Al-Powered Trading, Algorithmic Collusion, and Price Efficiency

Winston W. Dou^{\lambda} Itay Goldstein^{\lambda} Yan Ji[†]

°University of Pennsylvania and NBER

[†]Hong Kong University of Science and Technology

July, 2024

What is "AI-powered trading?"

Al-powered trading:

Algorithmic trading system + reinforcement-learning ("RL") algorithms

RL algo is a key approach of AI, and serves as the backbone of "AlphaGo"

Note: # possible legal moves ($\approx 10^{170}$) \gg # atoms in the universe ($\approx 10^{80}$)

Capacity of RL-backed AI algos \gg human cognitive capacity for specific tasks

RL algorithms are model-free and self-learning

A multi-agent system, where each agent is indexed by *i* and solves

$$V_i(\boldsymbol{s}) = \max_{x_i \in \mathcal{X}} \left\{ \mathbb{E} \left[u_i | \boldsymbol{s}, x_i \right] + \rho \mathbb{E} \left[V_i(\boldsymbol{s}') | \boldsymbol{s}, x_i \right] \right\}, \text{ where } i = 1, \cdots, I,$$

- s = state in current period, and s' = state in next period
- $\rho = \text{discount factor}$
- u_i = payoff of agent *i*, also depending on the actions of other agents x_{-i}

RL algorithms solve the Bellman equation on a model-free, self-learning basis, without assuming

- The system is already in equilibrium
- Agents know the true distribution of states and payoffs

RL algorithms are model-free and self-learning

A multi-agent system, where each agent is indexed by *i* and solves

 $V_i(s) = \max_{x_i \in \mathfrak{X}} \left\{ \mathbb{E} \left[u_i | s, x_i \right] + \rho \mathbb{E} \left[V_i(s') | s, x_i \right] \right\}, \text{ where } i = 1, \cdots, I,$

- s = state in current period, and s' = state in next period
- $\rho = \text{discount factor}$
- u_i = payoff of agent *i*, also depending on the actions of other agents x_{-i}

RL algorithms solve the Bellman equation on a model-free, self-learning basis, without assuming

- The system is already in equilibrium
- Agents know the true distribution of states and payoffs

$Q_i(s, x_i) =$ value function of agent *i* when taking action x_i in state *s*

Note: Dynamically sophisticated by tracing endogenous state transitions, unlike bandit algorithms

$$V_i(s) = \max_{x' \in \mathcal{X}} Q_i(s, x'), \text{ with } Q_i \text{'s recursive relation:}$$

 $Q_i(s, x_i) \equiv \mathbb{E} \left[u_i + \rho \max_{x' \in \mathcal{X}} Q_i(s', x') \middle| s, x_i
ight]$

Estimate $Q_i(s, x)$ through $\widehat{Q}_{i,t}(s, x)$, employing $\widehat{Q}_{i,t}$'s recursive updating:

$$\widehat{Q}_{i,t+1}(s_t, x_{i,t}) = \underbrace{\alpha \left[u_{i,t} + \rho \max_{x' \in \mathcal{X}} \widehat{Q}_{i,t}(s_{t+1}, x') \right]}_{\text{previous learning}} + \underbrace{(1 - \alpha) \widehat{Q}_{i,t}(s_t, x_{i,t})}_{\text{previous learning}}$$

The update of $\widehat{Q}_{i,t+1}$ takes place at $(s_t, x_{i,t})$, where $x_{i,t}$ is chosen as:

 $x_{i,t} = \begin{cases} \underset{x' \in \mathcal{X}}{\operatorname{argmax}} \widehat{Q}_{i,t}(s_t, x'), & \text{with prob. } 1 - \varepsilon_t & \text{(exploitation)} \\ \widetilde{x} \sim \text{uniform on } \mathcal{X}, & \text{with prob. } \varepsilon_t & \text{(exploration)} \end{cases}$

$Q_i(s, x_i) =$ value function of agent *i* when taking action x_i in state *s*

Note: Dynamically sophisticated by tracing endogenous state transitions, unlike bandit algorithms

$$V_i(s) = \max_{x' \in \mathcal{X}} Q_i(s, x')$$
, with Q_i 's recursive relation:
 $Q_i(s, x_i) \equiv \mathbb{E} \left[u_i + \rho \max_{x' \in \mathcal{X}} Q_i(s', x') \middle| s, x_i \right]$

Estimate $Q_i(s, x)$ through $\widehat{Q}_{i,t}(s, x)$, employing $\widehat{Q}_{i,t}$'s recursive updating:

$$\widehat{Q}_{i,t+1}(s_t, x_{i,t}) = \underbrace{\alpha \left[u_{i,t} + \rho \max_{x' \in \mathcal{X}} \widehat{Q}_{i,t}(s_{t+1}, x') \right]}_{\text{previous learning}} + \underbrace{(1 - \alpha) \widehat{Q}_{i,t}(s_t, x_{i,t})}_{\text{previous learning}}$$

The update of $\widehat{Q}_{i,t+1}$ takes place at $(s_t, x_{i,t})$, where $x_{i,t}$ is chosen as:

 $x_{i,t} = \begin{cases} \underset{x' \in \mathcal{X}}{\operatorname{argmax}} \widehat{Q}_{i,t}(s_t, x'), & \text{with prob. } 1 - \varepsilon_t & \text{(exploitation)} \\ \widetilde{x} \sim \text{uniform on } \mathcal{X}, & \text{with prob. } \varepsilon_t & \text{(exploration)} \end{cases}$

$Q_i(s, x_i) =$ value function of agent *i* when taking action x_i in state *s*

Note: Dynamically sophisticated by tracing endogenous state transitions, unlike bandit algorithms

$$m{V}_i(m{s}) = \max_{m{x}' \in \mathcal{X}} m{Q}_i(m{s}, m{x}'), ext{ with } m{Q}_i ext{'s recursive relation:}$$

 $m{Q}_i(m{s}, x_i) \equiv \mathbb{E} \left[m{u}_i +
ho \max_{m{x}' \in \mathcal{X}} m{Q}_i(m{s}', m{x}') \middle| m{s}, x_i
ight]$

Estimate $Q_i(s, x)$ through $\widehat{Q}_{i,t}(s, x)$, employing $\widehat{Q}_{i,t}$'s recursive updating:

$$\widehat{Q}_{i,t+1}(\boldsymbol{s}_{t},\boldsymbol{x}_{i,t}) = \underbrace{\alpha \left[\boldsymbol{u}_{i,t} + \rho \max_{\boldsymbol{x}' \in \mathcal{X}} \widehat{Q}_{i,t}(\boldsymbol{s}_{t+1},\boldsymbol{x}') \right]}_{\text{new experimental data}} + \underbrace{(1-\alpha)\widehat{Q}_{i,t}(\boldsymbol{s}_{t},\boldsymbol{x}_{i,t})}_{\text{previous learning}}$$

The update of $\hat{Q}_{i,t+1}$ takes place at $(s_t, x_{i,t})$, where $x_{i,t}$ is chosen as:

 $x_{i,t} = \begin{cases} \underset{x' \in \mathcal{X}}{\operatorname{argmax}} \widehat{Q}_{i,t}(s_t, x'), & \text{with prob. } 1 - \varepsilon_t & \text{(exploitation)} \\ \widetilde{x} \sim \text{uniform on } \mathcal{X}, & \text{with prob. } \varepsilon_t & \text{(exploration)} \end{cases}$

$Q_i(s, x_i) =$ value function of agent *i* when taking action x_i in state *s*

Note: Dynamically sophisticated by tracing endogenous state transitions, unlike bandit algorithms

$$m{V}_i(m{s}) = \max_{m{x}' \in \mathcal{X}} m{Q}_i(m{s}, m{x}'), ext{ with } m{Q}_i ext{'s recursive relation:}$$
 $m{Q}_i(m{s}, x_i) \equiv \mathbb{E} \left[m{u}_i +
ho \max_{m{x}' \in \mathcal{X}} m{Q}_i(m{s}', m{x}') \middle| m{s}, x_i
ight]$

Estimate $Q_i(s, x)$ through $\widehat{Q}_{i,t}(s, x)$, employing $\widehat{Q}_{i,t}$'s recursive updating:

$$\widehat{Q}_{i,t+1}(s_t, x_{i,t}) = \underbrace{\alpha \left[u_{i,t} + \rho \max_{x' \in \mathcal{X}} \widehat{Q}_{i,t}(s_{t+1}, x') \right]}_{\text{new experimental data}} + \underbrace{(1 - \alpha) \widehat{Q}_{i,t}(s_t, x_{i,t})}_{\text{previous learning}}$$

The update of $\widehat{Q}_{i,t+1}$ takes place at $(s_t, x_{i,t})$, where $x_{i,t}$ is chosen as:

$$\mathbf{x}_{i,t} = \begin{cases} \operatorname{argmax}_{x' \in \mathcal{X}} \widehat{Q}_{i,t}(\mathbf{s}_t, \mathbf{x}'), & \text{with prob. } 1 - \varepsilon_t & \text{(exploitation)} \\ \widetilde{\mathbf{x}} \sim \text{uniform on } \mathcal{X}, & \text{with prob. } \varepsilon_t & \text{(exploration)} \end{cases}$$

1. Motivation

2. Laboratory framework & theoretical benchmark

3. Simulation experiments

- Q-learning algorithms in trading
- Experimental configuration and setup
- Simulation results

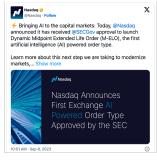
Rise of AI in financial and retail markets

SEC approves Nasdaq's AI trading system

- Using RL algos that better facilitate AI trading

Other examples:

- FX digital trading platforms (e.g., MetaTrader)
- Crypto trading platforms



Al pricing algos in e-commerce, gasoline, and housing rental markets e.g., Chen_Mislove_Wilson (2016), Assad_Clark_Ershov_Xu (2023)

- Notably, "Al collusion" has emerged as a new potential antitrust challenge
- <u>Definition:</u> Autonomous self-interested algos learn to achieve and maintain coordination without agreement, communication, or even intention
- · Lawsuits were filed, and congress was urged to reform Antitrust Law

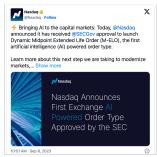
Rise of AI in financial and retail markets

SEC approves Nasdaq's AI trading system

- Using RL algos that better facilitate AI trading

Other examples:

- FX digital trading platforms (e.g., MetaTrader)
- Crypto trading platforms



Al pricing algos in e-commerce, gasoline, and housing rental markets

e.g., Chen_Mislove_Wilson (2016), Assad_Clark_Ershov_Xu (2023)

- Notably, "Al collusion" has emerged as a new potential antitrust challenge
- <u>Definition:</u> Autonomous self-interested algos learn to achieve and maintain coordination without agreement, communication, or even intention
- Lawsuits were filed, and congress was urged to reform Antitrust Law

SEC: Risk of AI-driven market manipulation?

SEC Chair, Gary Gensler, has warned that

"Financial market instability, or even a financial crisis, caused by AI is nearly unavoidable without regulation.

"Even if the humans aren't talking, the machines will start to have a sense of cooperation. We've already seen this in high-frequency trading."

- Price informativeness \downarrow + mispricing \uparrow

Our approach: A proof-of-concept experimental study on AI trading algos Wharton

SEC: Risk of AI-driven market manipulation?

SEC Chair, Gary Gensler, has warned that

"Financial market instability, or even a financial crisis, caused by AI is nearly unavoidable without regulation.

"Even if the humans aren't talking, the machines will start to have a sense of cooperation. We've already seen this in high-frequency trading."

This paper: "Al collusion" can robustly arise through two distinct mechanisms, undermining competition and market efficiency

Market liquidity ↓

- \Rightarrow Funding liquidity $\downarrow \Rightarrow$ financial market instability \uparrow (real effects, existing studies)
- Price informativeness ↓ + mispricing ↑
 - \Rightarrow Distortion in real decisions $\uparrow \Rightarrow$ fundamental value \downarrow (real effects, existing studies)

Our approach: A proof-of-concept experimental study on AI trading algos

1. Motivation

2. Laboratory framework & theoretical benchmark

3. Simulation experiments

- Q-learning algorithms in trading
- Experimental configuration and setup
- Simulation results

Extend "static" Kyle (1985) to a repeated-trading setting

Within each period t:

(1) Fundamental value of an asset: $v_t \sim^{i.i.d.} N(\overline{v}, \sigma_v^2)$

A continuum of noise traders place a collective order flow: $u_t \sim^{i.i.d.} N(0, \sigma_u^2)$

(2) Each of I oligopolistic informed speculator i knows v_t (not u_t) and solves

$$V_i(\boldsymbol{s}_t) = \max_{\boldsymbol{x}_{i,t}} \mathbb{E}\left[(\boldsymbol{v}_t - \boldsymbol{p}_t) \boldsymbol{x}_{i,t} + \rho V_i(\boldsymbol{s}_{t+1}) | \boldsymbol{s}_t, \boldsymbol{x}_{i,t} \right],$$

where p_t is market price, and s_t includes v_t and public information before t

3) A continuum of information-insensitive investors with a demand curve:

 $z_t = -\xi(p_t - \overline{\nu}), \text{ with } \xi > 0,$ (e.g., Kyle_Xiong, 2001)

(4) A market maker observes $y_t = \sum_{i=1}^{l} x_{i,t} + u_t$ and knows the z_t schedule, then determines p_t as follows:

$$\min_{p_t} \underbrace{(y_t + z_t)^2}_{\text{"inventory costs"}} + \theta \underbrace{\mathbb{E}[(p_t - v_t)^2 | y_t]}_{\text{"pricing errors"}}, \text{ with } \theta > 0 \text{ and } \theta \approx 0$$

Extend "static" Kyle (1985) to a repeated-trading setting

Within each period t:

(1) Fundamental value of an asset: $v_t \sim^{i.i.d.} N(\overline{v}, \sigma_v^2)$

A continuum of noise traders place a collective order flow: $u_t \sim^{i.i.d.} N(0, \sigma_u^2)$

(2) Each of I oligopolistic informed speculator i knows v_t (not u_t) and solves

$$V_i(\boldsymbol{s}_t) = \max_{\boldsymbol{x}_{i,t}} \mathbb{E}\left[(\boldsymbol{v}_t - \boldsymbol{p}_t) \boldsymbol{x}_{i,t} + \rho V_i(\boldsymbol{s}_{t+1}) | \boldsymbol{s}_t, \boldsymbol{x}_{i,t} \right],$$

where p_t is market price, and s_t includes v_t and public information before t

(3) A continuum of information-insensitive investors with a demand curve:

$$z_t = -\xi(p_t - \overline{v}), \text{ with } \xi > 0,$$
 (e.g., Kyle_Xiong, 2001)

(4) A market maker observes $y_t = \sum_{i=1}^{l} x_{i,t} + u_t$ and knows the z_t schedule, then determines p_t as follows:

$$\min_{p_t} \underbrace{(y_t + z_t)^2}_{\text{"inventory costs"}} + \theta \underbrace{\mathbb{E}[(p_t - v_t)^2 | y_t]}_{\text{"pricing errors"}}, \quad \text{with } \theta > 0 \text{ and } \theta \approx 0$$

7/19

Non-collusive Nash equilibrium (N)

Speculators do not internalize the impact of their trading on others' profits

Perfect cartel benchmark (M)

Speculators collaborate to trade as a unified monopoly, then split the order flow

Collusive equilibrium (*C***)**

Speculators reach and sustain a steady state characterized by two properties:

- Supra-competitive profits for all speculators
- Short-term gains from unilateral deviation at others' expense

Two mechanisms for collusive equilibrium

1. Collusive (Nash) equilibrium through price-trigger strategies (akin to Green_Porter, 1984)

Speculators adopt "conservative" trading strategy $x_{i,t}^{C} = \chi^{C}(v_{t} - \overline{v})$, anticipating

Expected
$$p_t^C = \overline{v} + \varphi^C (v_t - \overline{v})$$

Once p_t deviates significantly from the expected p_t^c , speculators revert to the non-collusive Nash equilibrium for *T* periods with probability η each period

2. Collusive (experience-based) equilibrium through self-confirming bias (akin to Fudenberg_Levine, 1993; Fershtman_Pakes, 2012)

Speculators adopt "conservative" trading strategy $x_{i,t}^{C} = \chi^{C}(v_{t} - \overline{v})$, believing

 $\chi^{\mathcal{C}} =$ optimal trading strategy due to biased evaluations

Self-confirming bias: correct on the equilibrium path but incorrect off the path

Two mechanisms for collusive equilibrium

1. Collusive (Nash) equilibrium through price-trigger strategies (akin to Green_Porter, 1984)

Speculators adopt "conservative" trading strategy $x_{i,t}^{C} = \chi^{C}(v_{t} - \overline{v})$, anticipating

Expected
$$p_t^C = \overline{v} + \varphi^C (v_t - \overline{v})$$

Once p_t deviates significantly from the expected p_t^C , speculators revert to the non-collusive Nash equilibrium for *T* periods with probability η each period

2. Collusive (experience-based) equilibrium through self-confirming bias (akin to Fudenberg_Levine, 1993; Fershtman_Pakes, 2012)

Speculators adopt "conservative" trading strategy $x_{i,t}^{C} = \chi^{C}(v_{t} - \overline{v})$, believing

 $\chi^{\rm C} = {\rm optimal\ trading\ strategy\ due\ to\ biased\ evaluations}$

Self-confirming bias: correct on the equilibrium path but incorrect off the path

Existence of collusive equilibrium

Proposition 1: A collusive (Nash) equilibrium exists, only if

- ξ^{-1} is low (i.e., price efficiency is low); and
- σ_u/σ_v is low (i.e., noise trading risk is low)

Intuition: Sustaining price-trigger collusion requires two conditions:

- (i) Sufficient information rents to provide collusion incentives, and
- (ii) High price informativeness for effective monitoring

Proposition 2: A collusive (experience-based) equilibrium always exists, but particularly pronounced if

- σ_u/σ_v is high (i.e., noise trading risk is high)

Intuition: Collusive profits are primarily derived from trading against noise traders

1. Motivation

- 2. Laboratory framework & theoretical benchmark
- 3. Simulation experiments
 - Q-learning algorithms in trading
 - Experimental configuration and setup
 - Simulation results

RL algorithms as experimental subjects

Replace each RE informed speculator *i* with a Q-learning algo $\widehat{Q}_{i,t}(s_t, x_{i,t})$:

- Payoff: $\pi_{i,t} = (v_t p_t)x_{i,t}$
- State variable: $s_t = \{p_{t-1}, v_{t-1}, v_t\}$
- Exploration rate: $\varepsilon_t = e^{-\beta t}$

Replace RE market maker with a statistically adaptive agent

- Linear regressions using "historical data" $\mathcal{D}_t \equiv \{v_{t-\tau}, p_{t-\tau}, z_{t-\tau}, y_{t-\tau}\}_{\tau=1}^{T_m}$
- Results will not change with a Q-learning market maker

RL algorithms as experimental subjects

Replace each RE informed speculator *i* with a Q-learning algo $\widehat{Q}_{i,t}(s_t, x_{i,t})$:

- Payoff: $\pi_{i,t} = (v_t p_t)x_{i,t}$
- State variable: $s_t = \{p_{t-1}, v_{t-1}, v_t\}$
- Exploration rate: $\varepsilon_t = e^{-\beta t}$

Replace RE market maker with a statistically adaptive agent

- Linear regressions using "historical data" $\mathcal{D}_t \equiv \{v_{t-\tau}, p_{t-\tau}, z_{t-\tau}, y_{t-\tau}\}_{\tau=1}^{T_m}$
- Results will not change with a Q-learning market maker

Environment parameters:

$$I = 2, \ \sigma_u / \sigma_v = 10^{-1}, \ \text{and} \ \xi = 500$$

Preference parameters:

$$\rho = 0.95$$
, and $\theta = 0.1$

Discretization parameters:

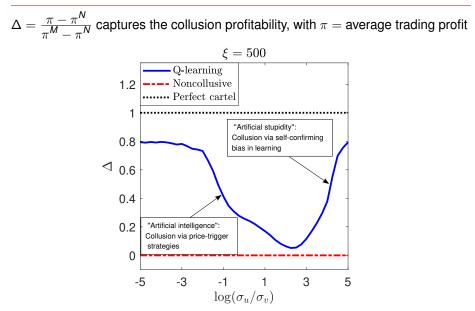
$$n_x = 15, n_p = 31, n_v = 10, \text{ and } T_m = 10,000$$

Hyperparameters:

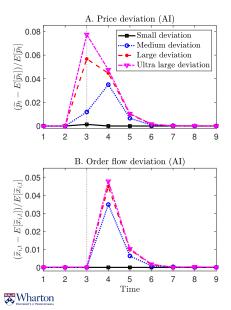
$$\alpha = 0.01$$
 and $\beta = 10^{-7}$

Note: Al traders do not have prior knowledge of environment parameters

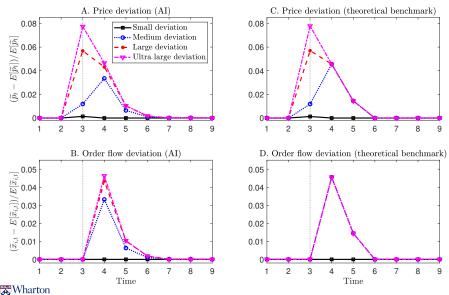
AI Collusion: Two distinct mechanisms



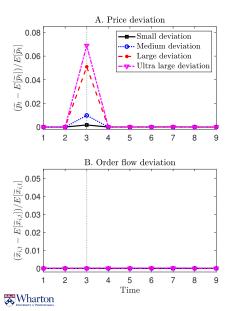
$$[\xi = 500; \sigma_u / \sigma_v = 10^{-1}]$$
: Price-trigger strategies



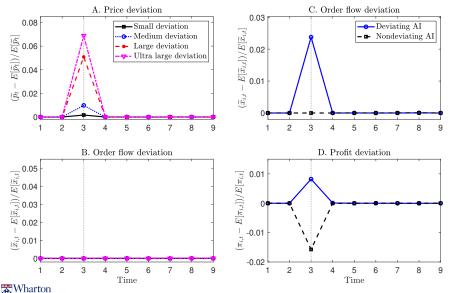
$$[\xi = 500; \sigma_u / \sigma_v = 10^{-1}]$$
: Price-trigger strategies



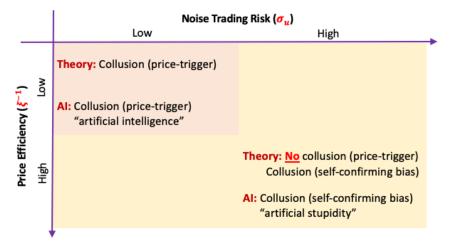
$[\xi = 500; \sigma_u / \sigma_v = 10^2]$ Self-confirming bias in learning



$[\xi = 500; \sigma_u / \sigma_v = 10^2]$ Self-confirming bias in learning

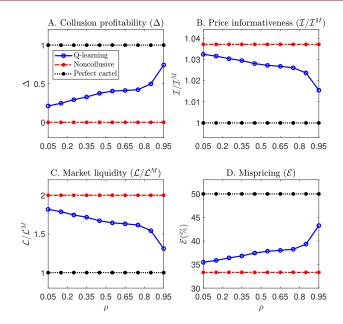


Summary of our main findings

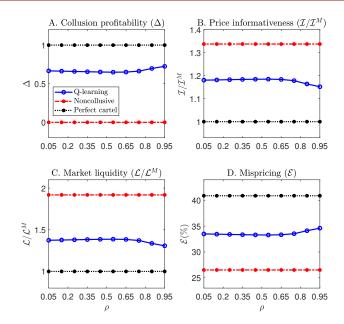


"Price Efficiency" = the degree to which a price reflects the conditional expected fundamental value "Noise Trading Risk" = the magnitude of noise trading relative to the variation in the fundamental

Folk Theorem: Price-trigger strategies ($\sigma_u / \sigma_v = 10^{-1}$)



No Folk Theorem: Self-confirming bias ($\sigma_u/\sigma_v = 10^2$)



Conclusion

This paper studies the "psychology" of AI traders

- Theory of learning in games is useful for understanding AI equilibrium

"Al collusion" emerges without communication or intended codes

- Through price-trigger strategies (artificial "intelligence")
- Through self-confirming bias (artificial "stupidity")

"Al collusion" undermines market efficiency

- Reduced market liquidity
- Diminished price informativeness
- Increased mispricing

Policy innovations (future research)

- Rethink the market manipulation law
- Deploy AI algos on the platform to counteract "AI collusion"
- Prevent AI concentration and homogenization

