(
MPKb

t

ẑi,t α̂L
β̂i
i,t

)1/(α̂−1)

.

(b) Firms whose MPKi,t < MPKs
t sell an amount of capital equal to Ki,t−1 − K̃i,t, where
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K̃i,t =

(
MPKs

t

ẑi,t α̂L
β̂i
i,t

)1/(α̂−1)

.

(c) The other firms whose MPKi,t ∈ [MPKs
t , MPKb

t ] do not buy or sell, i.e., K̃i,t = Ki,t−1.

The above rule ensures that, after reallocation, the MPK of all capital buyers equals MPKb
t , the

MPK of all capital sellers equals MPKs
t , and the MPK of all other firms that do not buy or sell

is between MPKs
t and MPKb

t . The values of cutoff productivities MPKb
t and MPKs

t are chosen
to satisfy the constraints (ON.47) and (ON.48), meaning

∑i∈buyers |K̃i,t − Ki,t−1|
∑i ati,t−1

=
∑i∈sellers |K̃i,t − Ki,t−1|

∑i ati,t−1
=

1
2

Rt. (ON.50)

We provide a proof for the optimality of the rule of reallocation.

Proof. First, we show that all capital buyers (and sellers) should have the same MPK after capital
reallocation. Suppose in optimum, there exist buyers i ̸= j with MPKi,t > MPKj,t. Then due to

the continuity of the output function Yi,t(K) = ẑi,tKα̂Lβ̂i
i,t, there exists a small enough ∆ > 0, such

that Yi,t(K̃i,t + ∆) + Yj,t(K̃j,t − ∆)− Yi,t(K̃i,t)− Yj,t(K̃j,t) ≥ ∆
2 (MPKi,t − MPKj,t) > 0. So moving

∆ capital from j to i increases the aggregate output while still satisfying the constraints. This
means in optimum, all buyers’ MPK must be the same and equal to MPKb

t . Similarly, all sellers’
MPK must be equal to MPKs

t .

Second, we show that all firms whose MPKi,t > MPKb
t must be capital buyers, and those whose

MPKi,t < MPKs
t must be capital sellers. Suppose in optimum, there exists firm i who does not

buy capital but its MPKi,t > MPKb
t . Let j be one of firms that buys capital. According to the

proof above, it must be the case that MPKj,t = MPKb
t . Then, there exists a small enough ∆ > 0,

such that Yi,t(K̃i,t + ∆) + Yj,t(K̃j,t − ∆) − Yi,t(K̃i,t) − Yj,t(K̃j,t) ≥ ∆
2 (MPKi,t − MPKb

t ) > 0. So
moving ∆ capital from j to i increases the aggregate output while satisfying the constraints. Thus,
all firms with MPKi,t > MPKb

t should buy capital. Similarly, all firms with MPKi,t < MPKs
t

should sell capital and the other firms whose MPKi,t ∈ [MPKs
t , MPKb

t ] do not buy or sell.

□

3 Numerical Algorithm

Our model can be solved either using a local perturbation approach or a global approach based on
value function iterations. Because the aggregate dynamics do not feature occasionally binding con-
straints or region-dependent policy rules, the local perturbation approach can be easily implemented
in dynare. Here, we present the numerical algorithm for the global approach based on value function
iterations.

We discretize the model with time interval ∆t. The Brownian motion shock dWt takes two values,√
∆t and −

√
∆t, with equal probabilities. Define Γt ≡ Cov(ãi,t, z̃i,t) = −Mtvar(z̃i,t) = −Mtσ

2/2. The
economy is summarized by the evolution of two endogenous state variables, Et ≡ Nt/At and Γt.
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We use superscripts + and − to denote variables at t + ∆t, corresponding to dWt =
√

∆t and
dWt = −

√
∆t, respectively. The endogenous state variable Γt evolves according to equation (IA.55)

in the online appendix:

Γt+∆t =Γt − θΓt∆t + Cov(z̃i,t, ∆ãi,t), (ON.51)

where Cov(z̃i,t, ∆ãi,t) is given by equation (IA.63) in the online appendix, as follows:

Cov(z̃i,t, ∆ãi,t) =
(1 + λ)σ2κt

2
exp

(
σ2

4

)
Φ
(

σ2/2 − z̃t

σ/
√

2

)
∆t

+
(1 + λ)σ

2
√

π
[(ztκt − r f ,t − δk − 0.5(1 + λ)σ2

k + σkσa,t)∆t − σkdWt] exp

(
− z̃2

t
σ2

)
. (ON.52)

Let Γ+
t+∆t and Γ−

t+∆t be the value of Γt+∆t corresponding to dWt =
√

∆t and dWt = −
√

∆t,
respectively. In equation (ON.52), the variables κt, z̃t, and r f ,t are given by equations (IA.36) and
(IA.19) in the online appendix, and the SDF, respectively, as follows:

κt = α(1 − ε)H− 1
α

t
Yt

At

At

Kt
, (ON.53)

ztκt = r f ,t + δk + σk(σξ,t(zt)− ηt), (ON.54)

r f ,t = − 1
∆t

ln
(

Et

[
Λt+∆t

Λt

])
, (ON.55)

where Yt/At, Ht, and Kt/At are functions of state variables Et and Γt, given by equations (IA.34),
(IA.50), and (IA.48) in the online appendix, respectively, as follows:

Yt

At
= (εν)

ε
1−ε HtE1−α

t

(
Kt

At

)α

, (ON.56)

Ht =

[
(1 + λ)

At

Kt
exp

(
Γt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

, (ON.57)

z̃t = Γt − Φ−1
(

1
1 + λ

Kt

At

)
σ√
2

. (ON.58)

The endogenous state variable Et evolves according to

∆Et

Et
=

∆Nt

Nt
− ∆At

At
. (ON.59)

Substituting equations (36) and (37) in the main text into the above equation, we obtain

Et+∆t

Et
=1 + χ (χqt)

1−h
h ∆t − α(1 − ε)

Yt

At
∆t + (r f ,t + δk)

Kt

At
∆t

+ (ρ + δa − δb − r f ,t)∆t. (ON.60)

Let E+
t+∆t and E−

t+∆t be the value of Et+∆t corresponding to dWt =
√

∆t and dWt = −
√

∆t, respec-
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tively.
In equation (ON.60), the variable qt = q(Et, Γt) is given by equation (6) in the main text; it is a

function of state variables (Et, Γt) and can be solved recursively as follows

q(Et, Γt) =
1

1 + δb∆t

(
πt∆t + Et

[
Λt+∆t

Λt
q(Et+∆t, Γt+∆t)

])
=

1
1 + δb∆t

(
πt∆t +

1
2

Λ+
t+∆t

Λt
q(E+

t+∆t, Γ+
t+∆t) +

1
2

Λ−
t+∆t

Λt
q(E−

t+∆t, Γ−
t+∆t)

]
, (ON.61)

where πt is given by equation (IA.38) in the online appendix:

πt =
(1 − ν)ε

Et

Yt

At
. (ON.62)

Epstein and Zin (1989) show that the SDF in equation (12) in the main text is equivalent to

Λt+∆t

Λt
=e−

δ(1−γ)
1−1/ψ ∆t

(
Ct+∆t

Ct

)− 1−γ
ψ(1−1/ψ)

(1 + Rm,t+∆t∆t)
1/ψ−γ
1−1/ψ , (ON.63)

where Rm,t+∆t is the net return on wealth (or the consumption claim’s return)

1 + Rm,t+∆t∆t =
Wt+∆t

Wt − Ct∆t
. (ON.64)

We have
Et

[
Λt+∆t

Λt
(1 + Rm,t+∆∆t)

]
= 1. (ON.65)

Substituting equations (ON.63) and (ON.64) into (ON.65), we obtain

1 = Et

[
e−

δ(1−γ)
1−1/ψ ∆t

(
Ct+∆t

Ct

)− 1−γ
ψ−1
(

Wt+∆t

Ct+∆t

Ct+∆t

Ct

1
Wt/Ct − ∆t

) 1−γ
1−1/ψ

]
. (ON.66)

Rearranging the above equation, we obtain

Wt

Ct
= ∆t + e−δ∆tEt

[(
Ct+∆t

Ct

)1−γ (Wt+∆t

Ct+∆t

) 1−γ
1−1/ψ

] 1−1/ψ
1−γ

. (ON.67)

The wealth-consumption ratio Wt/Ct is a function of state variables, denoted by WCt ≡ WC(Et, Γt).
Let C+

t+∆t and C−
t+∆t be the value of Ct+∆t corresponding to dWt =

√
∆t and dWt = −

√
∆t, respectively.

We can rewrite equation (ON.67) as

WCt = ∆t + e−δ∆t

1
2

(
C+

t+∆t

Ct

)1−γ

(WC+
t+∆t)

1−γ
1−1/ψ +

1
2

(
C−

t+∆t

Ct

)1−γ

(WC−
t+∆t)

1−γ
1−1/ψ


1−1/ψ

1−γ

, (ON.68)

where
WC+

t+∆t = WC(E+
t+∆t, Γ+

t+∆t), (ON.69)
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WC−
t+∆t = WC(E−

t+∆t, Γ−
t+∆t). (ON.70)

The aggregate consumption is given by the budget constraint (ON.18):

Ct

At
=

wt

At
+

Dt

At
+ r f ,t

Bt

At
−
(

Bt+∆t

At+∆t

At+∆t

At
− Bt

At

)
1

∆t

=
wt

At
+

Dt

At
+ r f ,t

(
Kt

At
− 1
)
−
[(

Kt+∆t

At+∆t
− 1
)

At+∆t

At
−
(

Kt

At
− 1
)]

1
∆t

. (ON.71)

Because Ct is known (i.e., dBt/Bt is locally deterministic), theoretically we have(
K+

t+∆t

A+
t+∆t

− 1

)
A+

t+∆t

At
=

(
K−

t+∆t

A−
t+∆t

− 1

)
A−

t+∆t

At
, (ON.72)

where K+
t+∆t, A+

t+∆t and K−
t+∆t, A−

t+∆t are the values of Kt+∆t, At+∆t corresponding to dWt =
√

∆t and
dWt = −

√
∆t, respectively. Because of property (ON.72), the numerical error caused by discretization

is minimized by using 0.5
(

K+
t+∆t

A+
t+∆t

− 1
)

A+
t+∆t
At

+ 0.5
(

K−
t+∆t

A−
t+∆t

− 1
)

A−
t+∆t
At

to approximate
(

Kt+∆t
At+∆t

− 1
)

At+∆t
At

in equation (ON.71). Thus, the term Ct/At ≡ CA(Et, Γt) in equation (ON.71) can be solved as a
function of state variables Et and Γt.

The consumption growth terms in equation (ON.68) are given by

C+
t+∆t

Ct
=

CA(E+
t+∆t, Γ+

t+∆t)

CA(Et, Γt)

At+∆t

At
, (ON.73)

C−
t+∆t

Ct
=

CA(E−
t+∆t, Γ−

t+∆t)

CA(Et, Γt)

At+∆t

At
. (ON.74)

The variables wt/At and Dt/At are given by (30) in the main text and (ON.13):

wt

At
≡wA(Et, Γt) = (1 − α)(1 − ε)

Yt

At
, (ON.75)

Dt

At
≡DA(Et, Γt) = ρ + (1 − ν)ε

Yt

At
− St

At
, (ON.76)

where St/At is given by equation (31) in the main text:

St

At
=

St

Nt
Et = (χq(Et, Γt))

1
h Et. (ON.77)

The variables At+∆t/At is given by equation (36) in the main text:

At+∆t

At
= 1 + α(1 − ε)

Yt

At
∆t − (r f ,t + δk)

Kt

At
∆t − (ρ + δa − r f ,t)∆t. (ON.78)

After solving the WC(Et, Γt) ratio from equation (ON.68), substituting into the equation (ON.63)
to obtain the SDF:

Λ+
t+∆t

Λt
= e−

δ(1−γ)
1−1/ψ ∆t

(
C+

t+∆t

Ct

)−γ(
WC(E+

t+∆t, Γ+
t+∆t)

WC(Et, Γt)− ∆t

) 1/ψ−γ
1−1/ψ

, (ON.79)
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Λ−
t+∆t

Λt
= e−

δ(1−γ)
1−1/ψ ∆t

(
C−

t+∆t

Ct

)−γ(
WC(E−

t+∆t, Γ−
t+∆t)

WC(Et, Γt)− ∆t

) 1/ψ−γ
1−1/ψ

. (ON.80)

Welfare. In discrete time, the preference specified in equation (10) in the main text is

Ut =

[
(1 − e−δ∆t)C1−1/ψ

t + e−δ∆t
(

Et

[
(Ut+∆t)

1−γ
]) 1−1/ψ

1−γ

] 1
1−1/ψ

. (ON.81)

Dividing both sides by Ct,

(
Ut

Ct

)1−1/ψ

= (1 − e−δ∆t) + e−δ∆t

(
Et

[(
Ct+∆t

Ct

Ut+∆t

Ct+∆t

)1−γ
]) 1−1/ψ

1−γ

. (ON.82)

Steps of Implementing the Numerical Algorithm. Following the standard practice, we discretize
the state variables (Et, Γt) into dense grids. The values that do not fall on any grid are obtained by
linear interpolation or extrapolation. We then solve the model in the steps listed below. Because we
need to solve a large number of nonlinear equations, we use the commercial nonlinear solver knitro.5

All the programs are written in C++ with parallel computing in a state-of-the-art server of 56 cores.

(1) Guess q(Et, Γt) = 0.1 for all states.

(2) Guess σξ(zt, Et, Γt) = 0 for all states.

(3) Guess η(Et, Γt) = 0 for all states.

(4) Solve the evolution of endogenous state variables Et and Γt.

(5) Solve equation (ON.68) using knitro to obtain the wealth-consumption ratio as a function of
state variables, i.e., WC(Et, Γt).

(6) Solve equations (ON.79) and (ON.80) to obtain the SDF as a function of state variables, i.e.,

Λ+
t+∆t

Λt
≡ SDF(E+

t+∆t, Γ+
t+∆t), (ON.83)

Λ−
t+∆t

Λt
≡ SDF(E−

t+∆t, Γ−
t+∆t). (ON.84)

Next, calculate the market price of risk ηt in equation (IA.14) in the online appendix as follows

η̂(Et, Γt) = −
SDF(E+

t+∆t, Γ+
t+∆t)− SDF(E−

t+∆t, Γ−
t+∆t)

2
√

∆t
. (ON.85)

If max |η̂(Et, Γt)− η(Et, Γt)| < 10−9, stop. Otherwise, jump to step (4) using η̂(Et, Γt) as the
initial guess of η(Et, Γt).

5See https://www.artelys.com/solvers/knitro for more details.
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(7) Solve managers’ problem in equation (15) in the main text to obtain σξ(zt, Et, Γt). This is
achieved in the following substeps.

(7.1) Problem (15) in the main text can be simplified because it is linear in ai,t (see equation
(IA.13) in the online appendix). This means that we only need to solve ξ(zi,t, Et, Γt)

recursively as follows

ξ(zi,t, Et, Γt) = τ∆t + Et

[
Λt+∆t

Λt

ai,t+∆t

ai,t
ξ(zi,t+∆t, Et+∆t, Γt+∆t)

]
. (ON.86)

The evolution ai,t+∆t/ai,t is given by equations (2) and (21) in the main text:

ai,t+∆t

ai,t
=1 + (1 + λ)

(
κtzi,tdt − δkdt − σkdWt − r f ,tdt

)
1zi,t≥zt

+ (r f ,t − ρ − δa)dt + σa,tdWt. (ON.87)

Substituting equation (ON.87) into (ON.86), we obtain

ξi,t =τ∆t + Et

[
Λt+∆t

Λt

[
1 + (1 + λ)

(
κtzi,tdt − δkdt − σkdWt − r f ,tdt

)
1zi,t≥zt

]
ξi,t+∆t

]
+ Et

[
Λt+∆t

Λt

[
(r f ,t − ρ − δa)dt + σa,tdWt

]
ξi,t+∆t

]
. (ON.88)

(7.2) Calculate σ̂ξ(zi,t, Et, Γt) as follows

σ̂ξ(zi,t, Et, Γt) =
ξ+

t+∆t
− ξ−

t+∆t

2ξ(zi,t, Et, Γt)
√

∆t
, (ON.89)

where

ξ+
t+∆t

=Et
[
ξ(zi,t+∆t, E+

t+∆t, Γ+
t+∆t)

]
, (ON.90)

ξ−
t+∆t

=Et
[
ξ(zi,t+∆t, E−

t+∆t, Γ−
t+∆t)

]
. (ON.91)

The expectation is taken with respect to idiosyncratic shocks in zi,t+∆t.

(7.3) Solve z(Et, Γt) using equation (ON.54), and then find the value of σ̂ξ(zt, Et, Γt).

(7.4) If max
∣∣σ̂ξ(zt, Et, Γt)− σξ(zt, Et, Γt)

∣∣ < 10−9, stop. Otherwise, jump to step (3) using
σ̂ξ(zt, Et, Γt) as the initial guess for σξ(zt, Et, Γt).

(8) Solve equation (ON.61) to obtain q̂(Et, Γt).

(9) If max |q̂(Et, Γt)− q(Et, Γt)| < 10−9, stop. Otherwise, jump to step (2) using q̂(Et, Γt) as the
initial guess for q(Et, Γt).

3.1 Higher-Degree Approximation

This section provides detailed steps for implementing the numerical approximation method in Online
Appendix 5.
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Following Algan, Allais and Den Haan (2008), we use the following functional form to approxi-
mate the capital share distribution ωt(z̃) defined in equation (27) in the main text with z̃ = ln z:

ωt(z̃) ≈ g0,t exp

(
g1,t(z̃ − m1,t) +

n

∑
i=2

[
gi,t(z̃ − m1,t)

i − mi,t

])
, (ON.92)

where m1,t, ..., mn,t correspond to the 1st, ..., nth moments of ωt(z̃), given by

m1,t =
∫ ∞

−∞
z̃ωt(z̃)dz̃, (ON.93)

mi,t =
∫ ∞

−∞
(z̃ − m1,t)

iωt(z̃)dz̃ for i = 2, ..., n. (ON.94)

When n = 2, the approximation based on equation (ON.92) is similar to our parametric approximation
method in equation (32) in the main text, with m1,t = −Mtσ

2/2 and m2,t = σ2/2.6

The evolution of mi,t for i = 1, 2, ..., n can be derived as follows. Consider a small time interval
[t, t + ∆t), equation (3) in the main text implies that z̃i,t+∆t is given by

z̃i,t+∆t = (1 − θ∆t)z̃i,t + σ
√

θ∆tε i,t, with ε i,t ∼ N(0, 1). (ON.95)

Thus, conditioning on z̃i,t at t, the probability of having z̃i,t+∆t falling in a small interval [z̃, z̃ + ∆z̃]
at t + ∆t is given by

P(z̃i,t+∆t ∈ [z̃, z̃ + ∆z̃]|z̃i,t) =Φ
(

z̃ + ∆z̃ − (1 − θ∆t)z̃i,t

σ
√

θ∆t

)
− Φ

(
z̃ − (1 − θ∆t)z̃i,t

σ
√

θ∆t

)
=ϕ

(
z̃ − (1 − θ∆t)z̃i,t

σ
√

θ∆t

)
∆z̃

σ
√

θ∆t
. (ON.96)

Equations (2) and (21) in the main text imply that ai,t+∆t is given by

ai,t+∆t

ai,t
= [1 + (r f ,t − δa − ρ)∆t] + σa,t∆Wt + (1 + λ)

[
(κtzi,t − δk − r f ,t)∆t − σk∆Wt)

]
1zi,t≥zt . (ON.97)

Thus, conditioning on z̃i,t at t and given the aggregate shock ∆Wt, to have ai,t+∆t ∈ [a, a + ∆a], we

6 Even when n = 2, the numerical approximation method does not produce identical results as our parametric
approximation method (see Table IA.III in Online Appendix 5.3). This is because the two approximation methods subtly
differ in the way they approximate the evolution of ωt(z̃). In our parametric approximation method, our assumption is
that ãi,t in the cross-section of firms follows a normal distribution for all t ≥ 0, and thus ωt(z̃) follows a normal-density
function for all t ≥ 0. In particular, both ωt(z̃) and ωt+∆t(z̃) follow a normal-density function, based on which we derive a
closed-form equation for the evolution of Mt (see equation (38) in the main text). Then, we compute the first and second
moments of ωt+∆t(z̃), which are m1,t+∆t = −Mt+∆tσ

2/2 and m2,t+∆t ≡ σ2/2, respectively, using closed-form solutions. In
other words, when implementing the parametric approximation method, we essentially first impose the assumption of
normal-density function at both t and t + ∆t, then directly derive the first and second moments m1,t+∆t and m2,t+∆t. By
contrast, in the numerical approximation method with n = 2, we fit ωt(z̃) at t using a normal density function as specified
by equation (ON.92), and then we compute the non-parametric distribution of ωt+∆t(z̃) at t + ∆t based on the evolution of
z̃i,t and ãi,t. Next, we fit ωt+∆t(z̃) using a normal density function by matching the first and second moments, m1,t+∆t and
m2,t+∆t, implied by ωt+∆t(z̃). In other words, when implementing the numerical approximation method, the first and
second moments m1,t+∆t and m2,t+∆t are computed ex-post, after we obtain the non-parametric distribution of ωt+∆t(z̃), so
the values of m1,t+∆t and m2,t+∆t are not derived based on the ex-ante assumption that ωt+∆t(z̃) follows a normal-density
function. This subtle difference in the treatment of ωt+∆t(z̃) makes the evolutions of m1,t+∆t and m2,t+∆t differ slightly,
making the results from the parametric approximation method and the numerical approximation method with n = 2
slightly different (see Table IA.III in Online Appendix 5.3).
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need
ai,t ∈

[
a

Ψt(z̃i,t)
,

a + ∆a
Ψt(z̃i,t)

]
, (ON.98)

where

Ψt(z̃i,t) = [1+ (r f ,t − δa − ρ)∆t] + σa,t∆Wt + (1+ λ)
[
(κtzi,t − δk − r f ,t)∆t − σk∆Wt)

]
1zi,t≥zt . (ON.99)

Thus, the density φt+∆t(a, z̃) is given by

φt+∆t(a, z̃)∆a∆z̃ =
∫ ∞

−∞
φt(a/Ψt(z̃i,t), z̃i,t)

∆a
Ψt(z̃i,t)

P(z̃i,t+∆t ∈ [z̃, z̃ + ∆z̃]|z̃i,t)dz̃i,t. (ON.100)

Substituting equation (ON.96) into (ON.100), we obtain

φt+∆t(a, z̃) =
1

σ
√

θ∆t

∫ ∞

−∞

1
Ψt(x̃)

φt(a/Ψt(x̃), x̃)ϕ
(

z̃ − (1 − θ∆t)x̃
σ
√

θ∆t

)
dx̃. (ON.101)

By definition of equation (27) in the main text, the capital share at t + ∆t is

ωt+∆t(z̃) =
1

At+∆t

∫ ∞

0
aφt+∆t(a, z̃)da. (ON.102)

Substituting equation (ON.101) into (ON.102), we obtain

ωt+∆t(z̃) =
1

σ
√

θ∆t
1

At+∆t

∫ ∞

−∞

(∫ ∞

0

a
Ψt(x̃)

φt(a/Ψt(x̃), x̃)da
)

ϕ

(
z̃ − (1 − θ∆t)x̃

σ
√

θ∆t

)
dx̃. (ON.103)

Define a′ = a/Ψt(x̃). Using the definition in (27) in the main text, the term
∫ ∞

0
a

Ψt(x̃) φt(a/Ψt(x̃), x̃)da
in equation (ON.103) can be written as∫ ∞

0

a
Ψt(x̃)

φt(a/Ψt(x̃), x̃)da = Ψt(x̃)
∫ ∞

0
a′φt(a′, x̃)da′ = Ψt(x̃)ωt(x̃)At. (ON.104)

Substituting equation (ON.104) into (ON.103), we obtain

ωt+∆t(z̃) =
1

σ
√

θ∆t
At

At+∆t

∫ ∞

−∞
Ψt(x̃)ωt(x̃)ϕ

(
z̃ − (1 − θ∆t)x̃

σ
√

θ∆t

)
dx̃, (ON.105)

where Ψt(x̃) is defined in equation (ON.99) with x̃ = ln x.
Using ωt+∆t(z̃) in equation (ON.105), we can compute the moments at t + ∆t as follows

m1,t+∆t =
∫ ∞

−∞
z̃ωt+∆t(z̃)dz̃, (ON.106)

mi,t+∆t =
∫ ∞

−∞
(z̃ − m1,t+∆t)

iωt+∆t(z̃)dz̃ for i = 2, ..., n, (ON.107)

which can be numerically integrated using Gauss-Legendre quadratures.

Implementation Details. Equation (ON.105) cannot be directly computed if we use a local perturba-
tion approach because the function Ψt(x̃) has a kink at x̃ = z̃t. Substituting out Ψt(x̃) using (ON.99),
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we rewrite equation (ON.105) as follows:

ωt+∆t(z̃) =
1

σ
√

θ∆t
At

At+∆t

[∫ z̃t

−∞
Ψl,tωt(x̃)ϕ

(
z̃ − (1 − θ∆t)x̃

σ
√

θ∆t

)
dx̃

+
∫ ∞

z̃t

Ψh,t(x̃)ωt(x̃)ϕ
(

z̃ − (1 − θ∆t)x̃
σ
√

θ∆t

)
dx̃
]

, (ON.108)

where

Ψl,t =[1 + (r f ,t − δa − ρ)∆t] + σa,t∆Wt, (ON.109)

Ψh,t(x̃) =[1 + (r f ,t − δa − ρ)∆t] + σa,t∆Wt + (1 + λ)
[
(κt exp(x̃)− δk − r f ,t)∆t − σk∆Wt)

]
. (ON.110)

By doing a change of variables, equation (ON.108) can be rewritten as

ωt+∆t(z̃) =
1

σ
√

θ∆t
At

At+∆t

[∫ ∞

0
Ψl,tωt(z̃t − x̃)ϕ

(
z̃ − (1 − θ∆t)(z̃t − x̃)

σ
√

θ∆t

)
dx̃ (ON.111)

+
∫ ∞

0
Ψh,t(z̃t + x̃)ωt(z̃t + x̃)ϕ

(
z̃ − (1 − θ∆t)(z̃t + x̃)

σ
√

θ∆t

)
dx̃
]

,

so that the integration regions are [0, ∞). Further, we make another change of variables by defining
ẽ = (1−θ∆t)x̃

σ
√

2θ∆t
. Equation (ON.111) becomes

ωt+∆t(z̃) =
√

2
1 − θ∆t

At

At+∆t

[∫ ∞

0
Ψl,tωt

(
z̃t −

σ
√

2θ∆tẽ
1 − θ∆t

)
ϕ

(
z̃ − (1 − θ∆t)z̃t

σ
√

θ∆t
+
√

2ẽ
)

dẽ

+
∫ ∞

0
Ψh,t

(
z̃t +

σ
√

2θ∆tẽ
1 − θ∆t

)
ωt

(
z̃t +

σ
√

2θ∆tẽ
1 − θ∆t

)
ϕ

(
z̃ − (1 − θ∆t)z̃t

σ
√

θ∆t
−
√

2ẽ
)

dẽ

]
. (ON.112)

Substituting the PDF of the standard normal distribution for ϕ(·), equation (ON.112) becomes

ωt+∆t(z̃) =
1√

π(1 − θ∆t)
exp

(
−1

2

[
z̃ − (1 − θ∆t)z̃t

σ
√

θ∆t

]2
)

At

At+∆t

[∫ ∞

0
fl,t(ẽ|z̃) exp(−ẽ2)dẽ

+
∫ ∞

0
fh,t(ẽ|z̃) exp(−ẽ2)dẽ

]
, (ON.113)

where

fl,t(ẽ|z̃) =Ψl,tωt

(
z̃t −

σ
√

2θ∆tẽ
1 − θ∆t

)
exp

(
−
√

2(z̃ − (1 − θ∆t)z̃t)

σ
√

θ∆t
ẽ

)
, (ON.114)

fh,t(ẽ|z̃) =Ψh,t

(
z̃t +

σ
√

2θ∆tẽ
1 − θ∆t

)
ωt

(
z̃t +

σ
√

2θ∆tẽ
1 − θ∆t

)
exp

(√
2(z̃ − (1 − θ∆t)z̃t)

σ
√

θ∆t
ẽ

)
. (ON.115)

Equation (ON.113) can be computed using one-sided Gauss-Hermite quadrature (Steen, Byrne
and Gelbard, 1969).7 The results presented in Table IA.III in Online Appendix 5.3 are computed

7The term exp
(√

2(z̃−(1−θ∆t)z̃t)

σ
√

θ∆t
ẽ
)

can introduce large numerical errors if it is too large. Thus, the choice of ∆t cannot be
too small.
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based on this integration method.
Alternatively, we can compute an approximation of equation (ON.105) by changing the timing

assumption of our model. Note that equation (ON.105) is obtained based on the timing assumption
that the shock to idiosyncratic productivity zi,t+∆t at t + ∆t occurs after capital accumulation over
[t, t + ∆t) based on productivity zi,t. When ∆t ≈ 0, this timing assumption yields similar results to
an alternative timing assumption under which the value of idiosyncratic productivity zi,t+∆t at t + ∆t
is realized at the beginning of [t, t + ∆t). Then capital accumulation over [t, t + ∆t) is based on zi,t+∆t.
In this case, equation (ON.105) becomes

ωt+∆t(z̃) =
Ψt(z̃)

σ
√

θ∆t
At

At+∆t

∫ ∞

−∞
ωt(x̃)ϕ

(
z̃ − (1 − θ∆t)x̃

σ
√

θ∆t

)
dx̃, (ON.116)

which can be rewritten as (by making a change of variable ẽ = z̃−(1−θ∆t)x̃
σ
√

2θ∆t
):

ωt+∆t(z̃) =
Ψt(z̃)√

π(1 − θ∆t)
At

At+∆t

∫ ∞

−∞
ωt

(
z̃ − σ

√
2θ∆tẽ

1 − θ∆t

)
exp(−ẽ2)dẽ. (ON.117)

Equation (ON.117) can be easily implemented in dynare because the kinked function Ψt(z̃) is not
part of the integrand. Thus, the integral in equation (ON.117) can be easily computed using Gauss-
Hermite quadratures. The integral in equations (ON.106) and (ON.107) can then be computed as
the sum of two integrals over [−∞, z̃) and [z̃,+∞), respectively. The integral in each interval can be
computed using Gauss-Legendre quadratures.
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