Misallocation and Asset Prices

Winston W. Dou^o Yan Ji[‡] Di Tian[‡] Pengfei Wang[†]

°University of Pennsylvania and NBER

[‡]HKUST

[†]Peking University

July, 2024

Misallocation affects the aggregate productivity level and growth rate

- Aggregate productivity levels e.g., Olley_Pakes (1996); Hsieh_Klenow (2009); Bartelsman_Haltiwanger_Scarpetta (2013)
- Economic growth rates in short-run transitions e.g., Buera_Shin (2013); Moll (2014)
- Economic growth rates in the long run
 e.g., Jones (2013); Acemoglu_Akcigit_Bloom_Kerr (2018); Peters (2020);
 König_Storesletten_Song_Zilibotti (2022)

Misallocation fluctuates over time with cyclical patterns e.g., Eisfeldt_Rampini (2006); Eisfeldt_Shi (2018)

Question: Can misallocation lead to fluctuations in economic growth, especially in its low-frequency components?

- Yes, endogenous slow-moving misallocation is pivotal
- So what? It has significant implications for asset prices (and welfare)

e., "misallocation-driven endogenous long-run risk"

Misallocation affects the aggregate productivity level and growth rate

- Aggregate productivity levels e.g., Olley_Pakes (1996); Hsieh_Klenow (2009); Bartelsman_Haltiwanger_Scarpetta (2013)
- Economic growth rates in short-run transitions e.g., Buera_Shin (2013); Moll (2014)
- Economic growth rates in the long run
 e.g., Jones (2013); Acemoglu_Akcigit_Bloom_Kerr (2018); Peters (2020);
 König_Storesletten_Song_Zilibotti (2022)

Misallocation fluctuates over time with cyclical patterns

e.g., Eisfeldt_Rampini (2006); Eisfeldt_Shi (2018)

Question: Can misallocation lead to fluctuations in economic growth, especially in its low-frequency components?

- Yes, endogenous slow-moving misallocation is pivotal
- So what? It has significant implications for asset prices (and welfare)

e., "misallocation-driven endogenous long-run risk"

Wharton

Misallocation affects the aggregate productivity level and growth rate

- Aggregate productivity levels e.g., Olley_Pakes (1996); Hsieh_Klenow (2009); Bartelsman_Haltiwanger_Scarpetta (2013)
- Economic growth rates in short-run transitions e.g., Buera_Shin (2013); Moll (2014)
- Economic growth rates in the long run
 e.g., Jones (2013); Acemoglu_Akcigit_Bloom_Kerr (2018); Peters (2020);
 König_Storesletten_Song_Zilibotti (2022)

Misallocation fluctuates over time with cyclical patterns

e.g., Eisfeldt_Rampini (2006); Eisfeldt_Shi (2018)

Question: Can misallocation lead to fluctuations in economic growth, especially in its low-frequency components?

- Yes, endogenous slow-moving misallocation is pivotal
- So what? It has significant implications for asset prices (and welfare)

., "misallocation-driven endogenous long-run risk"

Wharton

Misallocation affects the aggregate productivity level and growth rate

- Aggregate productivity levels e.g., Olley_Pakes (1996); Hsieh_Klenow (2009); Bartelsman_Haltiwanger_Scarpetta (2013)
- Economic growth rates in short-run transitions e.g., Buera_Shin (2013); Moll (2014)
- Economic growth rates in the long run
 e.g., Jones (2013); Acemoglu_Akcigit_Bloom_Kerr (2018); Peters (2020);
 König_Storesletten_Song_Zilibotti (2022)

Misallocation fluctuates over time with cyclical patterns

e.g., Eisfeldt_Rampini (2006); Eisfeldt_Shi (2018)

Question: Can misallocation lead to fluctuations in economic growth, especially in its low-frequency components?

- Yes, endogenous slow-moving misallocation is pivotal
- So what? It has significant implications for asset prices (and welfare)

i.e., "misallocation-driven endogenous long-run risk"

Overview of the theoretical framework

A general-equilibrium model with heterogeneous firms and endogenous stochastic growth

- Built on Moll (2014)
 - Endogenous misallocation in capital due to financial frictions
 - Persistent firm-level idiosyncratic productivity
- Extended in four ways, while preserving analytial tractability:
 - Public firms operated by managers with agency frictions
 - Endogenous growth through R&D (Romer, 1987, 1990)
 - Transitory aggregate shocks that drive misallocation
 - EZW preferences and the marginal q of intangible capital

Overview of the theoretical framework

A general-equilibrium model with heterogeneous firms and endogenous stochastic growth

- Built on Moll (2014)
 - Endogenous misallocation in capital due to financial frictions
 - Persistent firm-level idiosyncratic productivity
- Extended in four ways, while preserving analytial tractability:
 - Public firms operated by managers with agency frictions
 - Endogenous growth through R&D (Romer, 1987, 1990)
 - Transitory aggregate shocks that drive misallocation
 - EZW preferences and the marginal q of intangible capital

Overview of the theoretical framework

A general-equilibrium model with heterogeneous firms and endogenous stochastic growth

- Built on Moll (2014)
 - Endogenous misallocation in capital due to financial frictions
 - Persistent firm-level idiosyncratic productivity
- Extended in four ways, while preserving analytial tractability:
 - Public firms operated by managers with agency frictions
 - Endogenous growth through R&D (Romer, 1987, 1990)
 - Transitory aggregate shocks that drive misallocation
 - EZW preferences and the marginal q of intangible capital

Model = Romer + Moll

Three sectors:

- Final goods sector:
 - production capital + labor + a variety of intermediate goods
 - $\Rightarrow \text{final goods}$
 - subject to financial frictions
- Intermediate goods sector:
 - final goods \Rightarrow differentiated intermediate goods
 - blueprints \Rightarrow monopoly power
- **R&D sector:** final goods \Rightarrow blueprints

- One aggregate shock to the quality of capital (i.e., "liquidity shock")
- An idiosyncratic productivity shock for each final goods firm

Model = Romer + Moll

Three sectors:

- Final goods sector:
 - production capital + labor + a variety of intermediate goods
 - $\Rightarrow \text{final goods}$
 - subject to financial frictions
- Intermediate goods sector:
 - final goods \Rightarrow differentiated intermediate goods
 - blueprints \Rightarrow monopoly power
 - **R&D sector:** final goods \Rightarrow blueprints

- One aggregate shock to the quality of capital (i.e., "liquidity shock")
- An idiosyncratic productivity shock for each final goods firm

Model = Romer + Moll

Three sectors:

- Final goods sector:
 - production capital + labor + a variety of intermediate goods
 - $\Rightarrow \text{final goods}$
 - subject to financial frictions
- Intermediate goods sector:
 - final goods \Rightarrow differentiated intermediate goods
 - blueprints \Rightarrow monopoly power
- **R&D sector:** final goods \Rightarrow blueprints

- Done aggregate shock to the quality of capital (i.e., "liquidity shock")
- An idiosyncratic productivity shock for each final goods firm

Model = Romer + Moll

Three sectors:

- Final goods sector:
 - production capital + labor + a variety of intermediate goods
 - $\Rightarrow \text{final goods}$
 - subject to financial frictions
- Intermediate goods sector:
 - final goods \Rightarrow differentiated intermediate goods
 - blueprints \Rightarrow monopoly power
- **R&D sector:** final goods \Rightarrow blueprints

- One aggregate shock to the quality of capital (i.e., "liquidity shock")
- An idiosyncratic productivity shock for each final goods firm

Overview of the mechanism

Valuation channel due to endogenous long-run risk

Main results & contributions

Misallocation-driven fluctuations in growth are important for asset prices

- Misallocation-driven low-frequency growth fluctuations

⇒ Uncover the "dark matter" in long-run risk models

e.g., Chen_Dou_Kogan (2024); Cheng_Dou_Liao (2022)

Analytical tractability: Misallocation is a key endogenous state variable

Our theory motivates a covariance-type measure of misallocation
 e.g., Olley_Pakes (1996); Bartelsman_Haltiwanger_Scarpetta (2009, 2013)

Empirical findings support the model

- Misallocation negatively predicts R&D/consumption/output growth
- Causal effect of misallocation in production capital on R&D intensity
- Various asset pricing tests

Main results & contributions

Misallocation-driven fluctuations in growth are important for asset prices

- Misallocation-driven low-frequency growth fluctuations
 - \implies Uncover the "dark matter" in long-run risk models

e.g., Chen_Dou_Kogan (2024); Cheng_Dou_Liao (2022)

Analytical tractability: Misallocation is a key endogenous state variable

- Our theory motivates a covariance-type measure of misallocation e.g., Olley_Pakes (1996); Bartelsman_Haltiwanger_Scarpetta (2009, 2013)

Empirical findings support the model

- Misallocation negatively predicts R&D/consumption/output growth
- Causal effect of misallocation in production capital on R&D intensity
- Various asset pricing tests

Main results & contributions

Misallocation-driven fluctuations in growth are important for asset prices

- Misallocation-driven low-frequency growth fluctuations
 - \implies Uncover the "dark matter" in long-run risk models

e.g., Chen_Dou_Kogan (2024); Cheng_Dou_Liao (2022)

Analytical tractability: Misallocation is a key endogenous state variable

- Our theory motivates a covariance-type measure of misallocation e.g., Olley_Pakes (1996); Bartelsman_Haltiwanger_Scarpetta (2009, 2013)

Empirical findings support the model

- Misallocation negatively predicts R&D/consumption/output growth
- Causal effect of misallocation in production capital on R&D intensity
- Various asset pricing tests

1. Model

2. Solution and mechanism

3. Quantitative analysis

A continuum of heterogeneous firms with productivity $z_{i,t}$ and capital $a_{i,t}$

- Firms are indexed by $i \in \mathcal{I}$
- The distribution of firms is $\varphi_t(z, a)$, endogenous and varying over time

CRS technology:

$$y_{i,t} = \left[(\mathbf{z}_{i,t} \mathbf{u}_{i,t} \mathbf{k}_{i,t})^{\alpha} \ell_{i,t}^{1-\alpha} \right]^{1-\varepsilon} \mathbf{x}_{i,t}^{\varepsilon}, \text{ with } \mathbf{x}_{i,t} = \left(\int_{0}^{N_{t}} \mathbf{x}_{i,j,t}^{\nu} \mathrm{d}j \right)$$

- intermediate goods $x_{i,t}$, knowledge stock N_t (intangible capital), labor $\ell_{i,t}$
- $k_{i,t} = a_{i,t} + \widehat{a}_{i,t}$, with leased capital $\widehat{a}_{i,t}$
- $u_{i,t} \in [0, 1]$ is the utilization intensity, with costs
- $z_{i,t}$ is firm-level productivity,

 $\mathrm{d}\ln z_{i,t} = -\theta \ln z_{i,t} \mathrm{d}t + \sigma \sqrt{\theta} \mathrm{d}W_{i,t}$

A continuum of heterogeneous firms with productivity $z_{i,t}$ and capital $a_{i,t}$

- Firms are indexed by $i \in \mathcal{I}$
- The distribution of firms is $\varphi_t(z, a)$, endogenous and varying over time

CRS technology:

$$y_{i,t} = \left[(\mathbf{z}_{i,t} \mathbf{u}_{i,t} \mathbf{k}_{i,t})^{\alpha} \ell_{i,t}^{1-\alpha} \right]^{1-\varepsilon} \mathbf{x}_{i,t}^{\varepsilon}, \text{ with } \mathbf{x}_{i,t} = \left(\int_{0}^{N_{t}} \mathbf{x}_{i,j,t}^{\nu} \mathrm{d}j \right)^{\frac{1}{\nu}}$$

- intermediate goods $x_{i,t}$, knowledge stock N_t (intangible capital), labor $\ell_{i,t}$
- $k_{i,t} = a_{i,t} + \hat{a}_{i,t}$, with leased capital $\hat{a}_{i,t}$
- $u_{i,t} \in [0, 1]$ is the utilization intensity, with costs

 $u_{i,t}k_{i,t} \left(\delta_k dt + \sigma_k dW_t \right)$, where $dW_t = \text{capital quality shock}$

- $z_{i,t}$ is firm-level productivity,

 $\mathrm{d}\ln z_{i,t} = -\theta \ln z_{i,t} \mathrm{d}t + \sigma \sqrt{\theta} \mathrm{d}W_{i,t}$

A continuum of heterogeneous firms with productivity $z_{i,t}$ and capital $a_{i,t}$

- Firms are indexed by $i \in \mathcal{I}$
- The distribution of firms is $\varphi_t(z, a)$, endogenous and varying over time

CRS technology:

$$y_{i,t} = \left[(\mathbf{z}_{i,t} \mathbf{u}_{i,t} \mathbf{k}_{i,t})^{\alpha} \ell_{i,t}^{1-\alpha} \right]^{1-\varepsilon} \mathbf{x}_{i,t}^{\varepsilon}, \text{ with } \mathbf{x}_{i,t} = \left(\int_{0}^{N_{t}} \mathbf{x}_{i,j,t}^{\nu} \mathrm{d}j \right)^{\frac{1}{\nu}}$$

- intermediate goods $x_{i,t}$, knowledge stock N_t (intangible capital), labor $\ell_{i,t}$
- $k_{i,t} = a_{i,t} + \widehat{a}_{i,t}$, with leased capital $\widehat{a}_{i,t}$
- $u_{i,t} \in [0, 1]$ is the utilization intensity, with costs $u_{i,t}k_{i,t} (\delta_k dt + \sigma_k dW_t)$, where $dW_t = capital quality s$
- $z_{i,t}$ is firm-level productivity,

 $\mathrm{d}\ln z_{i,t} = -\theta \ln z_{i,t} \mathrm{d}t + \sigma \sqrt{\theta} \mathrm{d}W_{i,t}$

A continuum of heterogeneous firms with productivity $z_{i,t}$ and capital $a_{i,t}$

- Firms are indexed by $i \in \mathcal{I}$
- The distribution of firms is $\varphi_t(z, a)$, endogenous and varying over time

CRS technology:

$$y_{i,t} = \left[(\mathbf{Z}_{i,t} u_{i,t} \mathbf{k}_{i,t})^{\alpha} \ell_{i,t}^{1-\alpha} \right]^{1-\varepsilon} \mathbf{x}_{i,t}^{\varepsilon}, \text{ with } \mathbf{x}_{i,t} = \left(\int_{0}^{N_{t}} \mathbf{x}_{i,j,t}^{\nu} \mathrm{d}j \right)^{\frac{1}{\nu}}$$

- intermediate goods $x_{i,t}$, knowledge stock N_t (intangible capital), labor $\ell_{i,t}$
- $k_{i,t} = a_{i,t} + \widehat{a}_{i,t}$, with leased capital $\widehat{a}_{i,t}$
- $u_{i,t} \in [0, 1]$ is the utilization intensity, with costs

 $u_{i,t}k_{i,t} (\delta_k dt + \sigma_k dW_t)$, where $dW_t = \text{capital quality shock}$

- $z_{i,t}$ is firm-level productivity,

 $\mathrm{d}\ln z_{i,t} = -\theta \ln z_{i,t} \mathrm{d}t + \sigma \sqrt{\theta} \mathrm{d} W_{i,t}$

A continuum of heterogeneous firms with productivity $z_{i,t}$ and capital $a_{i,t}$

- Firms are indexed by $i \in \mathcal{I}$
- The distribution of firms is $\varphi_t(z, a)$, endogenous and varying over time

CRS technology:

$$y_{i,t} = \left[(\mathbf{Z}_{i,t} \mathbf{u}_{i,t} \mathbf{k}_{i,t})^{\alpha} \ell_{i,t}^{1-\alpha} \right]^{1-\varepsilon} \mathbf{x}_{i,t}^{\varepsilon}, \text{ with } \mathbf{x}_{i,t} = \left(\int_{0}^{N_{t}} \mathbf{x}_{i,j,t}^{\nu} \mathrm{d}j \right)^{\frac{1}{\nu}}$$

- intermediate goods $x_{i,t}$, knowledge stock N_t (intangible capital), labor $\ell_{i,t}$
- $k_{i,t} = a_{i,t} + \widehat{a}_{i,t}$, with leased capital $\widehat{a}_{i,t}$
- $u_{i,t} \in [0, 1]$ is the utilization intensity, with costs $u_{i,t}k_{i,t} (\delta_k dt + \sigma_k dW_t)$, where $dW_t = \text{capital quality shock}$
- $z_{i,t}$ is firm-level productivity,

$$\mathrm{d}\ln z_{i,t} = -\theta \ln z_{i,t} \mathrm{d}t + \sigma \sqrt{\theta} \mathrm{d}W_{i,t}$$

Final goods sector (continued)

Capital stock accumulation

$$da_{i,t} = a_{i,t} \left(-\delta_a dt + \sigma_a dW_t \right) + dI_{i,t}$$

$$dI_{i,t} = \underbrace{(y_{i,t} - p_t x_{i,t} - w_t \ell_{i,t} - r_{f,t} \hat{a}_{i,t}) dt}_{\text{production profits}} - \underbrace{d_{i,t} dt}_{\text{dividend}} - \underbrace{u_{i,t} k_{i,t} (\delta_k dt + \sigma_k dW_t)}_{\text{depreciation}}$$

where p_t = price of immediate goods, w_t = wage rate, and $r_{f,t}$ = riskfree rate

The capital quality shock, dW_t , is the only aggregate shock

- More productive firms choose higher $u_{i,t} \Longrightarrow$ more exposed to dW_t

 \Rightarrow Misallocation varies over time, driven by dW_t

Final goods sector (continued)

Capital stock accumulation

$$da_{i,t} = a_{i,t} \left(-\delta_a dt + \sigma_a dW_t \right) + dI_{i,t}$$

$$dI_{i,t} = \underbrace{(y_{i,t} - p_t x_{i,t} - w_t \ell_{i,t} - r_{f,t} \hat{a}_{i,t}) dt}_{\text{production profits}} - \underbrace{d_{i,t} dt}_{\text{dividend}} - \underbrace{u_{i,t} k_{i,t} (\delta_k dt + \sigma_k dW_t)}_{\text{depreciation}}$$

where p_t = price of immediate goods, w_t = wage rate, and $r_{f,t}$ = riskfree rate

The capital quality shock, dW_t , is the only aggregate shock

- More productive firms choose higher $u_{i,t} \Longrightarrow$ more exposed to dW_t

 \Rightarrow Misallocation varies over time, driven by d W_t

Final goods sector (continued)

Capital stock accumulation

$$da_{i,t} = a_{i,t} \left(-\delta_a dt + \sigma_a dW_t \right) + dI_{i,t}$$

$$dI_{i,t} = \underbrace{(y_{i,t} - p_t x_{i,t} - w_t \ell_{i,t} - r_{f,t} \hat{a}_{i,t}) dt}_{\text{production profits}} - \underbrace{d_{i,t} dt}_{\text{dividend}} - \underbrace{u_{i,t} k_{i,t} (\delta_k dt + \sigma_k dW_t)}_{\text{depreciation}}$$

where p_t = price of immediate goods, w_t = wage rate, and $r_{f,t}$ = riskfree rate

The capital quality shock, dW_t , is the only aggregate shock

- More productive firms choose higher $u_{i,t} \Longrightarrow$ more exposed to dW_t
 - \Rightarrow Misallocation varies over time, driven by dW_t

Intermediate goods sector

A continuum of homogeneous producers, indexed by $j \in [0, N_t]$

A blueprint secures monopoly power for a specific intermediate good, and producing one intermediate good requires one final good:

$$\pi_{j,t} = \max_{p_{j,t}} \underbrace{p_{j,t}e_t(p_{j,t})}_{\text{revenue}} - \underbrace{e_t(p_{j,t})}_{\text{cost}},$$

subject to the downward-sloping demand curve:

$$e_t(p_{j,t}) \equiv \left(\frac{p_{j,t}}{p_t}\right)^{\frac{1}{\nu-1}} X_t, \text{ with } X_t \equiv \int_{i \in \mathcal{I}} x_{i,t} \mathrm{d}i \text{ and } p_t = \left(\int_0^{N_t} p_{j,t}^{\frac{\nu}{\nu-1}} \mathrm{d}j\right)^{\frac{\nu-1}{\nu}}$$

The value of a blueprint $q_{j,t}$ is the marginal q of innovation, given by

$$\mathbf{0} = \Lambda_t(\pi_{j,t} - \delta_b q_{j,t}) \mathrm{d}t + \mathbb{E}_t \left[\mathrm{d} \left(\Lambda_t q_{j,t} \right) \right],$$

where Λ_t is the SDF in the equilibrium

Intermediate goods sector

A continuum of homogeneous producers, indexed by $j \in [0, N_t]$

A blueprint secures monopoly power for a specific intermediate good, and producing one intermediate good requires one final good:

$$\pi_{j,t} = \max_{p_{j,t}} \underbrace{p_{j,t} e_t(p_{j,t})}_{\text{revenue}} - \underbrace{e_t(p_{j,t})}_{\text{cost}},$$

subject to the downward-sloping demand curve:

$$\boldsymbol{\varphi}_t(\boldsymbol{p}_{j,t}) \equiv \left(\frac{\boldsymbol{p}_{j,t}}{\boldsymbol{p}_t}\right)^{\frac{1}{\nu-1}} X_t, \text{ with } X_t \equiv \int_{i \in \mathcal{I}} x_{i,t} \mathrm{d}i \text{ and } \boldsymbol{p}_t = \left(\int_0^{N_t} \boldsymbol{p}_{j,t}^{\frac{\nu}{\nu-1}} \mathrm{d}j\right)^{\frac{\nu-1}{\nu}}$$

The value of a blueprint $q_{j,t}$ is the marginal q of innovation, given by

$$\mathbf{0} = \Lambda_t(\pi_{j,t} - \delta_b q_{j,t}) \mathrm{d}t + \mathbb{E}_t \left[\mathrm{d} \left(\Lambda_t q_{j,t} \right) \right],$$

where Λ_t is the SDF in the equilibrium

Intermediate goods sector

A continuum of homogeneous producers, indexed by $j \in [0, N_t]$

A blueprint secures monopoly power for a specific intermediate good, and producing one intermediate good requires one final good:

$$\pi_{j,t} = \max_{p_{j,t}} \underbrace{p_{j,t} e_t(p_{j,t})}_{\text{revenue}} - \underbrace{e_t(p_{j,t})}_{\text{cost}},$$

subject to the downward-sloping demand curve:

$$\boldsymbol{e}_t(\boldsymbol{p}_{j,t}) \equiv \left(\frac{\boldsymbol{p}_{j,t}}{\boldsymbol{p}_t}\right)^{\frac{1}{\nu-1}} \boldsymbol{X}_t, \text{ with } \boldsymbol{X}_t \equiv \int_{i \in \mathcal{I}} \boldsymbol{x}_{i,t} \mathrm{d}i \text{ and } \boldsymbol{p}_t = \left(\int_0^{N_t} \boldsymbol{p}_{j,t}^{\frac{\nu}{\nu-1}} \mathrm{d}j\right)^{\frac{\nu-1}{\nu}}$$

The value of a blueprint $q_{j,t}$ is the marginal q of innovation, given by

$$\mathbf{0} = \Lambda_t(\pi_{j,t} - \delta_b q_{j,t}) \mathsf{d}t + \mathbb{E}_t \left[\mathsf{d} \left(\Lambda_t q_{j,t} \right) \right],$$

where Λ_t is the SDF in the equilibrium

R&D sector

A continuum of innovators, each with a success rate $\vartheta_t > 0$ for experiments

- Each R&D experiment requires the use of final goods with unity intensity

If S_t inventors do experiments, the knowledge stock N_t evolves according to:

$$dN_t = \vartheta_t S_t dt - \delta_b N_t dt$$
, with $\vartheta_t \equiv \chi \left(\frac{N_t}{S_t}\right)^h$ and $h \in (0, 1)$

Free-entry condition \implies marginal return = marginal cost:

$$q_t \vartheta_t = 1$$

A continuum of innovators, each with a success rate $\vartheta_t > 0$ for experiments

- Each R&D experiment requires the use of final goods with unity intensity

If S_t inventors do experiments, the knowledge stock N_t evolves according to:

$$dN_t = \vartheta_t S_t dt - \delta_b N_t dt$$
, with $\vartheta_t \equiv \chi \left(\frac{N_t}{S_t}\right)^h$ and $h \in (0, 1)$

Free-entry condition \implies marginal return = marginal cost:

$$q_t \vartheta_t = 1$$

A continuum of innovators, each with a success rate $\vartheta_t > 0$ for experiments

- Each R&D experiment requires the use of final goods with unity intensity

If S_t inventors do experiments, the knowledge stock N_t evolves according to:

$$dN_t = \vartheta_t S_t dt - \delta_b N_t dt$$
, with $\vartheta_t \equiv \chi \left(\frac{N_t}{S_t}\right)^h$ and $h \in (0, 1)$

Free-entry condition \implies marginal return = marginal cost:

$$q_t \vartheta_t = 1$$

Agents and financial frictions

Representative agent = workers + managers

- Identical EZW recursive preferences and perfect risk sharing
- Each manager controls and operates a final-good firm

Limited enforcement problem \Longrightarrow financial frictions

- Manager *i* extracts rents $\tau a_{i,t}$, subject to shareholders' costly invention \implies equity market constraint on the dividend flow:

$$d_{i,t} = \rho a_{i,t}$$
, with $\rho \in (\tau, 1)$

- Manager *i* can divert $\hat{a}_{i,t}/\lambda$, subject to lenders' costly asset repossession \implies collateral constraint on borrowing:

$$\widehat{a}_{i,t} \leq \lambda a_{i,t}, ext{ with } \lambda \in [1,\infty)$$

Agents and financial frictions

Representative agent = workers + managers

- Identical EZW recursive preferences and perfect risk sharing
- Each manager controls and operates a final-good firm

Limited enforcement problem \implies financial frictions

- Manager *i* extracts rents $\tau a_{i,t}$, subject to shareholders' costly invention \implies equity market constraint on the dividend flow:

$$d_{i,t} = \rho a_{i,t}$$
, with $\rho \in (\tau, 1)$

- Manager *i* can divert $\hat{a}_{i,t}/\lambda$, subject to lenders' costly asset repossession \implies collateral constraint on borrowing:

$$\widehat{a}_{i,t} \leq \lambda a_{i,t}, \text{ with } \lambda \in [1,\infty)$$

Agents and financial frictions

Representative agent = workers + managers

- Identical EZW recursive preferences and perfect risk sharing
- Each manager controls and operates a final-good firm

Limited enforcement problem \implies financial frictions

- Manager *i* extracts rents $\tau a_{i,t}$, subject to shareholders' costly invention \implies equity market constraint on the dividend flow:

$$d_{i,t} = \rho a_{i,t}$$
, with $\rho \in (\tau, 1)$

- Manager *i* can divert $\hat{a}_{i,t}/\lambda$, subject to lenders' costly asset repossession \implies collateral constraint on borrowing:

$$\widehat{a}_{i,t} \leq \lambda a_{i,t}, \text{ with } \lambda \in [1,\infty)$$

Managers' problem

The manager of firm *i* maximizes the value of his own rents $\tau a_{i,t}$

$$J_{i,t} = \max_{u_{i,s}, \widehat{a}_{i,s}, \ell_{i,s}, x_{i,j,s}} \mathbb{E}_t \left[\int_t^\infty \frac{\Lambda_s}{\Lambda_t} \tau a_{i,s} \mathrm{d}s \right],$$

subject to the financial frictions and the budget constraint

"Bang-bang" and linear solutions (similar to Moll (2014))

$$\begin{aligned} \mathcal{U}_{i,t} &= \begin{cases} 1, & z_{i,t} \geq \underline{z}_t \\ 0 & z_{i,t} < \underline{z}_t \end{cases}, \qquad k_{i,t} = \begin{cases} (1+\lambda)a_{i,t}, & z_{i,t} \geq \underline{z}_t \\ 0 & z_{i,t} < \underline{z}_t \end{cases}, \\ \ell_{i,t} &= \left[\frac{(1-\alpha)(1-\varepsilon)}{\omega_t}\right]^{\frac{1}{\alpha}} \left(\frac{\varepsilon}{p_t}\right)^{\frac{\varepsilon}{\alpha(1-\varepsilon)}} z_{i,t}\mathcal{U}_{i,t}k_{i,t}, \\ x_{i,j,t} &= \left(\frac{p_t}{p_{j,t}}\right)^{\frac{1-\varepsilon}{1-\varepsilon}} \left(\frac{\varepsilon}{p_t}\right)^{\frac{1-(1-\alpha)(1-\varepsilon)}{\alpha(1-\varepsilon)}} \left[\frac{(1-\alpha)(1-\varepsilon)}{\omega_t}\right]^{\frac{1-\alpha}{\alpha}} z_{i,t}\mathcal{U}_{i,t}k_{i,t}. \end{aligned}$$

Managers' problem

The manager of firm *i* maximizes the value of his own rents $\tau a_{i,t}$

$$J_{i,t} = \max_{u_{i,s}, \hat{a}_{i,s}, \ell_{i,s}, x_{i,j,s}} \mathbb{E}_t \left[\int_t^\infty \frac{\Lambda_s}{\Lambda_t} \tau a_{i,s} \mathrm{d}s \right],$$

subject to the financial frictions and the budget constraint

"Bang-bang" and linear solutions (similar to Moll (2014))

$$u_{i,t} = \begin{cases} 1, & z_{i,t} \ge \underline{z}_t \\ 0 & z_{i,t} < \underline{z}_t \end{cases}, \qquad k_{i,t} = \begin{cases} (1+\lambda)a_{i,t}, & z_{i,t} \ge \underline{z}_t \\ 0 & z_{i,t} < \underline{z}_t \end{cases},$$
$$\ell_{i,t} = \left[\frac{(1-\alpha)(1-\varepsilon)}{\omega_t}\right]^{\frac{1}{\alpha}} \left(\frac{\varepsilon}{p_t}\right)^{\frac{\varepsilon}{\alpha(1-\varepsilon)}} z_{i,t}u_{i,t}k_{i,t},$$
$$x_{i,j,t} = \left(\frac{p_t}{p_{j,t}}\right)^{\frac{1-\nu}{1-\nu}} \left(\frac{\varepsilon}{p_t}\right)^{\frac{1-(1-\alpha)(1-\varepsilon)}{\alpha(1-\varepsilon)}} \left[\frac{(1-\alpha)(1-\varepsilon)}{\omega_t}\right]^{\frac{1-\alpha}{\alpha}} z_{i,t}u_{i,t}k_{i,t}$$

Aggregation

The aggregate output is

$$Y_t = Z_t K_t^{\alpha} L_t^{1-\alpha},$$

where $L_t \equiv 1$ and aggregate TFP is (similar to Kung_Schmid (2015)):

$$Z_t = (\varepsilon \nu)^{\frac{\varepsilon}{1-\varepsilon}} H_t N_t^{1-\alpha} \text{ with } H_t = \left[\frac{\int_{\underline{Z}_t}^{\infty} z \omega_t(z) dz}{\int_{\underline{Z}_t}^{\infty} \omega_t(z)}\right]^{\alpha},$$

and, the capital share density $\omega_t(z)$ is

$$\omega_t(z) \equiv \frac{1}{A_t} \int_0^\infty a\varphi_t(z, a) \mathrm{d}a$$

The productivity cutoff <u>*z</u>t is pinned down by</u>*

$$\frac{K_t}{A_t} = (1+\lambda) \int_{\underline{z}_t}^{\infty} \omega_t(z) \mathrm{d}z$$

Aggregation

The aggregate output is

$$Y_t = Z_t K_t^{\alpha} L_t^{1-\alpha},$$

where $L_t \equiv 1$ and aggregate TFP is (similar to Kung_Schmid (2015)):

$$Z_t = (\varepsilon \nu)^{\frac{\varepsilon}{1-\varepsilon}} H_t N_t^{1-\alpha} \text{ with } H_t = \left[\frac{\int_{\underline{Z}_t}^{\infty} z \omega_t(z) dz}{\int_{\underline{Z}_t}^{\infty} \omega_t(z)}\right]^{\alpha},$$

and, the capital share density $\omega_t(z)$ is

$$\omega_t(z) \equiv \frac{1}{A_t} \int_0^\infty a\varphi_t(z, a) \mathrm{d}a$$

The productivity cutoff \underline{z}_t is pinned down by

$$\frac{K_t}{A_t} = (1 + \lambda) \int_{\underline{z}_t}^{\infty} \omega_t(z) \mathrm{d}z$$

1. Model

2. Solution and mechanism

3. Quantitative analysis

Challenge: $\omega_t(z)$ is an infinite-dimensional "endogenous state variable"

Parametric approximation: $(\ln z_{i,t}, \ln a_{i,t}) \sim$ **Bivariate Normal**

- $\ln z_{i,t} \sim N(0, \sigma^2/2)$
- In $a_{i,t} \approx$ Normal, if $\theta \not\approx$ 0, due to Berry-Esseen bound

Connection to standard global-solution methods based on numerical approximation

- Similarity: Use the first few moments to approximate a distribution e.g., Krusell.Smith (1997)
- Difference: Impose a parametric functional form, not "numerically fit"

Benefits: Closed-form characterization of aggregate dynamics

Challenge: $\omega_t(z)$ is an infinite-dimensional "endogenous state variable"

Parametric approximation: $(\ln z_{i,t}, \ln a_{i,t}) \sim \text{Bivariate Normal}$

- $\ln z_{i,t} \sim N(0, \sigma^2/2)$
- In $a_{i,t} \approx$ Normal, if $\theta \not\approx 0$, due to Berry-Esseen bound

Connection to standard global-solution methods based on numerical approximation

- Similarity: Use the first few moments to approximate a distribution e.g., Krusell.Smith (1997)
- Difference: Impose a parametric functional form, not "numerically fit"

Benefits: Closed-form characterization of aggregate dynamics

Challenge: $\omega_t(z)$ is an infinite-dimensional "endogenous state variable"

Parametric approximation: $(\ln z_{i,t}, \ln a_{i,t}) \sim$ Bivariate Normal

- $\ln z_{i,t} \sim N(0, \sigma^2/2)$
- In $a_{i,t} \approx$ Normal, if $\theta \not\approx 0$, due to Berry-Esseen bound

Connection to standard global-solution methods based on numerical approximation

- Similarity: Use the first few moments to approximate a distribution e.g., Krusell_Smith (1997)
- Difference: Impose a parametric functional form, not "numerically fit"

Benefits: Closed-form characterization of aggregate dynamics

Challenge: $\omega_t(z)$ is an infinite-dimensional "endogenous state variable"

Parametric approximation: $(\ln z_{i,t}, \ln a_{i,t}) \sim$ Bivariate Normal

- $\ln z_{i,t} \sim N(0, \sigma^2/2)$
- In $a_{i,t} \approx$ Normal, if $\theta \not\approx 0$, due to Berry-Esseen bound

Connection to standard global-solution methods based on numerical approximation

- Similarity: Use the first few moments to approximate a distribution e.g., Krusell_Smith (1997)
- Difference: Impose a parametric functional form, not "numerically fit"

Benefits: Closed-form characterization of aggregate dynamics

Closed-form solution for distribution and productivity

Under our approximation, $\omega_t(z)$ has the closed-form expression:

$$\omega_t(z) = \frac{1}{z\sigma\sqrt{\pi}} \exp\left[-\frac{\left(\ln z + \frac{M_t\sigma^2}{2}\right)^2}{\sigma^2}\right],$$

where $M_t \equiv -\frac{\text{Cov}(\ln z_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln z_{i,t})}$ is the misallocation measure

The aggregate TFP H_t is expressed in a closed-form:

$$\ln H_t = [...] - \frac{\alpha \sigma^2}{2} M_t$$

The aggregate R&D intensity $\frac{S_t}{A_t}$ satisfies $\ln\left(\frac{S_t}{A_t}\right) = [...] - \frac{\alpha \sigma^2}{2h}$

Closed-form solution for distribution and productivity

Under our approximation, $\omega_t(z)$ has the closed-form expression:

$$\omega_t(z) = \frac{1}{z\sigma\sqrt{\pi}} \exp\left[-\frac{\left(\ln z + \frac{M_t\sigma^2}{2}\right)^2}{\sigma^2}\right],$$

where $M_t \equiv -\frac{\text{Cov}(\ln z_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln z_{i,t})}$ is the misallocation measure

The aggregate TFP H_t is expressed in a closed-form:

$$\ln H_t = [...] - \frac{\alpha \sigma^2}{2} M_t$$

The aggregate R&D intensity $\frac{S_t}{A_t}$ satisfies $\ln\left(\frac{S_t}{A_t}\right) = [...] - \frac{\alpha\sigma^2}{2h}$

Closed-form solution for distribution and productivity

Under our approximation, $\omega_t(z)$ has the closed-form expression:

$$\omega_t(z) = \frac{1}{z\sigma\sqrt{\pi}} \exp\left[-\frac{\left(\ln z + \frac{M_t\sigma^2}{2}\right)^2}{\sigma^2}\right],$$

where $M_t \equiv -\frac{\text{Cov}(\ln z_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln z_{i,t})}$ is the misallocation measure

The aggregate TFP H_t is expressed in a closed-form:

$$\ln H_t = [...] - \frac{\alpha \sigma^2}{2} M_t$$

The aggregate R&D intensity
$$\frac{S_t}{A_t}$$
 satisfies

$$\ln\left(\frac{S_t}{A_t}\right) = [...] - \frac{\alpha \sigma^2}{2h} M_t$$

Misallocation (M_t) also reflects the distribution of MRPK:

$$M_t \equiv -\frac{\operatorname{Cov}(\ln z_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln z_{i,t})} = -\frac{\operatorname{Cov}(\ln v_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln v_{i,t})}$$

where MRPK is
$$v_{i,t} = (\varepsilon/\rho_t)^{\frac{\varepsilon}{\alpha(1-\varepsilon)}} \left[(1-\alpha)(1-\varepsilon)/w_t \right]^{\frac{1-\alpha}{\alpha}} z_{i,t}$$

Misallocation (*M_t*) motivates a covariance-type empirical measure

- Similar to the size-and-productivity covariance

e.g., Olley_Pakes (1996); Bartelsman_Haltiwanger_Scarpetta (2009, 2013)

- Different but quite related to measures based on dispersion e.g., Foster_Haltiwanger_Syverson (2008); Hsieh_Klenow (2009)
- More robust against multiplicative measurement errors compared to dispersion-based misallocation measures

Misallocation (M_t) also reflects the distribution of MRPK:

$$M_t \equiv -\frac{\operatorname{Cov}(\ln z_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln z_{i,t})} = -\frac{\operatorname{Cov}(\ln v_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln v_{i,t})}$$

where MRPK is $v_{i,t} = (\varepsilon/p_t)^{\frac{\varepsilon}{\alpha(1-\varepsilon)}} \left[(1-\alpha)(1-\varepsilon)/w_t \right]^{\frac{1-\alpha}{\alpha}} z_{i,t}$

Misallocation (M_t) motivates a covariance-type empirical measure

- Similar to the size-and-productivity covariance

e.g., Olley_Pakes (1996); Bartelsman_Haltiwanger_Scarpetta (2009, 2013)

- Different but quite related to measures based on dispersion

e.g., Foster_Haltiwanger_Syverson (2008); Hsieh_Klenow (2009)

- More robust against multiplicative measurement errors compared to dispersion-based misallocation measures

Misallocation (M_t) also reflects the distribution of MRPK:

$$M_t \equiv -\frac{\operatorname{Cov}(\ln z_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln z_{i,t})} = -\frac{\operatorname{Cov}(\ln v_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln v_{i,t})}$$

where MRPK is $v_{i,t} = (\varepsilon/p_t)^{\frac{\varepsilon}{\alpha(1-\varepsilon)}} \left[(1-\alpha)(1-\varepsilon)/w_t \right]^{\frac{1-\alpha}{\alpha}} z_{i,t}$

Misallocation (M_t) motivates a covariance-type empirical measure

- Similar to the size-and-productivity covariance

e.g., Olley_Pakes (1996); Bartelsman_Haltiwanger_Scarpetta (2009, 2013)

- Different but quite related to measures based on dispersion

e.g., Foster_Haltiwanger_Syverson (2008); Hsieh_Klenow (2009)

- More robust against multiplicative measurement errors compared to dispersion-based misallocation measures

Misallocation (M_t) also reflects the distribution of MRPK:

$$M_t \equiv -\frac{\operatorname{Cov}(\ln z_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln z_{i,t})} = -\frac{\operatorname{Cov}(\ln v_{i,t}, \ln a_{i,t})}{\operatorname{var}(\ln v_{i,t})}$$

where MRPK is $v_{i,t} = (\varepsilon/p_t)^{\frac{\varepsilon}{\alpha(1-\varepsilon)}} \left[(1-\alpha)(1-\varepsilon)/w_t \right]^{\frac{1-\alpha}{\alpha}} z_{i,t}$

Misallocation (M_t) motivates a covariance-type empirical measure

- Similar to the size-and-productivity covariance

e.g., Olley_Pakes (1996); Bartelsman_Haltiwanger_Scarpetta (2009, 2013)

- Different but quite related to measures based on dispersion e.g., Foster_Haltiwanger_Syverson (2008); Hsieh_Klenow (2009)
- More robust against multiplicative measurement errors compared to dispersion-based misallocation measures

Evolution of misallocation

The economy is characterized by the evolution of M_t :

$$\mathrm{d}M_t = -\theta M_t \mathrm{d}t - \frac{\mathrm{Cov}(\ln z_{i,t}, \mathrm{d}\ln a_{i,t})}{\mathrm{var}(\ln z_{i,t})},$$

where

$$-\frac{\operatorname{Cov}(\ln z_{i,t}, \operatorname{d} \ln a_{i,t})}{\operatorname{var}(\ln z_{i,t})} = [\cdots] \operatorname{d} t + [\cdots]_{>0} \operatorname{d} W_t$$

- Misallocation *M_t* is countercyclical
- Misallocation M_t is slow moving, with its persistence dependent on θ

 \implies Uncover the "dark matter" in long-run risk models

Evolution of misallocation

The economy is characterized by the evolution of M_t :

$$\mathrm{d}M_t = -\theta M_t \mathrm{d}t - \frac{\mathrm{Cov}(\ln z_{i,t}, \mathrm{d}\ln a_{i,t})}{\mathrm{var}(\ln z_{i,t})},$$

where

$$-\frac{\operatorname{Cov}(\ln z_{i,t}, \operatorname{d} \ln a_{i,t})}{\operatorname{var}(\ln z_{i,t})} = [\cdots] \operatorname{d} t + [\cdots]_{>0} \operatorname{d} W_t$$

- Misallocation *M_t* is countercyclical
- Misallocation M_t is slow moving, with its persistence dependent on θ
 - ⇒ Uncover the "dark matter" in long-run risk models

e.g., Chen_Dou_Kogan (2024); Cheng_Dou_Liao (2022)

Impulse responses

Consider a one-time shock to M at t = 0.

 M_t determines the final-goods sector's productivity H_t

M_t determines growth through R&D, which produces N_t

Slow-moving misallocation and growth

A one-time shock to M generates a persistent effect on growth

Comparative dynamics

Persistence of $Z_{i,t}$ \Rightarrow **Persistence of** M_t \Rightarrow **Persistence of growth**

$$\mathrm{d}M_t = -\theta M_t \mathrm{d}t - \frac{\mathrm{Cov}(\ln z_{i,t}, \mathrm{d}\ln a_{i,t})}{\mathrm{var}(\ln z_{i,t})},$$

Comparative dynamics

Persistence of $z_{i,t}$ \Rightarrow **Persistence of** M_t \Rightarrow **Persistence of growth**

$$\mathsf{d} M_t = -\theta M_t \mathsf{d} t - \frac{\mathsf{Cov}(\ln z_{i,t}, \mathsf{d} \ln a_{i,t})}{\mathrm{var}(\ln z_{i,t})},$$

The half-life of the growth rate's transition is 3.0, 4.2, and 6.9 years

1. Model

2. Solution and mechanism

3. Quantitative analysis

Misallocation measure

A measure of misallocation directly motivated by the model:

$$\boldsymbol{a}_{i,t} = lpha_t + eta_t^{\mathsf{Alloc}} imes \mathbf{Z}_{i,t} + arepsilon_{i,t},$$

where

$$a_{i,t} = T^{-1} \sum_{\tau=1}^{T} \ln(ppent_{i,t+1-\tau})$$
 and $z_{i,t} = T^{-1} \sum_{\tau=1}^{T} \ln\left(\frac{sales_{i,t+1-\tau}}{\widehat{ppent}_{i,t+1-\tau}}\right)$

Discussions:

- We use $ppent_{i,t+1-\tau}$ to account for leased capital e.g., Rauh-Sufi (2011); Rampini-Viswanathan (2013)
- We also use "tangible net worth" to construct *a*_{*i*,*t*} as robustness results e.g., Chava-Roberts (2008); Roberts-Sufi (2009); Sufi (2009)

The misallocation measure is

 $\widehat{M}_t=$ the HP filtered time series of $-eta_t^{ extsf{Alloc}}$

Misallocation measure

A measure of misallocation directly motivated by the model:

$$\boldsymbol{a}_{i,t} = lpha_t + eta_t^{\mathsf{Alloc}} imes \mathbf{Z}_{i,t} + arepsilon_{i,t},$$

where

$$a_{i,t} = T^{-1} \sum_{\tau=1}^{T} \ln(ppent_{i,t+1-\tau})$$
 and $z_{i,t} = T^{-1} \sum_{\tau=1}^{T} \ln\left(\frac{sales_{i,t+1-\tau}}{\widehat{ppent}_{i,t+1-\tau}}\right)$

Discussions:

- We use $\widehat{ppent}_{i,t+1-\tau}$ to account for leased capital e.g., Rauh-Sufi (2011); Rampini-Viswanathan (2013)
- We also use "tangible net worth" to construct *a*_{*i*,*t*} as robustness results e.g., Chava-Roberts (2008); Roberts-Sufi (2009); Sufi (2009)

The misallocation measure is

 $\widehat{M}_t =$ the HP filtered time series of $-eta_t^{Alloc}$

The value of \widehat{M}_t increases sharply in 7 of the 9 economic downturns

\widehat{M}_t is slow moving

Yearly autocorrelation of \widehat{M}_t is 0.75,

- In line with Bansal_Yaron (2004)'s calibration for the persistence of expected growth rates

Majority of standard parameters are set following the literature

Set $exp(-\theta) = 0.85$, following Asker_Collard-Wexler_De Loecker (2014)

Four parameters are internally calibrated to match four moments

Parameter	Symbol	Value	Moments	Data	Model
Subjective discount rate	δ	0.01	Real risk-free rate (%)	1.11	1.58
R&D productivity	χ	1.35	Consumption growth rate (%)	1.76	1.75
Capital depreciation shock	σ_k	0.19	Consumption growth vol. (%)	1.50	1.67
Dividend payout rate	ρ	0.037	Dividend yield (%)	2.35	2.14

Untargeted moments in data and model

Moments	Data	Model	Moments	Data	Model
		Panel A: Con	sumption moments		
$AC1(\Delta \ln C_t)$ (%)	0.44	0.46	$AC2(\Delta \ln C_t)$ (%)	0.08	0.28
$AC5(\Delta \ln C_t)$ (%)	-0.01	0.00	$AC10(\Delta \ln C_t)$ (%)	0.06	-0.06
$VR2(\Delta \ln C_t)$ (%)	1.52	1.46	$VR5(\Delta \ln C_t)$ (%)	2.02	2.21
		Panel B: (Other moments		
$AC1(\Delta \ln S_t)$ (%)	0.30	0.42	AC1(M _t) (%)	0.75	0.73
$SR[R_{w,t}]$	0.36	0.39	$\sigma[r_{f,t}] \ (\%)$	2.06	0.47

	R&D ir	ntensity	
	t -	+ 1	
	Data	Model	
β	-0.106***	-0.039***	
	[-3.793]	[-9.065]	

	R&D in	tensity	Consumpt	ion growth	
	<i>t</i> +	- 1	$t \rightarrow t$	t + 5	
	Data	Model	Data	Model	
β	-0.106***	-0.039***	-0.227***	-0.276***	
	[-3.793]	[-9.065]	[-3.781]	[-3.436]	

	R&D ir	ntensity	Consumpt	ion growth	Output	growth
	<i>t</i> +	⊢ 1	t ightarrow	t + 5	$t \rightarrow$	<i>t</i> + 5
	Data	Model	Data	Model	Data	Model
β	-0.106***	-0.039***	-0.227***	-0.276***	-0.218**	-0.233***
	[-3.793]	[-9.065]	[-3.781]	[-3.436]	[-2.492]	[-3.123]

	(1)
	Baseline
$\mathbb{E}[R_{w t}^{e}] (\%)$	0.54
$\sigma[R_{w,t}^e]$ (%)	1.39
$SR[R_{w,t}]$	0.39
$\mathbb{E}[r_{f,t}]$ (%)	1.58
$\sigma[r_{f,t}]$ (%)	0.47
$rac{\sigma[\Lambda_{t+1}/\Lambda_t]}{\mathbb{E}[\Lambda_{t+1}/\Lambda_t]}$	0.61

	(1)	(2)
	Baseline	$M_t \equiv \mathbb{E}[M_t]$
$\mathbb{E}[R_{w,t}^e]$ (%)	0.54	0
$\sigma[R_{w,t}^e]$ (%)	1.39	0
$SR[R_{w,t}]$	0.39	_
$\mathbb{E}[r_{f,t}]$ (%)	1.58	1.87
$\sigma[r_{f,t}]$ (%)	0.47	0
$rac{\sigma[\Lambda_{t+1}/\Lambda_t]}{\mathbb{E}[\Lambda_{t+1}/\Lambda_t]}$	0.61	0

	(1)	(2)	(3)
	Baseline	$M_t \equiv \mathbb{E}[M_t]$	$\mathrm{d}\textit{N}_t\equiv 0$
$\mathbb{E}[R^e_{w,t}]$ (%)	0.54	0	0.02
$\sigma[R_{w,t}^e]$ (%)	1.39	0	0.72
$SR[R_{w,t}]$	0.39	_	0.02
$\mathbb{E}[r_{f,t}]$ (%)	1.58	1.87	0.98
$\sigma[r_{f,t}]$ (%)	0.47	0	0.34
$\frac{\sigma[\Lambda_{t+1}/\Lambda_t]}{\mathbb{E}[\Lambda_{t+1}/\Lambda_t]}$	0.61	0	0.03

	(1)	(2)	(3)	(4)	(5)
	Baseline	$M_t \equiv \mathbb{E}[M_t]$	$\mathrm{d}\textit{N}_t\equiv 0$	e	$-\theta$
				= 0.2	= 0.45
$\mathbb{E}[R^e_{w,t}] \ (\%)$	0.54	0	0.02	0.01	0.08
$\sigma[R_{w,t}^e]$ (%)	1.39	0	0.72	1.17	1.09
$SR[R_{w,t}]$	0.39	_	0.02	0.01	0.08
$\mathbb{E}[r_{f,t}]$ (%)	1.58	1.87	0.98	1.93	1.88
$\sigma[r_{f,t}]$ (%)	0.47	0	0.34	0.33	0.41
$\frac{\sigma[\Lambda_{t+1}/\Lambda_t]}{\mathbb{E}[\Lambda_{t+1}/\Lambda_t]}$	0.61	0	0.03	0.06	0.10

	(1) Baseline	(2) $M_t \equiv \mathbb{E}[M_t]$	$\begin{array}{c} (3) \\ {\sf d} {\sf N}_t \equiv 0 \end{array}$	(4) e	(5) -θ	(6) CRRA (γ	(7) $\psi = 1/\psi$)
				= 0.2	= 0.45	= 1.5	= 3
$\mathbb{E}[R_{w,t}^e]$ (%)	0.54	0	0.02	0.01	0.08	0.02	0.02
$\sigma[R_{w,t}^e]$ (%)	1.39	0	0.72	1.17	1.09	1.01	0.57
$SR[R_{w,t}]$	0.39	_	0.02	0.01	0.08	0.02	0.04
$\mathbb{E}[r_{f,t}]$ (%)	1.58	1.87	0.98	1.93	1.88	3.60	6.17
$\sigma[r_{f,t}]$ (%)	0.47	0	0.34	0.33	0.41	0.47	0.57
$rac{\sigma[\Lambda_{t+1}/\Lambda_t]}{\mathbb{E}[\Lambda_{t+1}/\Lambda_t]}$	0.61	0	0.03	0.06	0.10	0.03	0.05

Key: low-frequency growth fluctuations + recursive preferences

	(1) Baseline	(2) $M_t \equiv \mathbb{E}[M_t]$	(3) d $N_t \equiv 0$	(4) e	(5) -θ	(6) CRRA (γ	(7) $\psi = 1/\psi$)
				= 0.2	= 0.45	= 1.5	= 3
$\mathbb{E}[R_{w,t}^e]$ (%)	0.54	0	0.02	0.01	0.08	0.02	0.02
$\sigma[R_{w,t}^e]$ (%)	1.39	0	0.72	1.17	1.09	1.01	0.57
$SR[R_{w,t}]$	0.39	_	0.02	0.01	0.08	0.02	0.04
$\mathbb{E}[r_{f,t}]$ (%)	1.58	1.87	0.98	1.93	1.88	3.60	6.17
$\sigma[r_{f,t}]$ (%)	0.47	0	0.34	0.33	0.41	0.47	0.57
$\frac{\sigma[\Lambda_{t+1}/\Lambda_t]}{\mathbb{E}[\Lambda_{t+1}/\Lambda_t]}$	0.61	0	0.03	0.06	0.10	0.03	0.05

Key: low-frequency growth fluctuations + recursive preferences

Welfare implications

In the model, all growth fluctuations are driven by misallocation fluctuations

- Estimate welfare gains from eliminate fluctuations

	(1) Baseline	$\begin{array}{c} (2) \\ \mathrm{d} N_t \equiv 0 \end{array}$	(3) <i>e</i>	$ (3) \qquad (4) \\ e^{-\theta} $		(5) (6) CRRA ($\gamma=1/\psi$)	
			= 0.2	= 0.45	= 1.5	= 3	
Welfare gains (%)	10.34		0.24			0.65	

Key: low-frequency growth fluctuations + recursive preferences

Tight connection between asset prices and welfare costs

e.g., Alverez_Jermann (2004, 2005)

Welfare implications

In the model, all growth fluctuations are driven by misallocation fluctuations

- Estimate welfare gains from eliminate fluctuations

	(1)	(2)	(3)	(4)	(5)	(6)
	Baseline	$dN_t \equiv 0$	e ⁻⁰		$-$ CRRA (γ	$\psi = 1/\psi$
Welfare gains (%)	10.34	0.33	0.24	0.45	0.58	0.65
vvenare gams (%)	10.34	0.33	0.24	0.90	0.56	0.05

Key: low-frequency growth fluctuations + recursive preferences

Tight connection between asset prices and welfare costs

e.g., Alverez_Jermann (2004, 2005)

Conclusions

A tractable model to link misallocation, growth, and asset prices

- Agency conflicts and the resultant financial frictions are crucial
- A valuation channel is pivotal in the quantitative relationships

Misallocation drives low-frequency growth fluctuations

- Cross-section is informative for long-term time-series evolution
- Misallocation uncovers the "dark matter" in long-run risk models
- Misallocation explains asset returns as a powerful macro factor
- Shocks that lead to misallocation fluctuations have large welfare costs

