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What is “AI-powered trading?”

AI-powered trading:

Algorithmic trading system + reinforcement-learning (“RL”) algorithms

RL algo is a key approach of AI, and serves as the backbone of “AlphaGo”

Note: # possible legal moves (≈ 10170) ≫ # atoms in the universe (≈ 1080)

Note: Capacity of RL-backed AI algos ≫ human cognitive capacity for specific tasks
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RL algorithms are model-free and self-learning

A multi-agent system, where each agent is indexed by i and solves

Vi(s) = max
xi∈X

{E [ui |s, xi ] + ρE [Vi(s′)|s, xi ]} , where i = 1, · · · , I,

- s = state in current period, and s′ = state in next period
- ρ = discount factor
- ui = payoff of agent i , also depending on the actions of other agents x−i

RL algorithms solve the Bellman equation on a model-free, self-learning basis,
without assuming

- The system is already in equilibrium

- Agents know the true distribution of states and payoffs
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Q-learning: A foundation of numerous RL algorithms

Qi(s,x i) = value function of agent i when taking action xi in state s

Note: Dynamically sophisticated by tracing endogenous state transitions, unlike bandit algorithms

V i(s) = max
x′∈X

Qi(s,x ′), with Qi ’s recursive relation:

Qi(s, xi) ≡ E
[
ui + ρmax

x′∈X
Qi(s′, x ′)

∣∣∣∣s, xi

]

Estimate Qi(s,x) through Q̂i,t(s,x), employing Q̂i,t ’s recursive updating:

Q̂i,t+1(st , xi,t) = α

[
ui,t + ρmax

x′∈X
Q̂i,t(st+1, x ′)

]
︸ ︷︷ ︸

new experimental data

+ (1 − α)Q̂i,t(st , xi,t)︸ ︷︷ ︸
previous learning

The update of Q̂i,t+1 takes place at (st ,x i,t), where xi,t is chosen as:

xi,t =

 argmax
x′∈X

Q̂i,t(st , x ′), with prob. 1 − εt (exploitation)

x̃ ∼ uniform on X, with prob. εt (exploration)
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Outline

1. Motivation

2. Laboratory framework & theoretical benchmark

3. Simulation experiments

– Q-learning algorithms in trading

– Experimental configuration and setup

– Simulation results
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Rise of AI in financial and retail markets

SEC approves Nasdaq’s AI trading system

- Using RL algos that better facilitate AI trading

Other examples:

- FX digital trading platforms (e.g., MetaTrader)

- Crypto trading platforms

AI pricing algos in e-commerce, gasoline, and housing rental markets
e.g., Chen Mislove Wilson (2016), Assad Clark Ershov Xu (2023)

- Notably, “AI collusion” has emerged as a new potential antitrust challenge

- Definition: Autonomous self-interested algos learn to achieve and maintain
coordination without agreement, communication, or even intention

- Lawsuits were filed, and congress was urged to reform Antitrust Law
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SEC: Risk of AI-driven market manipulation?

This paper: “AI collusion” can robustly arise through two distinct mechanisms,
undermining competition and market efficiency

- Market liquidity ↓
⇒ Funding liquidity ↓ ⇒ financial market instability ↑ (real effects, existing studies)

- Price informativeness ↓ + mispricing ↑
⇒ Distortion in real decisions ↑ ⇒ fundamental value ↓ (real effects, existing studies)

Our approach: A proof-of-concept experimental study on AI trading algos
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Extend “static” Kyle (1985) to a repeated-trading setting

Within each period t:

(1) Fundamental value of an asset: vt ∼i.i.d. N(v , σ2
v )

A continuum of noise traders place a collective order flow: ut ∼i.i.d. N(0, σ2
u)

(2) Each of I oligopolistic informed speculator i knows vt (not ut ) and solves

Vi(st) = max
xi,t

E [(vt − pt)xi,t + ρVi(st+1)|st , xi,t ] ,

where pt is market price, and st includes vt and public information before t

(3) A continuum of information-insensitive investors with a demand curve:

zt = −ξ(pt − v), with ξ > 0, (e.g., Kyle Xiong, 2001)

(4) A market maker observes yt =
∑I

i=1 xi,t + ut and knows the zt schedule,
then determines pt as follows:

min
pt

(yt + zt)
2︸ ︷︷ ︸

“inventory costs”

+ θE[(pt − vt)
2|yt ],︸ ︷︷ ︸

“pricing errors”

with θ > 0 and θ ≈ 0

7 / 19



Extend “static” Kyle (1985) to a repeated-trading setting

Within each period t:

(1) Fundamental value of an asset: vt ∼i.i.d. N(v , σ2
v )

A continuum of noise traders place a collective order flow: ut ∼i.i.d. N(0, σ2
u)

(2) Each of I oligopolistic informed speculator i knows vt (not ut ) and solves

Vi(st) = max
xi,t

E [(vt − pt)xi,t + ρVi(st+1)|st , xi,t ] ,

where pt is market price, and st includes vt and public information before t

(3) A continuum of information-insensitive investors with a demand curve:

zt = −ξ(pt − v), with ξ > 0, (e.g., Kyle Xiong, 2001)

(4) A market maker observes yt =
∑I

i=1 xi,t + ut and knows the zt schedule,
then determines pt as follows:

min
pt

(yt + zt)
2︸ ︷︷ ︸

“inventory costs”

+ θE[(pt − vt)
2|yt ],︸ ︷︷ ︸

“pricing errors”

with θ > 0 and θ ≈ 0

7 / 19



Theoretical benchmarks

Non-collusive Nash equilibrium (N)
Speculators do not internalize the impact of their trading on others’ profits

Perfect cartel benchmark (M)
Speculators collaborate to trade as a unified monopoly, then split the order flow

Collusive equilibrium (C)
Speculators reach and sustain a steady state characterized by two properties:

- Supra-competitive profits for all speculators

- Short-term gains from unilateral deviation at others’ expense
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Two mechanisms for collusive equilibrium

1. Collusive (Nash) equilibrium through price-trigger strategies
(akin to Green Porter, 1984)

Speculators adopt “conservative” trading strategy xC
i,t = χC(vt − v), anticipating

Expected pC
t = v + φC(vt − v)

Once pt deviates significantly from the expected pC
t , speculators revert to the

non-collusive Nash equilibrium for T periods with probability η each period

2. Collusive (experience-based) equilibrium through self-confirming bias
(akin to Fudenberg Levine, 1993; Fershtman Pakes, 2012)

Speculators adopt “conservative” trading strategy xC
i,t = χC(vt − v), believing

χC = optimal trading strategy due to biased evaluations

Self-confirming bias: correct on the equilibrium path but incorrect off the path
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Existence of collusive equilibrium

Proposition 1: A collusive (Nash) equilibrium exists, only if

- ξ−1 is low (i.e., price efficiency is low); and

- σu/σv is low (i.e., noise trading risk is low)

Intuition: Sustaining price-trigger collusion requires two conditions:

(i) Sufficient information rents to provide collusion incentives, and

(ii) High price informativeness for effective monitoring

Proposition 2: A collusive (experience-based) equilibrium always exists, but
particularly pronounced if

- σu/σv is high (i.e., noise trading risk is high)

Intuition: Collusive profits are primarily derived from trading against noise traders
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RL algorithms as experimental subjects

Replace each RE informed speculator i with a Q-learning algo Q̂i,t(st ,x i,t):

- Payoff: πi,t = (vt − pt)xi,t

- State variable: st = {pt−1, vt−1, vt}

- Exploration rate: εt = e−βt

Replace RE market maker with a statistically adaptive agent

- Linear regressions using “historical data” Dt ≡ {vt−τ ,pt−τ , zt−τ , yt−τ}Tm
τ=1

- Results will not change with a Q-learning market maker
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Baseline parameter values

Environment parameters:

I = 2, σu/σv = 10−1, and ξ = 500

Preference parameters:

ρ = 0.95, and θ = 0.1

Discretization parameters:

nx = 15, np = 31, nv = 10, and Tm = 10,000

Hyperparameters:

α = 0.01 and β = 10−7

Note: AI traders do not have prior knowledge of environment parameters
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AI Collusion: Two distinct mechanisms

∆ = π − πN

πM − πN captures the collusion profitability, with π = average trading profit
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[
ξ = 500; σu/σv = 10−1

]
: Price-trigger strategies
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[
ξ = 500;σu/σv = 102

]
Self-confirming bias in learning
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Summary of our main findings

“Price Efficiency” = the degree to which a price reflects the conditional expected fundamental value

“Noise Trading Risk” = the magnitude of noise trading relative to the variation in the fundamental
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Folk Theorem: Price-trigger strategies (σu/σv = 10−1)
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No Folk Theorem: Self-confirming bias (σu/σv = 102)
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Conclusion

This paper studies the “psychology” of AI traders

- Theory of learning in games is useful for understanding AI equilibrium

“AI collusion” emerges without communication or intended codes

- Through price-trigger strategies (artificial “intelligence”)

- Through self-confirming bias (artificial “stupidity”)

“AI collusion” undermines market efficiency

- Reduced market liquidity

- Diminished price informativeness

- Increased mispricing

Policy innovations (future research)

- Rethink the market manipulation law

- Deploy AI algos on the platform to counteract “AI collusion”

- Prevent AI concentration and homogenization
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